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1 Introduction

In this paper we consider the estimation procedure of the parameters of the following signal

processing model:

y(n) = A0 cos(α0n + β0n2) + B0 sin(α0n + β0n2) + X(n); n = 1, . . . , N. (1)

Here y(n) is the real valued signal observed at n = 1, . . . , N . A0 and B0 are real-valued

amplitudes and α0 and β0 are the frequency and frequency rate respectively. The error random

variable {X(n)} is a sequence of random variables with mean zero and finite fourth moment.

The error random variable X(n) satisfies the following assumption:

Assumption 1: The error random variable {X(n)} can be written in the following form;

X(n) =
∞∑

j=−∞
a(j)e(n − j).

Here {e(n)} is a sequence of independent and identically distributed (i.i.d.) random variables

with mean zero and finite fourth moment. The coefficients a(j)s satisfy the following condition;

∞∑

j=−∞
|a(j)| < ∞.

The signals as described in (1) are known as the chirp signals in the statistical signal pro-

cessing literature (Djurić and Kay; 1990). Chirp signals are quite common in various areas

of science and engineering, specifically in sonar, radar, communications, etc. Several authors

considered the chirp signals model (1) when X(n)s are i.i.d. random variables. See for ex-

ample, works of Abatzoglon (1986), Kumaresn and Verma (1987), Djurić and Kay (1990),

Gini, Montanari and Verrazzani (2000), Nandi and Kundu (2004) etc. It is well known that in

most practical situations the errors may not be independent. We assume stationarity through

assumption 1 to make the model more realistic.

In this paper, we discuss the chirp signal model in presence of stationary noise. We consider

the least squares estimators and study their properties, when the errors satisfy assumption 1. It
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is well known that the simple sum of sinusoidal model does not satisfy the sufficient conditions

of Jennrich (1969) or Wu (1981) for the least squares estimators to be consistent. So the model

(1) as a generalization of sinusoidal model also does so and it is not clear how the least squares

estimators will behave in this more complicated situation.

It is observed that the least squares estimators are strongly consistent and the asymptotic

variances of the amplitudes, frequency and frequency rate estimators are O(N−1), O(N−3) and

O(N−5) respectively. Based on the asymptotic distributions, asymptotic confidence intervals

can also be constructed.

The rest of the paper is organized as follows. In the section 2, we provide the consistency

results of the least squares estimators. The asymptotic distributions of the least squares es-

timators are derived in section 3. The case of multiple chirp model is discussed in section 4.

Some numerical results are presented in section 5 and finally we conclude the paper in section

6.

2 Consistency of the LSEs

Let us use the following notation: θ = (A,B,α, β), θ0 = (A0, B0, α0, β0). Then, the least

squares estimator (LSE) of θ0, say θ̂ = (Â, B̂, α̂, β̂), can be obtained by minimizing

Q(A,B,α, β) = Q(θ) =
N∑

n=1

[
y(n) − A cos(αn + βn2) − B sin(αn + βn2)

]2
, (2)

with respect to A, B, α and β. Now, we have the following result.

Theorem 1: Let the true parameter vector θ0 = (A0, B0, α0, β0) be an interior point of the

parameter space Θ = (−∞,∞) × (−∞,∞) × [0, π] × [0, π] and A02

+ B02

> 0. If the error

random variables X(n) satisfy assumption 1, then θ̂, the LSE of θ0, is a strongly consistent

estimator of θ0.

We need the following lemmas to prove theorem 1.
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Lemma 1: Let us denote

SC,M =
{
θ;θ = (AR, AI , α, β), |θ − θ0| ≥ 4C, |AR| ≤ M, |AI | ≤ M

}
.

If for any C > 0 and for some M < ∞,

lim inf
N→∞

inf
θ∈SC,M

1

N

[
Q(θ) − Q(θ0)

]
> 0 a.s.

then θ̂ is a strongly consistent estimator of θ0.

Proof of Lemma 1: It is simple and therefore, it is omitted.

Lemma 2: As N → ∞,

sup
α,β

∣∣∣∣∣
1

N

N∑

n=1

X(n)ei(αn+βn2)

∣∣∣∣∣→ 0 a.s.

Proof of Lemma 2: See in the Appendix A.

Proof of Theorem 1: In this proof, we denote θ̂ by θ̂N = (ÂN , B̂N , α̂N , β̂N ) to emphasize

that θ̂ depends on the sample size. If θ̂N is not consistent for θ0, then either:

Case I: For all subsequences {Nk} of {N}, |ÂNk
| + |B̂Nk

| → ∞. This implies

1

Nk

[
Q(θ̂Nk

) − Q(θ0)
]
→ ∞.

But as θ̂Nk
is the LSE of θ0, therefore,

Q(θ̂Nk
) − Q(θ0) < 0,

which leads to a contradiction. So θ̂N is a strongly consistent estimator of θ0.

Case II: For at least one subsequence {Nk} of {N}, θ̂Nk
∈ SC,M , for some C > 0 and for an

0 < M < ∞. Now let us write

1

N

[
Q(θ) − Q(θ0)

]
= f1(θ) + f2(θ),

where

f1(θ) =
1

N

N∑

n=1

[
A0 cos(α0n + β0n2) − A cos(αn + βn2)

+B0 sin(α0n + β0n2) − B cos(αn + βn2)
]2

,
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f2(θ) =
2

N

N∑

n=1

X(n)
[
A0 cos(α0n + β0n2) − A cos(αn + βn2)

+B0 sin(α0n + β0n2) − B cos(αn + βn2)
]
.

Using lemma 2, it follows that

lim
N→∞

sup
θ∈SC,M

f2(θ) = 0 a.s. (3)

Now consider the following sets;

SC,M,1 =
{
θ : θ = (A,B,α, β), |A − A0| ≥ C, |A| ≤ M, |B| ≤ M

}
,

SC,M,2 =
{
θ : θ = (A,B,α, β), |B − B0| ≥ C, |A| ≤ M, |B| ≤ M

}
,

SC,M,3 =
{
θ : θ = (A,B,α, β), |α − α0| ≥ C, |A| ≤ M, |B| ≤ M

}
,

SC,M,4 =
{
θ : θ = (A,B,α, β), |β − β0| ≥ C, |A| ≤ M, |B| ≤ M

}
.

Note that

SC,M ⊂ SC,M,1 ∪ SC,M,2 ∪ SC,M,3 ∪ SC,M,4 = S (say).

Therefore,

lim inf
θ∈SC,M

1

N

[
Q(θ) − Q(θ0)

]
≥ lim inf

θ∈S

1

N

[
Q(θ) − Q(θ0)

]
. (4)

First we show that

lim inf
θ∈SC,M,j

1

N

[
Q(θ) − Q(θ0)

]
> 0 a.s., (5)

for j = 1, . . . , 4 and because of (4), it implies

lim inf
θ∈SC,M

1

N

[
Q(θ) − Q(θ0)

]
> 0 a.s.

Therefore, due to lemma 1, theorem 1 is proved, provided we can show (5). First consider

j = 1 to prove (5). Using (3), it follows that

lim inf
θ∈SC,M,1

1

N

[
Q(θ) − Q(θ0)

]
= lim inf

θ∈SC,M,1

f1(θ)

= lim inf
|A−A0|≥C

1

N

N∑

n=1

[
A0 cos(α0n + β0n2) − A cos(αn + βn2)+
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B0 sin(α0n + β0n2) − B cos(αn + βn2)
]2

= lim
N→∞

inf
|A−A0|≥C

1

N

N∑

n=1

cos2(α0n + β0n2)(A − A0)2

≥ C2 lim
N→∞

1

N

N∑

n=1

cos2(α0n + β0n2) > 0.

For other j also, it can be shown along the same line and that proves theorem 1.

3 Asymptotic Distribution of the LSE

In this section we compute the asymptotic distribution of the least squares estimators. We use

Q′(θ) and Q′′(θ) to denote the 1 × 4 vector of first derivatives of Q(θ) and the 4 × 4 second

derivative matrix of Q(θ) respectively. Now expanding Q′(θ̂) around the true parameter value

θ0 by Taylor series, we obtain

Q′(θ̂) − Q′(θ0) = (θ̂ − θ0)Q′′(θ̄), (6)

here θ̄ is a point on the line joining the points θ̂ and θ0. Suppose D is a 4× 4 diagonal matrix

as follows;

D = diag
{
N− 1

2 , N− 1

2 , N− 3

2 , N− 5

2

}
.

Since Q′(θ̂) = 0, therefore (6) can be written as

(θ̂ − θ0)D−1 = −
[
Q′(θ0)D

] [
DQ′′(θ̄)D

]−1
, (7)

as
[
DQ′′(θ̄)D

]
is an invertible matrix a.e. for large N . From Theorem 1, it follows that θ̂

converges a.e. to θ0 and since each element of Q′′(θ̄) is a continuous function of θ, therefore,

lim
N→∞

[
DQ′′(θ̄)D

]
= lim

N→∞

[
DQ′′(θ0)D

]
= 2Σ(θ0) (say).

Now let us look at different elements of the matrix Σ(θ) = (σjk(θ)). We will use the following

result

lim
N→∞

1

Np

N∑

n=1

np−1 =
1

p
for p = 1, 2, . . . .
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and the following notation:

lim
N→∞

1

Np+1

N∑

n=1

np cosk(αn + βn2) = δk(p, α, β), (8)

lim
N→∞

1

Np+1

N∑

n=1

np sink(αn + βn2) = γk(p, α, β). (9)

Here k takes values 1 and 2. Using these notation for limits, we compute the elements of Σ(θ)

by routine calculations and are as follows:

σ11(θ) = δ2(0, α, β), σ12(θ) =
1

2
γ1(0, 2α, 2β), σ13(θ) = −

1

2
Aγ1(1, 2α, 2β) + Bδ2(1, α, β),

σ14(θ) = −
1

2
Aγ1(2, 2α, 2β) + Bδ2(2, α, β), σ22(θ) = γ2(0, α, β),

σ23(θ) = −Aγ2(1, α, β) +
1

2
Bγ1(1, 2α, 2β), σ24(θ) = −Aγ2(2, α, β) +

1

2
Bγ1(2, 2α, 2β),

σ33(θ) = A2γ2(2, α, β) + B2δ2(2, α, β) − ABγ1(2, 2α, 2β),

σ34(θ) = A2γ2(3, α, β) + B2δ2(3, α, β) − ABγ1(3, 2α, 2β),

σ44(θ) = A2γ2(4, α, β) + B2δ2(4, α, β) − ABγ1(4, 2α, 2β).

The 4 × 1 random vector
[
Q′(θ0)D

]
takes the form;




− 2√
N

∑N
n=1 X(n) cos(α0n + β0n2)

− 2√
N

∑N
n=1 X(n) sin(α0n + β0n2)

2

N
3

2

∑N
n=1 nX(n)

[
A0 sin(α0n + β0n2) − B0 cos(α0n + β0n2)

]

2

N
5

2

∑N
n=1 n2X(n)

[
A0 sin(α0n + β0n2) − B0 cos(α0n + β0n2)

]




.

Now using the central limit theorem of stochastic processes (see Fuller; 1976, page 251), it

follows that
[
Q′(θ0)D

]
tends to a 4-variate normal distribution as given below;

[
Q′(θ0)D

]
d

−→ N4(0,G(θ0)), (10)

where the matrix G(θ0) is the asymptotic dispersion matrix of
[
Q′(θ0)D

]
. If we denote

G(θ) = ((gjk(θ))), then for k ≥ j, gjk(θ) are as follows:

g11(θ) = lim
N→∞

4

N
E[S1]

2, g12(θ) = lim
N→∞

4

N
E[S1S2], (11)
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g13(θ) = lim
N→∞

4

N2
E[S1S3], g14(θ) = lim

N→∞
4

N3
E[S1S4], (12)

g22(θ) = lim
N→∞

4

N
E[S2]

2, g23(θ) = lim
N→∞

4

N2
E[S2S3], (13)

g24(θ) = lim
N→∞

4

N3
E[S2S4], g33(θ) = lim

N→∞
4

N3
E[S3]

2, (14)

g34(θ) = lim
N→∞

4

N4
E[S3S4], g44(θ) = lim

N→∞
4

N5
E[S4]

2, (15)

where

S1 =
N∑

n=1

X(n) cos(αn + βn2), S2 =
N∑

n=1

X(n) sin(αn + βn2),

S3 =
N∑

n=1

nX(n)
[
A sin(αn + βn2) − B cos(αn + βn2)

]
,

S4 =
N∑

n=1

n2X(n)
[
A sin(αn + βn2) − B cos(αn + βn2)

]
.

For k < j, gjk(θ) = gkj(θ). These limits given in (11) to (15) exist for fixed values of θ because

of (8) and (9). Therefore, from (7) the following theorem follows.

Theorem 2: Under the same assumptions as in Theorem 1,

(θ̂ − θ0)D−1 d
−→ N4

[
0,Σ−1(θ0)G(θ0)Σ−1(θ0)

]
. (16)

Remark 1: When X(n)s are i.i.d. random variables, then the covariance matrix takes the

simplified form

Σ−1(θ0)G(θ0)Σ−1(θ0) = 4σ2Σ−1(θ0).

Remark 2: Although we could not prove it theoretically, but it is observed by extensive

numerical computations that the right hand side limits of (8) and (9) for k = 1, 2 do not

depend on α. So we assume that these quantities are independent of their second argument

and we write them as

δk(p;β) = δk(p, α, β), γk(p;β) = γk(p, α, β).

Let us denote

cc =
∞∑

k=−∞
a(k) cos(α0k + β0k2), cs =

∞∑

k=−∞
a(k) sin(α0k + β0k2).
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cc and cs are functions of α0 and β0, but we do not make it explicit here to keep the notation

simple.

Now according to the above assumption, δs and γs are independent of α and based on it,

we can explicitly compute the elements of G matrix as follows:

g11(θ
0) = 4σ2

[
c2
cδ2(0;β

0) + c2
sγ2(0;β

0) − cccsγ1(0; 2β
0)
]
,

g12(θ
0) = 4σ2

[
1

2
(c2

c − c2
s)γ1(0; 2β

0) + cccs(δ2(0;β
0) − γ2(0;β

0))

]
,

g13(θ
0) = 4σ2

[
γ2(1;β

0)(Acc + Bcs)cs − δ2(1;β
0)(Acs − Bcc)cc

−
1

2
γ1(1; 2β

0)(Ac2
c − Ac2

s − Bcccs)

]
,

g14(θ
0) = 4σ2

[
γ2(2;β

0)(Acc + Bcs)cs − δ2(2;β
0)(Acs − Bcc)cc

−
1

2
γ1(2; 2β

0)(Ac2
c − Ac2

s − Bcccs)

]
,

g22(θ
0) = 4σ2

[
c2
cγ2(0;β

0) + c2
sδ2(0;β

0) + cccsγ1(0; 2β
0)
]
,

g23(θ
0) = −4σ2

[
γ2(1;β

0)(Acc + Bcs)cc + δ2(1;β
0)(Acs − Bcc)cs

−
1

2
γ1(1 : 2β0)(Bc2

c − Bc2
s − Acccs)

]
,

g24(θ
0) = −4σ2

[
γ2(2;β

0)(Acc + Bcs)cc + δ2(2;β
0)(Acs − Bcc)cs

−
1

2
γ1(2; 2β

0)(Bc2
c − Bc2

s − Acccs)

]
,

g33(θ
0) = 4σ2

[
γ2(2;β

0)(Acc + Bcs)
2 + δ2(2;β

0)(Acs − Bcc)
2

+γ1(2; 2β
0){(A2 − B2)cccs − AB(c2

c − c2
s)}
]
,

g34(θ
0) = 4σ2

[
γ2(3;β

0)(Acc + Bcs)
2 + δ2(3;β

0)(Acs − Bcc)
2

+γ1(3; 2β
0){(A2 − B2)cccs − AB(c2

c − c2
s)}
]
,

g44(θ
0) = 4σ2

[
γ2(4;β

0)(Acc + Bcs)
2 + δ2(4;β

0)(Acs − Bcc)
2

+γ1(4; 2β
0){(A2 − B2)cccs − AB(c2

c − c2
s)}
]
.

So obtaining the explicit expressions of entries of variance-covariance matrix of (θ̂ − θ0)D−1

is possible by inverting the matrix Σ(θ0). But they are not provided here due to the complex

(notational) structure of matrices Σ(θ0) and G(θ0). If the true value of β is zero (i.e. frequency
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does not change over time) and if that information is used in the model, then the model (1) is

nothing but the usual sinusoidal model. In that case amplitudes are asymptotically independent

of the frequency which has not been observed in case of chirp signal model.

4 Multiple Chirp Signal

In this section, we introduce the multiple chirp signal model in stationary noise. The complex-

valued single chirp model was generalized as superimposed chirps by Saha and Kay (2002).

The following model is a similar generalization of model (1). We assume that the observed

data y(n) have the following representation.

y(n) =
p∑

k=1

[
A0

k cos(α0
kn + β0

kn2) + B0
k sin(α0

kn + β0
kn2)

]
+ X(n); n = 1, . . . , N. (17)

Similarly as single chirp, the parameters α0
k, β

0
k ∈ (0, π) are frequency and frequency rate respec-

tively. A0
ks and B0

ks are real-valued amplitudes. Again the aim is to estimate the parameters

and study their properties. We assume that the number of components, p is known and X(n)s

satisfy assumption 1. Estimation of p is an important problem and will be addressed elsewhere.

Now let us define, θk = (Ak, Bk, αk, βk) and ν = (θ1, . . . ,θp) be the parameter vector. The

least squares estimators of the parameters are obtained by minimizing the objective function,

say R(ν) (defined similarly as Q(θ); see eq. (2), sec. 2). Let ν̂ and ν0 denote the least squares

estimator and the true value of ν. The consistency of ν̂ follows similarly as the consistency of θ̂,

considering the parameter vector as ν. We will state the asymptotic distribution of ν̂ here. The

proof involves routine calculations and use of multiple Taylor series expansion and central limit

theorem for stochastic processes. For asymptotic distribution of ν̂, we introduce the following

notation; ψN
k = (θ̂k−θ

0
k)D

−1 =
(
N1/2(Âk−A0

k), N
1/2(B̂k−B0

k), N3/2(α̂k−α0
k), N

5/2(β̂k−β0
k)
)
,

moreover ck
c and ck

s are obtained from cc and cs by replacing α0 and β0 by α0
k and β0

k respec-

tively. Let us denote βj + βk = β+
jk, βj − βk = β−

jk, d1 = c1
cc

2
c + c1

sc
2
s, d2 = c1

cc
2
s + c1

sc
2
c ,

d3 = c1
cc

2
c − c1

sc
2
s and d4 = c1

cc
2
s − c1

sc
2
c . Then the asymptotic distribution of (ψN

1 , . . . ,ψN
p ) is as
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follows.

(ψN
1 , . . . ,ψN

p )
d

−→ N4p

(
0, 2σ2Λ−1(ν0)H(ν0)Λ−1(ν0)

)
, (18)

Λ(ν) =




Λ11 Λ12 · · · Λ1p

Λ21 Λ22 · · · Λ2p
...

...
...

...

Λp1 Λp2 · · · Λpp




, H(ν) =




H11 H12 · · · H1p

H21 H22 · · · H2p
...

...
...

...

Hp1 Hp2 · · · Hpp




. (19)

The sub-matrices Λjk and Hjk are of the order four and Λjk ≡ Λjk(θj,θk), Hjk ≡ Hjk(θj,θk).

Λjj and Hjj can be obtained from Σ(θ) and G(θ) by putting θ = θj . The entries of off-diagonal

sub-matrices Λjk = ((λrs)) and Hjk = ((hrs)) are given in appendix B. The elements of matrices

Λjk and Hjk are non-zero. So the parameters corresponding to different components, ψN
j and

ψN
k for j 6= k, are not asymptotically independent. If the frequencies do not change over time,

i.e. frequency rates βs vanish, the model (17) is equivalent to multiple frequency model. In such

case, the off-diagonal matrices in H and Λ are zero matrices and the estimators of parameters in

different components are independent. This is due to the reason that δ1(p, α, 0) = 0 = γ1(p, α, 0)

for all p ≥ 0 and α ∈ (0, π).

5 An Example

In this section, we present an example of the estimation of parameters. For this purpose, we

consider a single chirp model with A = 2.93, B = 1.91, α = 2.5 and β = .10. The sample

size used here is 50. Though, α, β ∈ (0, π), we have considered the true value of β, much less

than the initial frequency α, as β, being the frequency rate is comparatively small in general.

We consider different stationary processes as error random variables for our simulations. The

errors are generated from (a) X(t) = ρe(t + 1) + e(t), (b) X(t) = ρX(t − 1) + e(t) and

(c) X(t) = ρ1X(t − 1) + ρ2X(t − 2) + e(t). The processes (a), (b) and (c) are stationary

MA(1), AR(1) and AR(2) processes. Here MA(q) and AR(p) are usual notation for moving

average process of order q and autoregressive process of order p respectively. For simulations,

ρ = .5, ρ1 = 1.4 and ρ2 = −.48 have been used. We consider different values of σ2
x, the error

variance of X(t). Accordingly σ2, the variance of e(t) is used for different processes to generate
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the error vector. The LSEs of the parameters are obtained by minimizing the residual sum of

squares. The starting estimates of frequency and frequency rate are obtained by maximizing

the following periodogram like function;

I(ω1, ω2) =
1

N

∣∣∣∣∣

N∑

t=1

y(t)e−i(ω1t+ω2t2)

∣∣∣∣∣

2

over a fine two-dimensional (2-d) grid of (0, π) × (0, π). The linear parameters A and B are

expressible in terms of α and β. So minimization of Q(θ) with respect to θ involves a 2-d

search. The LSEs of all parameters are reported in Table 1 for different values of σ2
x. In

section 3, we have obtained the asymptotic distribution of a single chirp signal model under

quite general assumptions. So, it is possible to obtain confidence intervals of the unknown

parameters for fixed finite length data. But due to the complexity involved in the distribution,

it is extremely complicated to implement it in practice. For this reason we have used the

percentile bootstrap (Boot-p) method to obtain the confidence intervals of the parameters as

a simple alternative method as suggested by Nandi, Iyer and Kundu (2002). These bootstrap

confidence intervals for all the parameters are also reported in Table 1. We have seen in

simulations, that the maximizer of the periodogram like function defined above over a fine grid

provides a reasonably good initial estimates of the non-linear parameters, α and β.

The lengths of the intervals are reasonably small in almost all the cases. The lengths of the

intervals are in decreasing order of linear parameters, α and β. The asymptotic distribution

also suggests accordingly as the rates of convergence are N−1/2, N−3/2, N−5/2 respectively.

This has been reflected in the bootstrap intervals to some extent. The length of the interval

of each parameter increases as the error variance increases. We have considered different types

of errors which are stationary and we observe that the performances of least squares estimator

and bootstrap method in obtaining confidence interval are quite good. Now to see how the

fitted signal looks like we generated a realization with error (b) and σ2
x = .1, the fitted signal

is plotted in Fig. 1 along with the original one.
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Figure 1: Plot of original signal and estimated signals.

Table 1: Parameter estimates and their bootstrap confidence intervals.

Parameters

Error σ2
x A B α β

0.1 Est. 2.92817 1.98915 2.50219 .099995

Boot (2.7511, 3.1521) (1.7753, 2.2809) (2.4956, 2.5105) (.09986, .10012)

(a) 0.5 Est. 2.93097 2.09466 2.50484 .099990

Boot (2.5088, 3.4279) (1.6117, 2.7059) (2.4906, 2.5239) (.09968, .10026)

1.0 Est. 2.93473 2.18057 2.50687 .099984

Boot (2.3219, 3.6316) (1.4948, 3.0022) (2.4874, 2.5330) (.09955, .10037)

0.1 Est. 2.97191 2.00987 2.50321 .099920

Boot (2.8207, 3.1810) (1.7411, 2.2841) (2.4947, 2.5105) (.09984, .10009)

(b) 0.5 Est. 3.02630 2.13125 2.50684 .099829

Boot (2.6689, 3.4733) (1.5003, 2.7194) (2.4881, 2.5236) (.09963, .10020)

1.0 Est. 3.07107 2.21792 2.50924 .099770

Boot (2.5514, 3.7006) (1.2960, 3.0176) (2.4829, 2.5334) (.09947, .10030)

0.1 Est. 2.88462 1.95833 2.49750 .100088

Boot (2.6189, 3.1625) (1.6520, 2.2731) (2.4890, 2.5089) (.09987, .10026)

(c) 0.5 Est. 2.82969 2.02281 2.49446 .10020

Boot (2.2206, 3.4412) (1.3232, 2.6779) (2.4759, 2.5197) (.09971, .10058)

1.0 Est. 2.78774 2.07561 2.49234 .100271

Boot (1.8830, 3.6420) (-1.2886, 2.9606) (.67524, 2.5295) (.09959, 3.0401)
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6 Conclusions

In this paper, we study the problem of estimation of parameters of the real single chirp signal

model as well as multiple chirp signal model in stationary noise. It is a generalization of multiple

frequency model the way the complex-valued chirp model is a generalization of the exponential

model. We propose the least squares estimator to estimate the parameters. It has been observed

that the estimators are consistent and asymptotically normally distributed. The estimates are

obtained for a simulated data. But for confidence intervals, a bootstrap procedure has been

applied as the asymptotic dispersion matrix turns out to be quite complicated for practical

implementation purposes. Initial estimates of the frequency and frequency rate are obtained

by maximizing a periodogram like function. It will be interesting to explore the properties

of the estimators obtained by maximizing the periodogram like function defined in section 5.

Also generalization of some existing iterative and non-iterative methods for frequency model

to chirp signal model is another problem which need to be addressed as well as the estimation

of the number of chirp components for multiple chirp model.

Appendix A

To prove Lemma 2, we need the following lemmas.

Lemma A-1: Let e(n) be a sequence of i.i.d. random variables with mean zero and finite fourth

moment, then

E

∣∣∣∣∣

N−2∑

n=1

e(n)e(n + 1)2e(n + 2)

∣∣∣∣∣ = O(N
1

2 ), (20)

E

∣∣∣∣∣

N−k−1∑

n=1

e(n)e(n + 1)e(n + k)e(n + k + 1)

∣∣∣∣∣ = O(N
1

2 ), (21)

for k = 2, 3, . . . , N − 2.

14



Proof of Lemma A-1: We prove (20), (21) follows similarly. Note that

E

∣∣∣∣∣

N−2∑

n=1

e(n)e(n + 1)2e(n + 2)

∣∣∣∣∣ ≤


E

(
N−2∑

n=1

e(n)e(n + 1)2e(n + 2)

)2



1

2

= O(N
1

2 ).

Lemma A-2: For an arbitrary integer m,

E sup
θ

∣∣∣∣∣

N∑

n=1

e(n)e(n + k)eimθn

∣∣∣∣∣ = O(N
3

4 ).

Proof of Lemma A-2:

E sup
θ

∣∣∣∣∣

N∑

n=1

e(n)e(n + k)eimθn

∣∣∣∣∣ ≤



E sup
θ

∣∣∣∣∣

N∑

n=1

e(n)e(n + k)eimθn

∣∣∣∣∣

2




1

2

=

[
E sup

θ

(
N∑

n=1

e(n)e(n + k)eimθn

)(
N∑

n=1

e(n)e(n + k)e−imθn

)] 1

2

=

[
E sup

θ

(
N∑

n=1

e(n)2e(n + k)2 + eimθ
N−1∑

n=1

e(n)e(n + 1)e(n + k)e(n + k + 1)

+e−imθ
N−1∑

n=1

e(n)e(n + 1)e(n + k)e(n + k + 1) + . . . +

+ei(N−1)θe(1)e(1 + k)e(N)e(N + k) + e−i(N−1)θe(1)e(1 + k)e(N)e(N + k)
)] 1

2

≤

[
E

N∑

n=1

e(n)2e(n + k)2 + 2E

∣∣∣∣∣

N−1∑

n=1

e(n)e(n + 1)e(n + k)e(n + k + 1)

∣∣∣∣∣+ . . .

+2E |e(1)e(1 + k)e(N)e(N + k)|]
1

2 = O(N + N.N
1

2 )
1

2 (using Lemma A-1) = O(N
3

4 ).

Lemma A-3:

E sup
α,β

∣∣∣∣∣

N∑

n=1

e(n)ei(αn+βn2)

∣∣∣∣∣

2

= O(N
7

4 ).

Proof of Lemma A-3:

E sup
α,β

∣∣∣∣∣

N∑

n=1

e(n)ei(αn+βn2)

∣∣∣∣∣

2

= E sup
α,β

[
N∑

n=1

e(n)ei(αn+βn2)

] [
N∑

n=1

e(n)e−i(αn+βn2)

]

= E sup
α,β

[
N∑

n=1

e(n)2 +

(
ei(α+β)

N−1∑

n=1

e(n)e(n + 1)e2iβn + e−i(α+β)
N−1∑

n=1

e(n)e(n + 1)e−2iβn

)

+

(
ei(2α+4β)

N−2∑

n=1

e(n)e(n + 2)e4iβn + e−i(2α+4β)
N−2∑

n=1

e(n)e(n + 2)e−4iβn

)
+

15



...

+
(
ei((N−1)α+(N−1)2β)e(1)e(N)e2i(N−1)β + e−i((N−1)α+(N−1)2β)e(1)e(N)e−2i(N−1)β

)]

≤ O(N + NN
3

4 ) (using Lemma A-2) = O(N
7

4 ).

Lemma A-4:

E sup
α,β

∣∣∣∣∣
1

N

N∑

n=1

e(n)ei(αn+βn2)

∣∣∣∣∣ ≤ O(N− 1

8 ).

Proof of Lemma A-4:

E sup
αβ

∣∣∣∣∣
1

N

N∑

n=1

e(n)ei(αn+βn2)

∣∣∣∣∣ ≤



E sup
α,β

∣∣∣∣∣
1

N

N∑

n=1

e(n)ei(αn+βn2)

∣∣∣∣∣

2




1

2

= O(N− 1

8 ) (using Lemma A-3).

Lemma A-5:

E sup
αβ

∣∣∣∣∣
1

N

N∑

n=1

X(n)ei(αn+βn2)

∣∣∣∣∣ ≤ O(N− 1

8 ).

Proof of Lemma A-5:

E sup
α,β

∣∣∣∣∣
1

N

N∑

n=1

X(n)ei(αn+βn2)

∣∣∣∣∣ = E sup
α,β

∣∣∣∣∣∣
1

N

N∑

n=1

∞∑

k=−∞
a(k)e(n − k)ei(αn+βn2)

∣∣∣∣∣∣

≤
∞∑

k=−∞
|a(k)|

[
E sup

α,β

1

N

∣∣∣∣∣

N∑

n=1

e(n − k)ei(αn+βn2)

∣∣∣∣∣

]
.

Note that E supα,β
1
N

∣∣∣
∑N

n=1 e(n − k)ei(αn+βn2)
∣∣∣ is independent of k and therefore the result

follows using Lemma A-4.

Lemma A-6:

sup
α,β

∣∣∣∣∣
1

N

N∑

n=1

X(n)ei(αn+βn2)

∣∣∣∣∣ −→ 0. a.s.

Proof of Lemma A-6:

Consider the sequence N9, then using Lemma A-5 we obtain

E sup
α,β

1

N9

∣∣∣∣∣∣

N9∑

n=1

X(n)ei(αn+βn2)

∣∣∣∣∣∣
≤ O(N− 9

8 ).
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Therefore, using Borel Cantelli lemma it follows that

sup
α,β

1

N9

∣∣∣∣∣∣

N9∑

n=1

X(n)ei(αn+βn2)

∣∣∣∣∣∣
−→ 0. a.s.

Now consider for J , such that N9 < J ≤ (N + 1)9, then

sup
α,β

sup
N9<J≤(N+1)9

∣∣∣∣∣∣
1

N9

N9∑

n=1

X(n)ei(αn+βn2) −
1

J

J∑

n=1

X(n)ei(αn+βn2)

∣∣∣∣∣∣

= sup
α,β

sup
N9<J≤(N+1)9

∣∣∣∣∣∣
1

N9

N9∑

n=1

X(n)ei(αn+βn2) −
1

N9

J∑

n=1

X(n)ei(αn+βn2)+

1

N9

J∑

n=1

X(n)ei(αn+βn2) −
1

J

J∑

n=1

X(n)ei(αn+βn2)

∣∣∣∣∣

≤
1

N9

(N+1)9∑

n=N9+1

|X(n)| +
(N+1)9∑

n=1

|X(n)|

(
1

N9
−

1

(N + 1)9

)
.

Note that the mean squared error of the first term is of the order O
(

1
N18 ×

(
(N + 1)9−

N9
)2)

= O(N−2). Similarly, the mean squared error of the second term is of the order

O

(
N18 ×

(
(N+1)9−N9

N18

)2
)

= O(N−2). Therefore, both terms converge to zero almost surely

and that proves the lemma.

Appendix B

Here we provide entries of the matrix Λjk = ((λrs)) and Hjk = ((hrs))

λ11 = δ1(0;β
+
j,k) + δ1(0;β

−
j,k), λ12 = γ1(0;β

+
j,k) − γ1(0;β

−
j,k),

λ13 = −Akγ1(1;β
+
j,k) + Akγ1(1;β

−
j,k) + Bkδ1(1;β

+
j,k) + Bkδ1(1;β

−
j,k),

λ14 = −Akγ1(2;β
+
j,k) + Akγ1(2;β

−
j,k) + Bkδ1(2;β

+
j,k) + Bkδ1(2;β

−
j,k),

λ21 = γ1(0;β
+
j,k) + γ1(0;β

−
j,k), λ22 = δ1(0;β

−
j,k) − δ1(0;β

+
j,k),

λ23 = −Akδ1(1;β
−
j,k) + Akδ1(1;β

+
j,k) + Bkγ1(1;β

+
j,k) + Bkγ1(1;β

−
j,k),

λ24 = −Akδ1(2;β
−
j,k) + Akδ1(2;β

+
j,k) + Bkγ1(2;β

+
j,k) + Bkγ1(2;β

−
j,k),

λ31 = −Ajγ1(1;β
+
j,k) − Ajγ1(1;β

−
j,k) + Bjδ1(1;β

+
j,k) + Bjδ1(1;β

−
j,k),
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λ32 = −Ajδ1(1;β
−
j,k) + Ajδ1(1;β

+
j,k) + Bjγ1(1;β

+
j,k) − Bjγ1(1;β

−
j,k),

λ33 = (AjAk + BjBk)δ1(2;β
−
j,k) − (AjAk − BjBk)δ1(2;β

+
j,k)

−(AjBk + AkBj)γ1(2;β
+
j,k) − (AjBk − AkBj)γ1(2;β

−
j,k),

λ34 = (AjAk + BjBk)δ1(3;β
−
j,k) − (AjAk − BjBk)δ1(3;β

+
j,k)

−(AjBk + AkBj)γ1(3;β
+
j,k) − (AjBk − AkBj)γ1(3;β

−
j,k),

λ41 = −Ajγ1(2;β
+
j,k) − Ajγ1(2;β

−
j,k) + Bjδ1(2;β

+
j,k) + Bjδ1(2;β

−
j,k),

λ42 = −Ajδ1(2;β
−
j,k) + Ajδ1(2;β

+
j,k) + Bjγ1(2;β

+
j,k) − Bjγ1(2;β

−
j,k),

λ43 = (AjAk + BjBk)δ1(3;β
−
j,k) − (AjAk − BjBk)δ1(3;β

+
j,k)

−(AjBk + AkBj)γ1(3;β
+
j,k) − (AjBk − AkBj)γ1(3;β

−
j,k),

λ44 = (AjAk + BjBk)δ1(4;β
−
j,k) − (AjAk − BjBk)δ1(4;β

+
j,k)

−(AjBk + AkBj)γ1(4;β
+
j,k) − (AjBk − AkBj)γ1(4;β

−
j,k).

h11 = d3δ1(0;β
+
j,k) + d1δ1(0;β

−
j,k) − d2γ1(0;β

+
j,k) + d4γ1(0;β

−
j,k),

h12 = d4δ1(0;β
−
j,k) + d2δ1(0;β

+
j,k) − d1γ1(0;β

−
j,k) + d3γ1(0;β

+
j,k),

h13 = δ1(1;β
+
j,k)(Bkd3 − Akd2) − δ1(1;β

−
j,k)(Bkd1 − Akd4)

−γ1(1;β
+
j,k)(Bkd2 + Akd3) + γ1(1;β

−
j,k)(Akd1 + Bkd4),

h14 = δ1(2;β
+
j,k)(Bkd3 − Akd2) − δ1(2;β

−
j,k)(Bkd1 − Akd4)

−γ1(2;β
+
j,k)(Bkd2 + Akd3) + γ1(2;β

−
j,k)(Akd1 + Bkd4),

h21 = d2δ1(0;β
+
j,k) − d4δ1(0;β

−
j,k) + d3γ1(0;β

+
j,k) + d1γ1(0;β

−
j,k),

h22 = −d3δ1(0;β
+
j,k) + d1δ1(0;β

−
j,k) + d2γ1(0;β

+
j,k) + d4γ1(0;β

−
j,k),

h23 = δ1(1;β
+
j,k)(Bkd2 + Akd3) − δ1(1;β

−
j,k)(Akd1 + Bkd4)

+γ1(1;β
+
j,k)(Bkd3 − Akd2) + γ1(1;β

−
j,k)(Bkd1 − Akd4),

h24 = δ1(2;β
+
j,k)(Bkd2 + Akd3) − δ1(2;β

−
j,k)(Akd1 + Bkd4)

+γ1(2;β
+
j,k)(Bkd3 − Akd2) + γ1(2;β

−
j,k)(Bkd1 − Akd4),

h31 = δ1(1;β
+
j,k)(Bjd3 − Ajd2) + δ1(1;β

−
j,k)(Ajd4 + Bjd1)
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−γ1(1;β
+
j,k)(Bjd2 + Ajd3) − γ1(1;β

−
j,k)(Bjd4 − Ajd1),

h32 = δ1(1;β
+
j,k)(Bjd2 + Ajd3) + δ1(1;β

−
j,k)(Bjd4 − Ajd1)

+γ1(1;β
+
j,k)(Bjd3 − Ajd2) − γ1(1;β

−
j,k)(Bjd1 + Ajd4),

h33 = δ1(2;β
+
j,k) {−Aj(Akd3 + Bkd2) − Bj(Akd2 − Bkd3)}

+δ1(2;β
−
j,k) {Aj(Akd1 + Bkd4) − Bj(Akd4 − Bkd1)}

+γ1(2;β
+
j,k) {Aj(Akd2 − Bkd3) − Bj(Akd3 + Bkd2)}

+γ1(2;β
−
j,k) {Aj(Akd4 − Bkd1) + Bj(Akd1 + Bkd4)} ,

h34 = δ1(3;β
+
j,k) {−Aj(Akd3 + Bkd2) − Bj(Akd2 − Bkd3)}

+δ1(3;β
−
j,k) {Aj(Akd1 + Bkd4) − Bj(Akd4 − Bkd1)}

+γ1(3;β
+
j,k) {Aj(Akd2 − Bkd3) − Bj(Akd3 + Bkd2)}

+γ1(3;β
−
j,k) {Aj(Akd4 − Bkd1) + Bj(Akd1 + Bkd4)} ,

h41 = δ1(2;β
+
j,k)(Bjd3 − Ajd2) + δ1(2;β

−
j,k)(Ajd4 + Bjd1)

−γ1(2;β
+
j,k)(Bjd2 + Ajd3) + γ1(2;β

−
j,k)(Bjd4 − Ajd1),

h42 = δ1(2;β
+
j,k)(Bjd2 + Ajd3) + δ1(2;β

−
j,k)(Bjd4 − Ajd1)

+γ1(2;β
+
j,k)(Bjd3 − Ajd2) − γ1(2;β

−
j,k)(Bjd1 + Ajd4),

h43 = δ1(3;β
+
j,k) {−Aj(Akd3 + Bkd2) − Bj(Akd2 − Bkd3)}

+δ1(3;β
−
j,k) {Aj(Akd1 + Bkd4) − Bj(Akd4 − Bkd1)}

+γ1(3;β
+
j,k) {Aj(Akd2 − Bkd3) − Bj(Akd3 + Bkd2)}

+γ1(3;β
−
j,k) {Aj(Akd4 − Bkd1) + Bj(Akd1 + Bkd4)} ,

h44 = δ1(4;β
+
j,k) {−Aj(Akd3 + Bkd2) − Bj(Akd2 − Bkd3)}

+δ1(4;β
−
j,k) {Aj(Akd1 + Bkd4) − Bj(Akd4 − Bkd1)}

+γ1(4;β
+
j,k) {Aj(Akd2 − Bkd3) − Bj(Akd3 + Bkd2)}

+γ1(4;β
−
j,k) {Aj(Akd4 − Bkd1) + Bj(Akd1 + Bkd4)} .
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