
isid/ms/2005/09

September 5, 2005

http://www.isid.ac.in/˜statmath/eprints

On Adaptive Rejection Sampling

Rajeeva L. Karandikar

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi–110 016, India

On Adaptive Rejection Sampling

Rajeeva L. Karandikar

Indian Statistical Institute

7, S. J. S. Sansawal Marg

New Delhi 110 016, INDIA

rlk@isid.ac.in

October 27, 2005

Abstract

Adaptive Rejection Algorithm (ARS) is an algorithm to generate samples from a log-

concave density. The algorithm, due to Gilks [1], is very efficient. As in MCMC, this

requires that the user specify the density upto a normalising constant. However, unlike in

MCMC, this algorithm produces i.i.d. samples. The algorithm requires the user to also

give a set of points x0 < x1 < . . . < xM such that the interval (x0, xM) covers most of the

probability. In this article, we propose an extension, which does not require the user to

specify the points x0 < x1 < . . . < xM . This version only requires the user to specify the

density (upto a constant). Thus, it can be used in Gibbs sampler if all the full conditional

distributions have log-concave densities.

1 Adaptive Rejection Algorithm

Let f be a log-concave density on R. Adaptive Rejection Algorithm (ARS) is an algorithm to

generate i.i.d. samples from the density f . The algorithm, due to Gilks [1] (also see [2]) uses log-

concavity to construct upper and lower envelopes for the target density (based on an initial set

of points specified) and one can use the upper envelope as the proposal density to perform the

accept-reject step of the Rejection sampling algorithm. Moreover, we can update the envelopes

using the chosen sample, taking into account the “gap” between the lower envolope and the

function.

For u < v, let Luv (i.e. y = Luv(x)) be the line passing through (u, log f(u)) and (v, log f(v)).

Then for x ∈ (u, v), the curve log f(x) lies below the line Luv and for x 6∈ (a, b) lies above Luv.

Let S = {x ∈ R : f(x) > 0}.

Let

{a = x1 < x2 < . . . < xM = b}

be an initial set of points. Suppose that a, b ∈ S and that a is less than the 1− percentile

point of f and b is larger than the 99− percentile point of f . Let y = Li,i+1(x) denote the line

passing through the points

(xi, log f(xi)), (xi+1, log f(xi+1)).

Then for xi ≤ x ≤ xi+1, 2 ≤ i ≤ M − 2 one has

Li,i+1(x) ≤ log f(x) ≤ min{Li−1,i(x), Li+1,i+2(x)} (1.1)

Let L0,1(x) = L2,3(x) and LM,M+1(x) = LM−2,M−1(x). Then (1.1) is also valid for xi ≤ x ≤ xi+1,

1 ≤ i ≤ M − 1. Also, for x ≤ x1,

log f(x) ≤ L1,2(x) (1.2)

and for x ≥ xM ,

log f(x) ≤ LM−1,M(x) (1.3)

Thus, defining

g(x) = exp{min(Li−1,i(x), Li+1,i+2(x))}

h(x) = exp{Li,i+1(x)}

for xi ≤ x ≤ xi+1, 1 ≤ i ≤ M − 1, and for x ≤ x1,

g(x) = exp{L1,2(x)}

h(x) = 0

and for x ≥ xM ,

g(x) = exp{LM−1,M (x)}

h(x) = 0

2

we have

h(x) ≤ log f(x) ≤ g(x) ∀x.

We assume that {xi : 1 ≤ i ≤ M} (or rather x1, x2, xM−1, xM) have been chosen such that the

slope of L1,2 is positive, while slope of LM−1,M is negative. Then the function g(x) is integrable.

Let K =
∫
∞

−∞
g(x) dx and let

p(x) =
1

K
g(x).

Then p is a density and by our choice, p is an envelope for f and hence we can use the Rejection

Sampling algorithm to generate a sample from f . Moreover, we can (adaptively) add chosen

sample points to the initial partition to improve the envelope. It has been suggested that we

add a sample point x (chosen according to density p) to the partition with probability

g(x) − h(x)

g(x)

so if the gap between the upper envolope and lower envolope is “large”, we add the point with

high probability while if the gap is “small” we add the point with small probability.

Thus as we generate more and more points, the gap between upper and lower reduces, and

thus the acceptence rate increases.

Observe that it is easy to generate samples from the envolope p(x). For this, first note that

denoting by (wi, zi) the point of intersection of the lines y = Li−1,i(x) and y = Li+1,i+2(x) for

2 ≤ i ≤ M − 2 and writing yi = log f(xi), 1 ≤ i ≤ M , we can see that log p(x) is a piecewise

linear function, obtained by joining

(x2, y2), (w2, z2), (x3, y3), (w4, z4), . . . (xM−2, yM−2)

and for x ≤ x2, it is the line y = L1,2(x) while for x ≥ xM , it is the line y = LM−1,M(x). Thus

p(x) is a mixture of functions that are piecewise linear on the log -scale. Thus we can generate

random samples from p(x) easily.

If f is a log-concave function that is integrable, then the algorithm described above yields

samples from a distribution whose density is proportional to f , i.e. whose density is f0(x)

given by

f0(x) = f(x)
[∫

f(x)dx
]
−1

.

In such a situtuation, f may be called the unnormalised density.

2 AARS

In this section, we will give an algorithm that would choose the initial partition automatically.

Thus, the only input required from the user will be the function f(x). Indeed, we would not

require that the support of the density is specified separately : only thing needed is a “black

box” or an “oracle” that on receiving an input x returns the value f(x), which will be zero if

the point x is outside the support of f .

3

The discussion given below (and the software implementation that comes with this article)

is for the language C++. But it is valid for other languages as well.

Let φ(x) denote the approximate value of f(x) computed by the computational algorithm

in the language C++. Note that if f(x) = exp{−x ∗ x/2}, then f(x) > 0 for all x while φ(x)

will be zero for large |x|. Here the numbers are represented as long double. It can be seen that

φ(40) = 0. In general, even when the support of the distribution corresponding to a log-concave

density function f is the whole real line, limit as x converges to ∞ or −∞ of f(x) is zero and

thus for large values of |x|, φ(x) will be zero.

There is another kind of approximation in the background. Each number is stored in the

internal memory upto a specified number of significant binary digits. So it is possible for u > 0,

v > 0 and yet u and u + v have the same representation. For example, if u = 1 and v = 10−30

(i.e. 1e-30), then it can be seen that the expression (u == u + v) evaluates to true. We will

write < x > to denote the number stored by the system, so that with u, v as above, < u + v >

is also equal to 1. Indeed, given any u, for sufficiently small v, < u + v > will be equal to

< u >.

Thus, whatever be the support of the distribution, we can get two points a, b with the

property that for some γ > 0, θ > 0

φ(b) > 0, φ(b + γ) = 0

and

either < b >=< b +
γ

2
> or < b +

γ

2
>=< b + γ >;

φ(a) > 0, φ(a − θ) = 0

and

either < a >=< a −
θ

2
> or < a −

θ

2
>=< a − θ > .

Thus essentially, [a, b] is the support of the distribution. So the first task is to identify such

a, b. Once we have done that we can then choose the required partition.

The first step is to find a point z such that φ(z) > 0. We will do a sequential search as

follows. For n ≥ 0, let

Tn = {(−24n + i × 2−n) : i = 0, 1, . . . , 25n+1}.

We will search in the sets T0, T1, . . . , Tk . . . one by one, till we find z such that φ(z) > 0.

Next step is to find a, b. For finding b we proceed as follows. Let γ = 1. Let c = z.

Step A Define u0 = c, um+1 = um+2mγ and let m be the smallest integer such that φ(um+1) =

0. Let c = um

Step B If m > 0, then Goto Step A. (So when we exit Step A with m = 0 and go onto Step

C, we would have found c such that φ(c) > 0 but φ(c + γ) = 0.)

Step C Let u = c and v = c + γ.

4

Step D Let w = (u + v)/2. If < u >=< w > or < w >=< v >, goto Step F.

Step E If φ(w) > 0 then u = w else v = w. goto Step D.

Step F b = u

This algorithm gives the upper bound b. Proceeding simillarly, we can get lower bound a.

Note that in determining a, b, we have not used any additional information about φ(x).

Now to get the initial partition. One of the objectives is to choose very few points in the tail

of the distribution and more points in the center. At the same time, we have to allow for the

possibility that the mode could be one of the end points, a or b. We proceed as follows. Let

x0 = a and x100 = b. First we define

zi = a +
(b − a)i

400
, i = 0, 1, . . . 400

and let M be the maximum of φ(zi), i = 0, 1, . . . 200. Let M1 = M/100 and let l be the first

k ≥ 1 such that φ(zk) is greater than M1 and j be the last k ≤ 399 such that φ(zk) is greater

than M1. We put x10 = zl and x90 = zj . Then,

x[i] = x[i − 1] + (x10 − x0)/10 i = 1, 2, . . . , 9;

x[i] = x[i − 1] + (x90 − x10)/80 i = 11, 12, . . . , 89;

x[i] = x[i − 1] + (x100 − x90)/10 i = 91, 2, . . . , 99.

This defines the initial partition x0, x1, . . . , x100. This choice seems to work well. Once we

have the initial partition, we can proceed with ARS as described in previous section.

3 Software implementation

The algorithm described above has been implemented in C++. There are many numerical sta-

bility issues associated with the AARS algorithm as with ARS algorithm which need to be

addressed. The C++ programming has been done with help from Prateek Karadikar. For this

implementation, the executables created using Gnu compiler (gcc) are available in a zip file at

the following URL:

http://www.isid.ac.in/~rlk/AARS.zip

This zip file contains two folders, Windows and RedHat, each containing the executables.

For Windows OS (98 or XP) use the files under the directory Windows (two files: AARS.exe

and cygwin1.dll). Both files should be kept in one directory, the working directory. For

RedHat Linux, use the file under directory RedHat (one file AARS) (you will need to change

permissions of the file AARS via “chmod 700 AARS”).

5

Usage under windows :

AARS.exe target_function

Usage under Linux:

./AARS target_function

It will produce a sample of size 10000 and it will be written to a file “sample.csv”. The

target function (the unnormalised density) is specified as a string using the variable x and

the following functions (from C++ math library) sin, cos, tan, exp, log, sqrt, asin, acos, atn,

abs, floor, ceil, sinh, cosh, tanh, pow, max, min. In addition, to facilitate specifying functions

two additional functions Igt(x,a), Ilt(x,b) are available: Igt(x,a) is the indicator of the

interval (a,∞) and Ilt(x,b) is the indicator of the interval (−∞, b).

Examples of Usage (given here for windows: open “Command prompt” and type the com-

mand given below; for linux replace AARS.exe with ./AARS in terminal window):

For standard normal density f(x) = exp{−x2/2},

target function=“exp(-x*x/2)”.

Usage:

AARS.exe "exp(-x*x/2)"

For Gamma with parameter 13 (say),

f(x) = x12 exp{−x}, for x > 0 and zero otherwise

target function=“Igt(x,0)*pow(x,12)*exp(-x)”.

Usage:

AARS.exe "Igt(x,0)*pow(x,12)*exp(-x)"

For truncated normal density

f(x) = exp{−(x + 100)2/60}, for 10 ≤ x ≤ 150

target function=“Igt(x,10)*Ilt(x,150)*exp(-(x+100)*(x+100)/60)”.

Usage:

AARS.exe "Igt(x,10)*Ilt(x,150)*exp(-(x+100)*(x+100)/60)".

It should be noted that the algorithm works even when the support of the distribution is a

small set far removed from the origin, just that the search takes longer. Thus,

AARS.exe "Igt(x,10000)*Ilt(x,10000.0001)*exp(-(x-10000)*5000)"

also works. So the algorithm is able to find a “needle in a haystack”.

References

1 Gilks, W. R. (1992) Derivative-free adaptive rejection sampling for Gibbs sampling. Bayesian

6

Statistics 4, (eds. Bernardo, J., Berger, J., Dawid, A. P., and Smith, A. F. M.) Oxford

University Press.

2 Ripley, B. (1987) Stochastic Simulation. New York, Wiley.

7

