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Abstract

In recent literature the truncated normal distribution has been used to model the stochastic 

structure for variety of random structures. In this paper the sensitivity of the t-random 

variable under a left truncated normal population is explored. Simulation results are used 

to assess the errors associated with estimating the reliabilities, over a range of locations, 

with the standard t distribution. The maximum errors are modeled as a linear function of 

the magnitude of the truncation and sample size. In the case of a left truncated normal 

population, adjustments to standard inferences for the mean, namely confidence intervals 

and observed significance levels, based on the t random variable are introduced.
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1. Introduction

The statistical modeling of physical and economic systems often involves 

nonnegative random variables. Statistical distributions with nonnegative supports such as 

the Gamma, Lognormal and the left-truncated normal have been used to model the 

stochastic structure associated with nonnegative random variables. Recently the left 
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truncated normal random variable has been applied to these problems. Applications in the 

literature have been diverse and include management science (Johnson (2001)), 

forecasting (Thomopoules (1980)) and inventory systems (Sinha (1991)). Further, 

examples of stochastic modeling using the truncated normal random variable include the 

modeling of demand functions in the determination of safety stocks by Johnson (1978) and 

Johnson and Thomopoulos (2002) and the assessment of the technical efficiency of fishing 

vessels by Flores-Lagunes, Horrace and Schnier (2006).

In this paper the tail probabilities of the standard t-random variable when the 

underlying distribution is a left-truncated normal are explored through simulation 

experiments. Conservative inference procedures, namely confidence intervals and 

hypothesis tests for the mean, utilizing the standard t-distribution are constructed. The 

magnitude of the truncation and the sample size are varying parameters. 

2. Left-Truncated Normal Distribution

Many statistical techniques in both the applied and theoretical settings are based on 

the classical normal distribution. The normal random variable X takes on all real values 

and has mean  and variance 2 > 0. The standard normal random variable Z = (X - )/

has probability density function (z) = (22)-1/2 exp (- z2/2)and associated (z) = P(Z <

z).

The normal random variable can be left-truncated at any fixed quantity and the 

general distribution is given in Schneider (1986) and Cohen (1991). By a linear translation 

the truncation point can be shifted to zero and the probability density function can be 

written as 

    f(x, 2)  =  (22) - ½ exp( - (x - )2/2)/()  for  x > 0  ,  = 0  for  x < 0              (1)      
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for fixed  > 0,  > 0 and  = /. The parameter  is the distance between  and the 

truncation point zero and measures the magnitude of the truncation. As  increases the 

effects of truncation decrease and (1) approaches the classical normal distribution. The 

left-truncated normal random variable with probability density function (1) is denoted by 

LTNRV.

The mean and variance for general truncated normal random variables are given by 

Barr and Sherrill (1999). The probability density function of a LTNRV is skewed to the 

right and the central moments are functions of ,  > 0 and () = ()/(). Utilizing (1) 

the mean and variance are computed in Appendix A as

                    () =   +  ()     and     2() = 2 ( 1- () - ()2)                            (2)

Further, in Appendix A an explicit form of the skewness, denoted Sk() = E{(X - ())3}/ 

[2()]3/2, is derived and takes the form

          Sk() = (2() - () + 3 ()2 + 2()3)/ ( 1- () - ()2)3/2                          (3)

As the magnitude of truncation decreases, manifested by an increasing  () decreases 

and so does the skewness as given by (3).

3. Skewed T Random Variable and Simulation Results

            The classical t- random variable introduced by Student (1908) has been used to 

construct exact inference procedures such as confidence intervals and hypothesis tests in 

the case of normal populations. The robustness of the t-random variable has been 

classically explored by Neyman and Pearson (1928). Nair (1941) observed that a positive 

population skewness resulted in a negatively skewed t-random variable. Johnson (1978) 

using a Cornish-Fisher expansion proposed some modified inference procedures 

concentrating to the case of a skewed population.                                                                                                           



4

In this paper we explore conditions on the LTNRV under which the standard t 

distribution yields a good approximation. Let Xi be independent and identically distributed 

with pdf given by (1) for 1 < i < n. We define the skewed t-random variable as

                                                             
                                         T()  = n1/2 ( X - ()) / S                                                        (4)

                                                                                                     
where the sample mean and standard deviation are denoted by X  and S, respectively. As 

 increases and the magnitude of the truncation decreases and the skewed T random 

variable (4) approaches the classical t-random variable with degrees of freedom n – 1 

denoted by Tn-1. This suggests that the classical t-distribution is an approximate 

distribution for T() under suitable conditions. A measure of the efficiency of this 

approximation is found to be the skewness of the sample mean computed as   

                                           Sk(,n) = Sk()/ n1/2                                                              (5) 

for truncation parameter  and sample size n. Small values of (5) arise from either minor 

truncation or large sample size n and indicate closeness of the skewed T and classical t 

distributions.

We now look into the distribution of the skewed t-random variable for chosen 

values of  and n. Through simulation the distribution of T() in terms of their right tailed 

probabilities are computed. The resulting simulated tail probabilities or reliabilities are 

compared to the corresponding values for Tn-1. 

Probabilities associated with the skewed T random variable, T(), are functions of 

both  and n. Let R(t, , n) denote the reliability associated with t > 0, i.e.    

                                    R(t, , n) = P(T() > t)                                                       (6)

These values are computed using simulation procedures consisting of 100,000 repetitions 

for chosen values t between -3.5 to 3.5. The simulated reliabilities R(t, , n) are listed in 

Appendix B. The graphs of the probability density functions for the standard t-distribution 
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and the skewed t-distribution, resulting from midpoint approximations from the simulated 

reliabilities, are given in Fig. 1 for  = 1 and n = 3. As noted by Johnson (1978) the 

skewed t distribution is skewed to the left.

The simulated reliabilities are compared to the right tailed probabilities based on 

Tn-1 denoted by R(t, n). The observed errors associated with chosen t values and 

parameters  and n are defined as 

                                         e(t, , n) = R(t, n) - R(t, , n)                                                    (7)

Consistent with the left skewness property of T() as demonstrated in Fig. 1 the errors (7) 

are observed to be nonnegative. As a measure of the closeness of the two distributions we 

use the maximum error over the chosen t values in the range of -3.5 to 3.5 denoted by 

                                          e(, n) = max {e(t, , n)}                                                         (8)

Simulation results that relate the sample size n, skewness as measured by (3) and (5) and 

maximum observed errors are given in Table 1. We observe that the maximum error 

occurs at locations -1.5 < t < 1.5. Further, the observed errors at tail locations, namely |t| >

2 are 10% of the maximum error quantities. 

From the quantities of Table 1 we observe that the skewness measures and 

maximum errors are directly related as they decrease together. A least squares fit is 

applied to the observed values of (Sk(,n), e(,n)) for values of  and n given in Table 2. 

The least squares line and corresponding correlation coefficient are  

                      e(,n) = .002 + .109 Sk(,n)      and       r = .9862                                       (9)

The large correlation indicates an efficient linear fit. Thus for a given magnitude of 

truncation  and sample size n a maximum error is approximated by (9). In the next 

section relation (9) is used to obtain robust inference procedures based on the skewed T 

random variable.
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In the case of a LTNRV the approximation of the skewed t distribution by the t 

distribution is efficient if the maximum errors are minimal. To explore the usefulness of 

(9) for given  and n we can fix a desired maximum error at  > 0 so that e(, n) <

.Putting (5) into (9) and solving for n yields

                                       n1/2 > .109 Sk() /( - .002)                                                     (10)

For demonstration, fixing  = .01, we find the smallest integers, denoted by n* that satisfy 

(10) for various values of . For these sample sizes simulations are run and the results in 

terms of the maximum errors are listed in Table 2. From Table 2 we observe that as 

desired (10) yields maximum errors of about 1%. The tail errors, |t| > 2 are observed to be 

considerably less than 1%.

4. Robust Inference Procedures 

Applying the standard t distribution to inferences involving the skewed t random 

variable result in robust techniques when the maximum error (8) is minimal. For fixed 

constant  > 0 we assume and n are such that e(, n) <  so that

                                 0 <  R(tj,n) - R(tj,,n) <   (11)

For p > 0, let tp,n-1  be such that R(tp ,n-1 , n) = p. If (11) holds where p >  then 

                                        p -  <  R(tp, , n) < p                                                               (12)

In the case of LTNRV, inequality (12) is used to construct robust inference procedures. In 

the case of hypothesis testing for () using test statistic T() the robust p-value for right 

tailed tests applies the t-distribution directly while the left tail p-value is increased by .  

A confidence interval for the mean of a LTNRV, (), is constructed using T() as 

the pivot. For confidence coefficient 1 -  we assume (12) holds where /2 > . The robust 

confidence interval takes the form
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                             _                                        _
                             X – t/2,n-1 S/n1/2 

  < () < X + t/2 - , n-1 S/n1/2                                    (13)

Note that the confidence interval (13) is not symmetric about the sample mean and is 

slightly wider than the confidence interval assuming no truncation.                    

Illustration : The inference techniques presented in this section are demonstrated using 

data taken from the fishing industry. Statistical frontier models used to estimate the 

efficiency of fishing vessels result in nonnegative technical efficiency ratings (see Aigner, 

Lovell and Schmidt (1977) and Battesse and Coelli (1988)). The technical efficiencies of 

39 vessels in the North Atlantic from 2000 and 2003 list in Table 2 of Flores-Lagunes, 

Horrace and Schnier (2006)) are utilized. The sample has a mean of .393 and standard 

deviation of .301. Using  = 1 from (3) we find Sk(1) = .592 and using (5) Sk(1,39) = 

.095. Applying the least squares line (9) we have maximum error e(1, 39) = .012. A 95% 

confidence interval for the mean given by (13) is computed using /2 = .025 and  = .012 

as .2805 < (1) < .5186. We remark that this confidence interval is approximately 5% 

wider than the confidence interval ignoring truncation. 

5. Conclusion

For a LTNRV right tail probabilities associated with the t-random variable are a

function of the magnitude of truncation and sample size. Based on simulation results the 

effects of approximating tail probabilities with the standard t distribution are measured. 

The effects are found to be minimal (maximum errors of 1% and tail errors of about .1%) 

for sample sizes of 30 or more and  > 1.5. If the magnitude of the truncation is smaller, 

say  > 2, then the minimal sample size for 1% errors or less reduces to 10.
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Appendix A : Moment Computations of the LTNRV.

Direct integration using (1) gives E{X - } = () so that the mean () in (2) 

holds.  To compute the variance we applying a binomial expansion 

          E{(X - ())2} = E{(X - )2} + 2 ()2 – 2 () E{X - } 

Integration by parts applied gives E{(X - )2} = 2 -  2 () and the variance in (2) 

follows. To find the third central moment we again expand the expectation as

    E{(X - ())3} = E{(X - )3} – 3 () E{(X - )2} + 3 2()2 - 3 ()3

Applying integration by parts gives E{(X - )3} = 3 2 () + 2 3 () and the third 

central moment is

                      E{(X - ())3} = 2() - () + 3 ()2 + 2()3

From these the skewness formula (3) is verified. 
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Appendix B : LTNRV Simulated Reliabilities Based On 100,000 Repetitions.

                                            Simulated Reliabilities  R(t,,n) 
                                                Observed Locations T = t
n              -3.5    -3    -2.5  -2   -1.5    -1      -.5      0      .5     1.0    1.5      2     2.5      3    3.5  

 5   3        .987  .980  .966  .941  .894  .811  .676  .499  .320  .185  .103  .058  .034  .020  .012  
 5     2.5      .986  .978  .964  .938  .892  .808  .676  .496  .317  .182  .100  .057  .032  .019  .012
5    2.25     .986  .977  .962  .937  .889  .806  .672  .493  .315  .180  .099  .055  .031  .019  .012  
5      2        .984  .976  .960  .933  .887  .802  .670  .493  .311  .175  .095  .053  .030  .017  .011
 5    1.75     .982  .972  .957  .929  .881  .800  .668  .490  .308  .170  .091  .049  .028  .016  .010
 5  1.5      .980  .970  .953  .925  .877  .795  .666  .488  .304  .165  .088  .047  .026  .015  .010      
 5    1.25     .977  .966  .948  .919  .871  .789  .661  .486  .299  .161  .083  .044  .024  .014  .008
5      1        .973  .961  .943  .912  .864  .783  .657  .480  .296  .156  .077  .039  .021  .012  .007

10     3        .996  .992  .982  .960  .915  .826  .683  .496  .313  .171  .084  .037  .016  .007  .003
10    2.5      .996  .992  .981  .958  .913  .825  .683  .496  .309  .167  .080  .036  .016  .007  .003
10   2.25     .996  .991  .980  .957  .910  .823  .678  .493  .309  .165  .078  .035  .015  .006  .003
10     2        .995  .990  .979  .955  .907  .819  .678  .494  .306  .163  .076  .033  .014  .006  .003
10   1.75     .994  .988  .976  .952  .904  .817  .677  .493  .303  .160  .073  .032  .013  .006  .002
10    1.5      .993  .987  .975  .950  .900  .814  .675  .490  .302  .155  .070  .029  .012  .005  .002
10   1.25     .992  .985  .972  .946  .898  .811  .673  .489  .300  .151  .065  .027  .011  .004  .002 
10     1        .990  .983  .968  .942  .893  .807  .671  .486  .296  .148  .064  .025  .009  .003  .001

15     3        .998  .995  .986  .967  .920  .831  .685  .497  .312  .165  .076  .032  .012  .004  .002
15    2.5      .998  .994  .986  .965  .919  .830  .684  .497  .310  .162  .075  .031  .012  .004  .001
15   2.25     .998  .994  .986  .965  .917  .828  .684  .496  .305  .161  .073  .030  .011  .004  .001
15     2        .998  .993  .984  .961  .915  .830  .683  .494  .310  .159  .071  .030  .011  .004  .001
15   1.75     .997  .992  .982  .960  .912  .823  .679  .493  .304  .157  .069  .027  .010  .003  .001 
15    1.5      .996  .991  .980  .957  .910  .820  .679  .493  .304  .154  .066  .024  .009  .003  .001
15   1.25     .996  .991  .979  .954  .905  .818  .677  .492  .299  .151  .063  .023  .008  .003  .001
15     1        .994  .988  .976  .952  .904  .815  .675  .489  .300  .148  .062  .022  .007  .002  .001

20     3        .999  .996  .988  .969  .924  .833  .686  .497  .310  .163  .074  .029  .011  .004  .001
20    2.5      .999  .996  .988  .968  .923  .832  .685  .497  .306  .160  .071  .028  .010  .003  .001
20   2.25     .998  .996  .987  .966  .921  .830  .683  .494  .305  .160  .071  .027  .009  .003  .001
20     2        .998  .995  .987  .965  .919  .828  .683  .494  .304  .158  .069  .026  .009  .003  .001
20   1.75     .998  .994  .985  .963  .916  .826  .680  .493  .303  .154  .066  .025  .008  .003  .001
20    1.5      .997  .994  .984  .962  .914  .824  .678  .492  .301  .154  .065  .023  .008  .002  .001
20   1.25     .997  .993  .982  .960  .911  .821  .677  .492  .300  .150  .062  .022  .007  .002  .001
20     1        .996  .991  .981  .957  .909  .818  .677  .489  .300  .149  .059  .020  .006  .002  .000  

25     3        .999  .997  .990  .970  .924  .834  .686  .496  .309  .163  .073  .029  .010  .003  .001     
25    2.5      .999  .996  .989  .970  .925  .832  .687  .497  .307  .159  .070  .027  .009  .003  .001
25   2.25     .999  .996  .989  .969  .922  .831  .685  .496  .306  .158  .069  .026  .009  .002  .001  
25     2        .999  .996  .988  .967  .921  .830  .684  .495  .305  .157  .068  .025  .008  .002  .001
25   1.75     .998  .995  .987  .966  .919  .829  .682  .494  .304  .157  .066  .023  .007  .002  .001
25    1.5      .998  .995  .986  .964  .917  .826  .682  .492  .302  .154  .065  .023  .007  .002  .000
25   1.25     .998  .994  .985  .963  .914  .823  .680  .493  .300  .150  .062  .021  .006  .002  .000  
25     1        .997  .993  .984  .960  .912  .821  .678  .491  .299  .149  .060  .020  .006  .001  .000
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Table 1 : Maximum Error Simulation Results For Values of Skewness and 
Sample Size 

                   n = 5                  n = 10                 n = 15                n = 20                  n = 25 
        Sk(,n) e(,n)     Sk(,n) e(,n)     Sk(,n) e(,n)     Sk(,n) e(,n)     Sk(,n) e(,n)                                                
  1          .265    .031         .187    .024          .153    .019         .132    .017         .118    .015
1.25       .219    .023         .155    .018          .126    .015         .109    .017         .098    .013
 1.5        .175    .022         .124    .017          .101    .013         .087    .011         .078    .011                                               
1.75       .134    .015         .095    .012          .078    .010         .067    .010         .060    .008
  2          .099    .012         .070    .009          .057    .009         .049    .007         .044    .007
2.25       .069    .007         .049    .007          .040    .006         .034    .005         .031    .006
 2.5        .046    .005         .032    .006          .026    .005         .023    .006         .020    .005
  3          .016    .003         .012    .002          .009    .002         .008    .003         .007    .003

         

Table 2 : Sample Size and Simulations for 1% Maximum Errors
                       = 1.0     = 1.25    = 1.5    = 1.75     = 2.0       = 2.25      = 2.5
          Sk()     .592          .489          .391       .301           .221            .154           .102          
             n*        66             45             29          17              10                 5                2   
         e(,n)     .009          .009          .011       .011           .009             .007          .008

Fig 1 : Probability Density Functions For T(=1)   _____  and T -----
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