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Abstract
In recent literature the truncated normal distribution has been used to model the stochastic
structure for variety of random structures. In this paper the sensitivity of the t-random
variable under a left truncated normal population is explored. Simulation results are used
to assess the errors associated with estimating the reliabilities, over a range of locations,
with the standard t distribution. The maximum errors are modeled as a linear function of
the magnitude of the truncation and sample size. In the case of a left truncated normal
population, adjustments to standard inferences for the mean, namely confidence intervals

and observed significance levels, based on the t random variable are introduced.
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1. Introduction

The statistical modeling of physical and economic systems often involves
nonnegative random variables. Statistical distributions with nonnegative supports such as
the Gamma, Lognormal and the left-truncated normal have been used to model the

stochastic structure associated with nonnegative random variables. Recently the left



truncated normal random variable has been applied to these problems. Applications in the
literature have been diverse and include management science (Johnson (2001)),
forecasting (Thomopoules (1980)) and inventory systems (Sinha (1991)). Further,
examples of stochastic modeling using the truncated normal random variable include the
modeling of demand functions in the determination of safety stocks by Johnson (1978) and
Johnson and Thomopoulos (2002) and the assessment of the technical efficiency of fishing
vessels by Flores-Lagunes, Horrace and Schnier (2006).

In this paper the tail probabilities of the standard t-random variable when the
underlying distribution is a left-truncated normal are explored through simulation
experiments. Conservative inference procedures, namely confidence intervals and
hypothesis tests for the mean, utilizing the standard t-distribution are constructed. The

magnitude of the truncation and the sample size are varying parameters.

2. Left-Truncated Normal Distribution

Many statistical techniques in both the applied and theoretical settings are based on
the classical normal distribution. The normal random variable X takes on all real values
and has mean p and variance o > 0. The standard normal random variable Z = (X - p)/o
has probability density function ¢(z) = (2rc?)™2 exp (- z/2) and associated ®(z) = P(Z <
2).

The normal random variable can be left-truncated at any fixed quantity and the
general distribution is given in Schneider (1986) and Cohen (1991). By a linear translation
the truncation point can be shifted to zero and the probability density function can be
written as

f(x, p, 6°) = (2nc?) " exp( - (x - p)*/c?)Dd(S) for x>0 , =0 for x<0 1)



for fixed p > 0, * > 0 and & = w/c. The parameter § is the distance between p and the
truncation point zero and measures the magnitude of the truncation. As & increases the
effects of truncation decrease and (1) approaches the classical normal distribution. The
left-truncated normal random variable with probability density function (1) is denoted by
LTNRV.
The mean and variance for general truncated normal random variables are given by
Barr and Sherrill (1999). The probability density function of a LTNRV is skewed to the
right and the central moments are functions of p, ¢ > 0 and A(3) = ¢(8)/d(5). Utilizing (1)
the mean and variance are computed in Appendix A as
)= pn+cAB) and o%(8) = o% (1- SA®) - AB)) (2)
Further, in Appendix A an explicit form of the skewness, denoted Sk(8) = E{(X - u(8))*}
[6°(8)]*, is derived and takes the form
SK(8) = (8°A(8) - A(S) + 3 S A(S)? + 2A(8)%)/ ( 1- SA(S) - A(8)D)*? (3)
As the magnitude of truncation decreases, manifested by an increasing 8, A(d) decreases

and so does the skewness as given by (3).

3. Skewed T Random Variable and Simulation Results

The classical t- random variable introduced by Student (1908) has been used to
construct exact inference procedures such as confidence intervals and hypothesis tests in
the case of normal populations. The robustness of the t-random variable has been
classically explored by Neyman and Pearson (1928). Nair (1941) observed that a positive
population skewness resulted in a negatively skewed t-random variable. Johnson (1978)
using a Cornish-Fisher expansion proposed some modified inference procedures

concentrating to the case of a skewed population.



In this paper we explore conditions on the LTNRV under which the standard t
distribution yields a good approximation. Let X; be independent and identically distributed

with pdf given by (1) for 1 <i < n. We define the skewed t-random variable as

T(8) =n"? (X - (@) /s (4)

where the sample mean and standard deviation are denoted by X and S, respectively. As
d increases and the magnitude of the truncation decreases and the skewed T random
variable (4) approaches the classical t-random variable with degrees of freedom n — 1
denoted by T,1. This suggests that the classical t-distribution is an approximate
distribution for T(8) under suitable conditions. A measure of the efficiency of this
approximation is found to be the skewness of the sample mean computed as
Sk(3,n) = Sk(8)/ n'/2 (5)

for truncation parameter & and sample size n. Small values of (5) arise from either minor
truncation or large sample size n and indicate closeness of the skewed T and classical t
distributions.

We now look into the distribution of the skewed t-random variable for chosen
values of 6 and n. Through simulation the distribution of T(J) in terms of their right tailed
probabilities are computed. The resulting simulated tail probabilities or reliabilities are
compared to the corresponding values for T,..

Probabilities associated with the skewed T random variable, T(8), are functions of
both 5 and n. Let R(t, 8, n) denote the reliability associated with t > 0, i.e.

R(t, 8, n) = P(T(3) > 1) (6)
These values are computed using simulation procedures consisting of 100,000 repetitions
for chosen values t between -3.5 to 3.5. The simulated reliabilities R(t, 8, n) are listed in

Appendix B. The graphs of the probability density functions for the standard t-distribution



and the skewed t-distribution, resulting from midpoint approximations from the simulated
reliabilities, are given in Fig. 1 for 8 = 1 and n = 3. As noted by Johnson (1978) the
skewed t distribution is skewed to the left.

The simulated reliabilities are compared to the right tailed probabilities based on
Tn1 denoted by R(t, n). The observed errors associated with chosen t values and
parameters 6 and n are defined as

e(t, 8, n) = R(t, n) - R(t, 5, n) (7)
Consistent with the left skewness property of T(3) as demonstrated in Fig. 1 the errors (7)
are observed to be nonnegative. As a measure of the closeness of the two distributions we
use the maximum error over the chosen t values in the range of -3.5 to 3.5 denoted by

e(0, n) = max {e(t, 5, n)} (8)
Simulation results that relate the sample size n, skewness as measured by (3) and (5) and
maximum observed errors are given in Table 1. We observe that the maximum error
occurs at locations -1.5 < t < 1.5. Further, the observed errors at tail locations, namely [t| >
2 are 10% of the maximum error quantities.

From the quantities of Table 1 we observe that the skewness measures and
maximum errors are directly related as they decrease together. A least squares fit is
applied to the observed values of (Sk(d,n), e(d,n)) for values of & and n given in Table 2.
The least squares line and corresponding correlation coefficient are

e(4,n) =.002 +.109 Sk(d,n) and  r=.9862 9)
The large correlation indicates an efficient linear fit. Thus for a given magnitude of
truncation 6 and sample size n a maximum error is approximated by (9). In the next
section relation (9) is used to obtain robust inference procedures based on the skewed T

random variable.



In the case of a LTNRYV the approximation of the skewed t distribution by the t
distribution is efficient if the maximum errors are minimal. To explore the usefulness of
(9) for given &6 and n we can fix a desired maximum error at y > 0 so that e(5, n) <
y. Putting (5) into (9) and solving for n yields

n2 > .109 Sk(8) /(y - .002) (10)
For demonstration, fixing y = .01, we find the smallest integers, denoted by n* that satisfy
(10) for various values of 8. For these sample sizes simulations are run and the results in
terms of the maximum errors are listed in Table 2. From Table 2 we observe that as
desired (10) yields maximum errors of about 1%. The tail errors, |t| > 2 are observed to be

considerably less than 1%.

4. Robust Inference Procedures
Applying the standard t distribution to inferences involving the skewed t random
variable result in robust techniques when the maximum error (8) is minimal. For fixed
constant y > 0 we assume & and n are such that e(3, n) <y so that
0 < R(t,n) - R(t;,8,n) <7y (11)
For p >0, let tyn1 be such that R(ty .1, n) = p. If (11) holds where p >y then
P-y< R(t, 8 n)<p (12)
In the case of LTNRYV, inequality (12) is used to construct robust inference procedures. In
the case of hypothesis testing for u(d) using test statistic T(d) the robust p-value for right
tailed tests applies the t-distribution directly while the left tail p-value is increased by y.
A confidence interval for the mean of a LTNRV, u(d), is constructed using T(3) as
the pivot. For confidence coefficient 1 - o we assume (12) holds where a/2 > y. The robust

confidence interval takes the form



X = taznt SINY? < u(B) < X + tusz -y, na SINY2 (13)
Note that the confidence interval (13) is not symmetric about the sample mean and is

slightly wider than the confidence interval assuming no truncation.

Illustration : The inference techniques presented in this section are demonstrated using
data taken from the fishing industry. Statistical frontier models used to estimate the
efficiency of fishing vessels result in nonnegative technical efficiency ratings (see Aigner,
Lovell and Schmidt (1977) and Battesse and Coelli (1988)). The technical efficiencies of
39 vessels in the North Atlantic from 2000 and 2003 list in Table 2 of Flores-Lagunes,
Horrace and Schnier (2006)) are utilized. The sample has a mean of .393 and standard
deviation of .301. Using &6 = 1 from (3) we find Sk(1) = .592 and using (5) Sk(1,39) =
.095. Applying the least squares line (9) we have maximum error e(1, 39) = .012. A 95%
confidence interval for the mean given by (13) is computed using o/2 = .025 and y = .012
as .2805 < p(1) < .5186. We remark that this confidence interval is approximately 5%

wider than the confidence interval ignoring truncation.

5. Conclusion

For a LTNRV right tail probabilities associated with the t-random variable are a
function of the magnitude of truncation and sample size. Based on simulation results the
effects of approximating tail probabilities with the standard t distribution are measured.
The effects are found to be minimal (maximum errors of 1% and tail errors of about .1%)

for sample sizes of 30 or more and & > 1.5. If the magnitude of the truncation is smaller,

say ¢ > 2, then the minimal sample size for 1% errors or less reduces to 10.
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Appendix A : Moment Computations of the LTNRV.
Direct integration using (1) gives E{X - u} = o A(3) so that the mean p(3) in (2)
holds. To compute the variance we applying a binomial expansion
E{(X - n(3)} = E{(X - )} + o° AB)" -2 5 A(S) E{X - u}
Integration by parts applied gives E{(X - W)’} = o - § o A(8) and the variance in (2)
follows. To find the third central moment we again expand the expectation as
E{(X - n(3)} = E{(X - 1)’} =3 5 AQ) E{(X - 0’} + 36" A(3)* - o A®)®
Applying integration by parts gives E{(X - n)°} = 6® 8% A(8) + 2 ¢° A(8) and the third
central moment is
E{(X - n(8))°} = 5°A(3) - A(8) + 3 5 A(S)? + 2A(5)°

From these the skewness formula (3) is verified.



Appendix B : LTNRV Simulated Reliabilities Based On 100,000 Repetitions.
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Table 1 : Maximum Error Simulation Results For Values of Skewness and
Sample Size
n=>5 n=10 n=15 n=20 n=25

Sk(d,n) e(d,n)  Sk(d,n) e(d,n)  Sk(d,n) e(d,n) Sk(3,n) e(d,n)  Sk(d,n) e(5,n)
265 .031 187 .024 153 .019 132 .017 118 .015
219 .023 155 .018 126 .015 109 .017 .098 .013
175 .022 124 017 101 .013 .087 .011 078 .011
134 .015 095 .012 .078 .010 .067 .010 .060 .008
.099 .012 .070 .009 .057 .009 .049 .007 .044 .007
.069 .007 .049 .007 .040 .006 .034 .005 .031 .006
.046 .005 .032 .006 .026 .005 .023 .006 .020 .005
.016 .003 012 .002 .009 .002 .008 .003 .007 .003

Table 2 : Sample Size and Simulations for 1% Maximum Errors
6=10 6=125 6=15 6=175 &=20 6=225 06=25

Sk(3) .592 489 391 .301 221 154 102
n* 66 45 29 17 10 5 2

e(,n) .009 .009 011  .011 .009 .007 .008
Fig 1 : Probability Density Functions For T(6 =1) —— and T -----
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