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Abstract

Operating in the framework of ‘supmech’( a scheme of mechanics which aims at pro-

viding a concrete setting for the axiomatization of physics and of probability theory

as required in Hilbert’s sixth problem; integrating noncommutative symplectic geome-

try and noncommutative probability in an algebraic setting, it associates, with every

‘experimentally accessible’ system, a symplectic algebra and operates essentially as non-

commutative Hamiltonian mechanics with some extra sophistication in the treatment of

states) it is shown that interaction between systems can be consistently described only

if either (i) all system algebras are commutative or (ii) all system algebras are noncom-

mutative and have a quantum symplectic structure characterized by a universal Planck

type real-valued constant of the dimension of action.

Like it or not

If you are noncommutative

Y ou have no option

But to be quantum.

1



Introduction

Two (closely related) great intellectual challenges before theoretical physicists are :

(i) Construction of the most economical and complete description of nature (theory of

‘everything’);

(ii) Solution of Hilbert’s sixth problem [23] (axiomatization of physics and probability

theory).

For solving both these problems, two possible strategies are :

(a) Solve (i), then brush up the formalism and axiomatize so as to solve (ii).

(b) Solve (i) in such a manner that (ii) is automatically solved (essentially integrating

the two problems).

The author’s preference is for (b), mainly because, in this case, relatively clearer

thinking about (and contact with) fundamentals is expected to prevail.

The adoption of (b) instead of (a) (which reflects the prevalent attitude) implies a

change in outlook and priorities. It puts greater emphasis on the development of an

‘appropriate’ formalism. Without entering into a detailed discussion about the term

‘appropriate’, we shall take it to mean that the formalism should be reasonably broad-

based so as to cover all systems in nature, it should employ mathematics best suited for

the development of the adopted ideas and concepts and should be self consistent.

In the present era in physics, quantum theory is believed to be applicable to all

systems in nature. As far as experimental predictions are concerned, it has been em-

inently successful. It is, however, in need of a satisfactory formalism which should be

in the nature of its autonomous development (as opposed to the traditional practice of

quantizing classical systems) and which should provide for a satisfactory treatment of

measurements on quantum systems without introducing ad hoc assumptions like the von

Neumann reduction postulate.

The desired ‘appropriate’ formalism must do justice to the basic features of quantum

mechanics (QM) : the noncommutative kinematics of observables and its intrinsically

probabilistic nature as reflected in the behavior of quantum states. The latter aspect,

traditionally referred to as ‘quantum probability’ has been explored in several versions

[30], [26], [33], [27], [25], [35], [1], [31], [28]. The one best suited to our needs is the one

[28] based on complex, associative, unital (i.e. having a unit element) and not neces-

sarily commutative *-algebras (henceforth referred to as ALGEBRAs). In this version,

quantum probability may be referred to as noncommutative probability. (Not. Since

the term ‘noncommutative measure theory’ has been used for the algebraic develop-

ment based on von Neumann algebras presented in, for example, Connes’ book [7], one
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might take ‘noncommutative probability’ to mean its ‘normalized’ sub-domain; we shall,

however, reserve this term for the more general algebraic version of Ref.[28].

The two (mutually related) noncommutative developments relating to observables

and states may be jointly referred to as the ‘noncommutative culture’ of QM.

Heisenberg’s [22] idea –that kinematics underlying QM must be based on a noncom-

mutative algebra of observables - was incorporated into a scheme of mechanics (called

‘matrix mechanics’) by Born, Jordan, Dirac and Heisenberg [4], [12], [5]. The proper

geometrical framework for the construction of the‘quantum Poisson brackets’ of this me-

chanics is provided by noncommutative symplectic geometry based on the derivation

-based differential calculus developed by Dubois-Violette and coworkers [16], [19], [17],

[18], [14]; the latter will be referred to as DVNCG.

Both, the noncommutative probability and DVNCG employ ALGEBRAs which are,

therefore, the natural domain for the development of the ‘noncommutative culture’ men-

tioned above. It makes perfect sense to develop a coherent scheme of mechanics inte-

grating noncommutative symplectic geometry and noncommutative probability in the

setting of ALGEBRAs. Such a mechanics (called ‘supmech’) has been developed by the

author. It has QM and classical Hamiltonian mechanics as special subdisciplines and

is projected as the appropriate framework for an autonomous development of QM. The

detailed development of this mechanics will be presented elsewhere [11]. Here we shall

restrict ourselves to a reasonably self-contained presentation of a development (within

the domain of supmech) of some special theoretical interest : a consistent description of

interaction between systems in the supmech framework is possible only if either

(i) all the system ALGEBRAs are commutative, or

(ii) all system ALGEBRAs are non-commutative and have a quantum symplectic struc-

ture characterized by a universal real-valued constant of the dimension of action.

The formalism, therefore, has a natural place for the Planck constant as a universal

constant — just as special relativity has a natural place for a universal speed. In fact,

the situation in supmech is somewhat better because, whereas in special relativity, the

existence of a universal speed is postulated, in supmech the existence of a universal Planck

like constant is dictated/predicted by the formalism.

Plan of the paper. In section 1, a brief account of DVNCG is given which includes

a discussion of its generalization [8] involving algebraic pairs (A,X ) where A is an

ALGEBRA and X a Lie subalgebra of Der(A) and of the mappings [8], [9] induced

on derivations by the *-algebra isomorphisms (analogues of the push-forward and pull-

back mappings induced by diffeomorphisms on vector fields and differential forms. In

section 2, the ‘noncommutative culture’ of Hilbert space QM is expressed in algebraic
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terms [to conform to the noncommutative geometry (NCG)- based developments of the

next section]. In section 3, an outline of the supmech formalism is presented adequate

for the treatment of interacting systems in supmech in the next section. The last section

contains some concluding remarks.

Acknowledgements. The author thanks M. Dubois-Violette and M.J.W. Hall for their

critical comments on Ref.[8] and Ref.[10] respectively, to R. Sridharan and V. Balaji

for helpful discussions and to Chennai Mathematical Institute and Indian Statistical

Institute (Delhi Center) for support and research facilities.

1. Derivation based differential calculus

1.1 Noncommutative differential forms. The central object in DVNCG is an ALGEBRA

A; its elements will be denoted as A,B,...and the identity element as I. The *-operation

(or involution) ∗ : A → A is an antilinear mapping satisfying the relations

(AB)∗ = B∗A∗, (A∗)∗ = A, I∗ = I.

An element A ∈ A is called hermitian if A∗ = A. The center Z(A) of A is the set of

those elements of A which commute with all elements of A.

A derivation of A is a linear map X : A → A such that X(AB) = X(A)B+AX(B).

Introducing the multiplication operator µ on A defined as µ(A)B = AB, the condition

that X is a derivation may be expressed as

X ◦ µ(A) − µ(A) ◦X = µ(X(A)).(1)

The set Der(A) of all derivations of A is a Lie algebra with the Lie bracket [X, Y ] =

X ◦ Y − Y ◦X. The inner derivations DA defined by DAB = [A,B] satisfy the relation

[DA, DB] = D[A,B]

and constitute a Lie subalgebra IDer(A) of Der(A).

In DVNCG it is implicitly assumed that the ALGEBRAs being employed have a

reasonably rich supply of derivations so that various constructions involving them have

a nontrivial content.

An involution * on Der(A) is defined by the relation X∗(A) = [X(A∗)]∗. We have

the (easily verifiable) relations

[X, Y ]∗ = [X∗, Y ∗], (DA)∗ = −DA∗ .
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By a differential calculus on A one means a formalism involving differential form

like objects on A with analogues of exterior product, exterior derivative and involution

defined on them. For noncommutative A, it is not unique; a systematic discussion of

the variety of choices may be found in Ref.[17]. In applications of NCG one makes

a choice according to convenience. In DVNCG (which is best suited for a geometrical

treatment of QM) one employs a derivation-based differential calculus in which the spaces

of differential p-forms are (a subclass—to be specified later—of) Chevalley-Eilenberg p-

cochain spaces Cp(Der(A),A) [36]. Such a p-cochain ω is, for p ≥ 1, a multilinear map

of [Der(A)]p into A which is skew-symmetric :

ω(Xσ(1), .., Xσ(p)) = κσω(X1, .., Xp)

where κσ is the parity of the permutation σ; we have C0(Der(A,A) = A.

An involution * on the cochains is defined by the relation ω∗(X1, .., Xp) = [ω(X∗
1 , .., X

∗
p )]

∗;

ω is said to be real (imaginary) if ω∗ = ω(−ω).

The exterior product

∧ : Cp(Der(A),A)× Cq(Der(A),A) → Cp+q(Der(A,A)

is defined as in the commutative case :

(α ∧ β)(X1, .., Xp+q) =
1

p!q!

∑

σ∈Sp+q

κσα(Xσ(1), .., Xσ(p)).

.β(Xσ(p+1), .., Xσ(p+q)).(2)

With this product, the N0-graded vector space (where N0 is the set of non-negative

integers)

C(Der(A,A) =
⊕

p≥0

Cp(Der(A,A)

becomes a graded complex algebra.

The Lie algebra Der(A) acts on itself and on C(Der(A,A) through Lie derivatives.

For each Y ∈ Der(A), one defines linear mappings LY : Der(A) → Der(A) and LY :

Cp(Der(A),A) → Cp(Der(A),A) such that the following three conditions hold :

LY (A) = Y (A) for all A ∈ A(3)

LY [X(A)] = (LYX)(A) +X[LY (A)](4)

LY [ω(X1, .., Xp)] = (LY ω)(X1, .., Xp)

+
p∑

i=1

ω(X1, .., Xi−1, LYXi, .., Xp).(5)
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The first two conditions give

LY (X) = [Y,X](6)

which, along with the third, gives

(LY ω)(X1, .., Xp) = Y [ω(X1, .., Xp)]

−
p∑

i=1

ω(X1, .., Xi−1, [Y,Xi], .., Xp).(7)

Some important properties of the Lie derivative are, in obvious notation,

[LX , LY ] = L[X,Y ](8)

LY (α ∧ β) = (LY α) ∧ β + α ∧ (LY β).(9)

For anyX ∈ Der(A), we define the interior product iX : Cp(Der(A),A) → Cp−1(Der(A),A)

(for p ≥ 1)) by

(iXω)(X1, .., Xp−1) = ω(X,X1, .., Xp−1)(10)

and iX(A) = 0 for all A ∈ A. The following relations involving the Lie derivative and

the interior product hold (here α is a p-form)

iX ◦ iY + iY ◦ iX = 0(11)

iX(α ∧ β) = (iXα) ∧ β + (−1)pα ∧ (iXβ)(12)

LX ◦ iY − iY ◦ LX = i[X,Y ].(13)

The exterior derivative d : Cp(Der(A),A) → Cp+1(Der(A),A) is defined through

the relation

(iX ◦ d+ d ◦ iX)ω = LXω.(14)

This equation determines the operation of d on cochains of various degrees recursively.

For p = 0, it takes the form

(dA)(X) = X(A).(15)

and, for general p ≥ 0,

(dα)(X0, X1, .., Xp)

=
p∑

i=0

(−1)iXi[α(X0, ..X̂i, .., Xp)]

+
∑

0≤i<j≤p

(−1)jα(X0, .., Xi−1, [Xi, Xj], Xi+1, ..X̂j, .., Xp)(16)
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where the hat indicates omission. The exterior derivative satisfies the nilpotency condi-

tion d2 = 0 and the relations

d ◦ LY = LY ◦ d(17)

d(α ∧ β) = dα + α ∧ (dβ).(18)

The nilpotency of d implies that the pair (C(Der(A),A), d) constitutes a cochain com-

plex. We shall call a cochain α closed if dα = 0 and exact if α = dβ for some cochain

β.

Following Ref.[17], we consider the subset Ω(A) of C(Der(A),A) consisting of Z(A)-

linear cochains which means the cochains α satisfying the condition

α(.., KX, ..) = Kα(.., X, ..)(19)

for all X ∈ Der(A) and K ∈ Z(A). This subset is closed under the d-operation as can

be easily easily verified using the relation

[X,KY ] = X(K)Y +K[X, Y ](20)

for all X, Y ∈ Der(A) and K ∈ Z(A). We shall reserve the term ‘differential forms’ for

elements of Ω(A). We have

Ω(A) =
⊕

p≥0

Ωp(A)

with Ω0(A) = A. Elements of Ωp(A) will be called differential p-forms.

1.2 Induced mappings on derivations and differential forms

A *-algebra isomorphism Φ : A → B induces a mapping Φ∗ : Der(A) → Der(B)

given by

(Φ∗X)(B) = Φ(X[Φ−1(B)])(21)

for all X ∈ Der(A) and B ∈ B. It is the analogue (and a generalization) of the mapping

induced by a diffeomorphism on vector fields and satisfies the expected relations (with

Ψ : B → C)

(Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗; Φ∗[X, Y ] = [Φ∗X,Φ∗Y ].(22)

It is easily seen that Φ∗ is a Lie-algebra isomorphism.

The *-isomorphism Φ also induces a mapping

Φ∗ : Cp(Der(B),B) → Cp(Der(A),A)
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given, in obvious notation, by

(Φ∗ω)(X1, .., Xp) = Φ−1[ω(Φ∗X1, ..,Φ∗Xp)].(23)

These mappings are analogues (and generalizations) of the pull-back mappings on tradi-

tional differential forms induced by diffeomorphisms. It is easily seen that the mapping

Φ∗ preserves Z(A)-linear combinations of derivations and that Φ∗ maps differential forms

onto differential forms. The following expected relations hold :

(Ψ ◦ Φ)∗ = Φ∗ ◦ Ψ∗(24)

Φ∗(α ∧ β) = (Φ∗α) ∧ (Φ∗β)(25)

Φ∗(dα) = d(Φ∗α).(26)

Let Φt : A → A be a one-parameter family of transformations (i.e. ALGEBRA-

automorphisms) given, for small t, by

Φt(A) ≃ A+ tg(A)

where g is some linear mapping of A into itself. The condition

Φt(AB) = Φt(A)Φt(B)

gives g(AB) = g(A)B + Ag(B) implying that g(A) = Y(A) for some Y ∈ Der(A); we

call Y the infinitesimal generator of the one-parameter family Φt. It is easily verified

that the infinitesimal transformations of derivations and of p-forms induced by Φt are

given by the respective Lie derivatives :

(Φt)∗X ≃ X + tLYX(27)

(Φt)
∗ω ≃ ω − tLY ω.(28)

1.3 Symplectic structures

A symplectic structure on an ALGEBRA A is defined as a differential 2-form ω (the

symplectic form) which is (i) closed and (ii) non-degenerate in the sense that, for every

A ∈ A, there is a unique derivation YA in Der(A)[the (globally) Hamiltonian derivation

corresponding to A] such that

iYA
ω = −dA.(29)

The pair (A, ω) is called a symplectic algebra.

A symplectic mapping from a symplectic algebra (A, α) to another one (B, β) is an

ALGEBRA-isomorphism (i.e a *-algebra isomorphism mapping the unit element of A
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to the unit element of B) such that Φ∗β = α. A symplectic mapping from a symplectic

algebra onto itself will be called a canonical/symplectic transformation. The symplectic

form and its exterior powers are invariant under canonical transformations.

Given a symplectic algebra (A, ω), the Poisson bracket (PB) of two elements A and

B of A is defined as

{A,B} = ω(YA, YB) = YA(B) = −YB(A).(30)

It obeys the Leibnitz rule :

{A,BC} = YA(BC) = YA(B)C +BYA(C)

= {A,B}C +B{A,C}.(31)

As in the classical case [41], we also have the other two properties of PBs :

(i) The Jacobi identity holds :

0 =
1

2
(dω)(YA, YB, YC)

= {A, {B,C}} + {B, {C,A}} + {C, {A,B}};(32)

this makes (along with bilinearity and antisymmetry of the PBs) the pair (A, {, }) a Lie

algebra.

(ii) The corespondence A → YA is a Lie -algebra homomorphism from the above Lie

algebra into Der(A):

[YA, YB] = Y{A,B}.(33)

An element A of A can act, via YA, as the infinitesimal generator of a one-parameter

family of canonical transformations. The change in B ∈ A due to such an infinitesimal

transformation is

δB = ǫYA(B) = ǫ{A,B}.(34)

1.4 Canonical symplectic structure on ‘special’ ALGEBRAs

An ALGEBRA will be called special if it has a trivial center and if all its derivations

are inner. The differential 2-form ωc defined on such an algebra A by

ωc(DA, DB) = [A,B](35)

is said to be the canonical form of A. (This differs from the definition in Ref.[16], [17]

by a factor of i.) It is easily seen to be closed [the equation (dωc)(DA, DB, DC) = 0 is
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nothing but the Jacobi identity for the commutator], imaginary (i.e. ω∗
c = −ωc) and

dimensionless. For any A ∈ A, the equation

ωc(YA, DB) = −(dA)(DB) = [A,B]

(for all B ∈ A) has the unique solution YA = DA; this gives

iDA
ωc = −dA.(36)

The form ωc defines, on A, the canonical symplectic structure; the corresponding PB is

a commutator :

{A,B} = DA(B) = [A,B].(37)

Using Equations (36) and (14), it is easily seen that the form ωc is invariant in the

sense that LXωc = 0 for all X ∈ Der(A). The invariant symplectic structure on the

algebra Mn(C) of complex n × n matrices obtained in Ref. [19] is a special case of the

canonical symplectic structure on special ALGEBRAs described above.

If, on a special ALGEBRA A, instead of ωc, we take ω = bωc as the symplectic form

(where b is a nonzero complex number), we have

YA = b−1DA, {A,B} = b−1[A,B].(38)

We shall see below that the so-called ‘quantum symplectic structure’ is such a symplectic

structure with b = −ih̄. Note that b must be imaginary to make ω real. Just to have a

convenient name, we shall refer to the symplectic structure of the above sort (for general

non-zero b) as a quantum symplectic structure with parameter b.

1.5 A generalization of the derivation-based differential calculus

A useful generalization of the formalism presented in this section so far is obtained

by restricting the derivations to a Lie subalgebra X of Der(A); the central object in the

whole development will now be, instead of the ALGEBRA A, the pair (A, X ). To get a

feel for the implications of working with such a pair, we consider a couple of examples,

one ‘commutative’ and the other ‘noncommutative’.

(i) A = C∞(R3); X= the Lie subalgebra of the Lie algebra X (R3) of smooth vector fields

onR3 generated by the Lie differential operators Lj = ǫjklxk∂l for the SO(3)-action onR3.

These differential operators act on the 2-dimensional spheres that constitute the leaves

of the foliation R3 − {(0, 0, 0)} ∼= S2 × R. Employing the polar coordinates (r, θ, φ) on

R3 (which are obviously adapted to the above-mentioned foliation), the variable r in the

functions f(r, θ, φ) in C∞(R3) will remain unaffected by the derivations in X . It follows
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that the restriction to the pair (A, X ) in the present case amounts to working on a leaf

(S2) of the above-mentioned foliation.

(ii) A = M4(C), the algebra of complex 4 × 4 matrices. The vector space C4 on which

these matrices act serves as the carrier space of the spin s = 3/2 projective irreducible

representation of the rotation group SO(3). Denoting by Sj(j = 1, 2, 3) the representa-

tives of the generators of the Lie algebra so(3) in this representation, let X be the real

Lie algebra generated by the inner derivations DSj
(j = 1, 2, 3). In the treatment of spin

dynamics of a spin s = 3/2 object, one will effectively be using the pair (A, X ).

In the generalized derivation-based differential calculus based on a pair (A, X ), one

has the derivations restricted to X and the p-cochains are those in the space Cp(X ,A);

the corresponding differential p-form space will be denoted as Ωp(X ,A). Obviously

Ωp(Der(A),A) ≡ Ωp(A).

To define the induced mappings Φ∗ and Φ∗ in the present context, one should employ

a ‘pair isomorphism’ Φ : (A,X ) → (B,Y) which consists of an ALGEBRA-isomorphism

Φ : A → B such that the induced Lie algebra isomorphism Φ∗ : Der(A) → Der(B)

restricts to an isomorphism of X onto Y . Various properties of the induced mappings

hold as before.

Given a one-parameter family of transformations (i.e. pair-automorphisms) Φt :

(A,X ) → (A,X ), the condition (Φt)∗X ⊂ X implies that the infinitesimal generator Y

of Φt must satisfy the condition [Y,X] ∈ X for all X ∈ X . In practical applications, one

will generally have Y ∈ X which obviously satisfies the above-mentioned condition.

The concept of a symplectic algebra (A, ω) is now generalized to that of a ‘generalized

symplectic algebra’ (A,X , ω) where now ω ∈ Ω2(X ,A). The non-degeneracy condition

on ω now demands, for a given A ∈ A, the existence of a unique derivation YA ∈ X
such that Eq.(29) holds. A symplectic mapping Φ : (A,X , α) → (B,Y , β) is now an

ALGEBRA-isomorphism Φ : A → B such that the induced mapping Φ∗ restricts to an

isomorphism of X onto Y and Φ∗β = α.

2. The noncommutative culture of quantum mechanics;

the quantum symplectic structure

In this section, we shall present the traditional formalism of QM in a not-so-familiar

algebraic setting so as to obtain a useful characterization of its ‘noncommutative culture’.

We start by considering the QM of a non-relativistic spinless particle. The central

object in it is the Hilbert space H = L2(R3, dx) of complex square-integrable functions

on R3. The fundamental observables of such a particle are the Cartesian components
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Xj, Pj(j = 1, 2, 3) of position and momentum vectors which are self-adjoint linear oper-

ators represented, in the oft-used Schrödinger representation, as

(Xjφ)(x) = xjφ(x); (Pjφ)(x) = −ih̄ ∂φ
∂xj

.(39)

These operators satisfy the canonical commutation relations (CCR)

[Xj , Xk] = 0 = [Pj , Pk]; [Xj , Pk] = ih̄I (j, k = 1, 2, 3)(40)

where I is the unit operator. The functions φ in Eq.(39) must be restricted to a suitable

dense domain D in H which is generally taken to be the space S(R3) of Shwartz functions.

Other operators appearing in QM of the particle belong to the algebra A generated by

the operators Xj , Pj (j= 1,2,3) and I [subject to the CCR (40)]. The space D = S(R3)

is clearly an invariant domain for all elements of A. Defining a *-operation on D by

A∗ = A†|D, the Hermitian elements of A represent the general observables of the particle.

A normalized element ψ of D represents (up to a phase factor) a pure state of the

particle. Given the particle in this state, the quantity

p(∆) ≡
∫

∆
|ψ(x)|2dx(41)

(where ∆ is a Borel set in R3) is interpreted as the probability that the particle lies in

the domain ∆. For any observable A ∈ A, the quantity

< A >ψ= (ψ,Aψ) ≡
∫
ψ∗(x)(Aψ)(x)dx(42)

represents the expectation value of A in the state ψ. With a suitable topology on the

algebra A [15],the quaantity ωψ ≡< . >ψ of Eq.(42) can be considered as a continuous

linear functional on A which is (i) positive (which means ωψ(B
∗B) ≥ 0 ∀B ∈ A) and

(ii) normalized (i. e. ωψ(I) = 1). The set S(A) of continuous positive linear functionals

on A is closed under convex combinations [i.e. ωi ∈ S(A) ⇒ ∑
i piωi ∈ S(A) with

pi ≥ 0,
∑
i pi = 1]. A nontrivial convex combination of pure states is called a mixed state

or mixture.

It should now be easy to understand that a reasonably satisfactory way of presenting

the traditional formalism of QM of a system (which permits free use of unbounded

observables) is to associate, with a quantum system S, a quantum triple (H,D,AQ) where

H is a complex, separable Hilbert space (which may or may not be finite dimensional), D
a dense linear domain in H(which is obviously equal to H when H is finite dimensional)

and AQ an algebra of linear operators which, along with their adjoints, have D as an

invariant domain. For any A ∈ AQ, we define its conjugate as A∗ = A†|D (thus defining

an involution * on AQ). Observables of the system are the Hermitian elements of AQ.
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For systems where a set of fundamental observables can be identified (like the one

considered above), the algebra AQ is the one generated by the fundamental observables

(and I) subject to appropriate commutation relations.

States of S are those density operators ρ such that

< A >ρ= Tr(ρA)(43)

is defined for all A ∈ AQ. For an observable A, the real quantity < A >ρ represents

the expectation value of A when S is in the state ρ. [Note. By states we strictly mean

physical states so that expectation values of all observables are defined in all states.]

Pure states are represented (up to phase factors of modulus one) by normalized vectors

ψ ∈ D such that < A >ψ= (ψ,Aψ) The density operator corresponding to a state ψ is

|ψ >< ψ| in the Dirac notation.

Dirac bra and ket spaces can be introduced in terms of Gelfand triples [20] based on

the pair (H, D); we shall, however, skip the details.

When the algebra AQ is ‘special’ (in the sense defined in section 1), one has a canonical

form ωc defined on it [see Eq.(35)]. The quantum symplectic structure is defined on AQ

by employing the quantum symplectic form

ωQ = −ih̄ωc.(44)

Note that the factor i serves to make ω real and h̄ to give it the dimension of action

(which is the correct dimension of a symplectic form in mechanics). The minus sign is a

matter of convention. Eq.(38) now gives the quantum Poisson bracket

{A,B}Q = (−ih̄)−1[A,B].(45)

When the algebra AQ has both inner and outer derivations, one can employ the

generalized symplectic algebra (AQ, IDer(AQ), ωQ). Again, we have, for a given A ∈ AQ,

YA = (−ih̄)−1DA and the quantum PB of Eq.(45).

A nontrivial center in AQ indicates the presence of superselection rules and/or exter-

nal fields. We shall skip details on these matters.

3. The formalism of supmech

As mentioned earlier, supmech is an algebraic scheme of mechanics synthesizing non-

commutative symplectic geometry and noncommutative probability. Most developments

in it are parallel to those in classical Hamiltonian mechanics; in fact, it is essentially

noncommutative Hamiltonian statistical mechanics with some extra sophistication in
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the treatment of states. In the detailed treatment in Ref. [11], the basic system al-

gebra is taken to be a superalgebra (so as to provide a unified treatment of bosonic

and fermionic objects/entities); here, however, we shall restrict ourselves to the simpler

non-super version.

We shall call ‘experimentally accessible systems’ those on which repeatable experi-

ments can be performed. For such systems, the statistical analysis of experiments can

be done with the traditional frequency interpretation of probability. The universe as

a whole and large subsystems of it on a cosmological scale obviously do not belong to

this class. As of now, supmech has been developed only for experimentally accessible

systems.

The essential points in the development of supmech are listed below.

1.The system algebra. Supmech associates with an experimentally accessible system S

an ALGEBRA A(its elements will be denoted as A,B,C,...). Hermitian elements of A
represent observables of S.We denote by O(A) the set of all observables in A. (In fact,

A is assumed to be a locally convex algebra; we shall, however, not treat the topological

aspects here.)

2.States. States of A(denoted by the letters φ, ψ, .. )are defined as (continuous) positive

linear functionals which are normalized [i.e. φ(I) = 1 where I is the unit element of A].

The set S(A) of states of A is clearly closed under convex combinations (weighted sums).

Those states which cannot be represented as nontrivial convex combinations are called

pure. The set of pure states of A is denoted as S1(A). For any A ∈ A and φ ∈ S(A), the

quantity φ(A) is to be interpreted as the expectation value of A in the state φ. When

A ∈ O(A), φ(A) is, of course, real.

3. Compatible completeness of observables and pure states. The pair

(O(A),S1(A))

is assumed to be ‘compatibly complete’ in the sense that

(i) given A,B ∈ O(A), A 6= B, there must be a pure state φ such that φ(A) 6= φ(B);

(ii) given two different pure states φ, ψ, there must be an observable A such that φ(A) 6=
ψ(A).

We shall refer to this as the CC condition.

4. Symplectic structure on the system algebra. The system algebra is assumed to have a

symplectic structure provided by a symplectic form ω. Symmetries of the formalism (the

analogues of canonical transformations in classical Hamiltonian mechanics and unitary

transformations in QM) are canonical transformations of the symplectic algebra (A, ω).
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Note. The author has not opted for the economy that could be obtained by combining

items (1) and (4) and introducing a system algebra directly as a symplectic algebra

because the first three items above constitute a concrete unit serving a special purpose.

[See remark (4) in the last section.]

5. Action of canonical transformations on states. Denoting the algebraic dual of the

algebra A by A∗, an automorphism Φ : A → A induces the dual/transpose mapping

Φ̃ : A∗ → A∗ such that, in obvious notation,

Φ̃(φ)(A) = φ(Φ(A)) or < Φ̃(φ), A >=< φ,Φ(A) >(46)

where <,> denotes the dual space pairing. The mapping Φ̃ maps states (which form a

subset of A∗) onto states. To see this, note that

(i) [Φ̃(φ)](A∗A) = φ(Φ(A∗A)) = φ[Φ(A)∗Φ(A)] ≥ 0;

(ii) [Φ̃(φ)](I) = φ[Φ(I)] = φ(I) = 1.

The linearity of Φ̃ (on A∗) ensures that it preserves convex combinations of states. In

particular, it maps pure states onto pure states. We have, therefore, a bijective mapping

Φ̃ : S1(A) → S1(A).

When Φ is a canonical transformation, we have, for X, Y ∈ Der(A),

ω(X, Y ) = (Φ∗ω)(X, Y ) = Φ−1[ω(Φ∗X,Φ∗Y )]

giving

Φ[ω(X, Y )] = ω(Φ∗X,Φ∗Y ).(47)

Taking expectation value of each side in the state φ, we get

Φ̃(φ)[ω(X, Y )] = φ[ω(Φ∗X,Φ∗Y )].(48)

Defining ωΦ by

ωΦ(X, Y ) = ω(Φ∗x,Φ∗Y )(49)

we can write Eq.(48) as

(Φ̃φ)[ω(., .)] = φ[ωΦ(., .)].(50)

When Φ is an infinitesimal canonical transformation generated by G ∈ A, we have

[Φ̃(φ)](A) ≃ φ(A+ ǫ{G,A}).(51)
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Putting Φ̃(φ) = φ+ δφ, we have

(δφ)(A) = ǫφ({G,A}).(52)

6. Dynamics. Dynamics of the system is described by a one-parameter family Φt of

canonical transformations generated by an observable H called the Hamiltonian; the

triple (A, ω,H) will be called a supmech Hamiltonian system. As in QM or classical

statistical mechanics, there are two standard ways of describing dynamics corresponding

to the choice of making the evolution mappings act on observables (Heisenberg type

picture) or states (Schrödinger type picture); the two pictures are related as [writing

Φt(A) = A(t) and Φ̃t(φ) = φ(t)]

< φ(t), A >=< φ,A(t) > .(53)

In the Heisenberg type picture we have

dA(t) = A(t+ dt) −A(t) ≃ YH[A(t)]dt

giving the Hamilton’s equation of supmech :

dA(t)

dt
= YH [A(t)] = {H,A(t)}.(54)

In the Schrödinger type picture, Eq.(52) with Φ = Φt gives the Liouville equation of

supmech :

dφ(t)

dt
(A) = φ(t)({H,A}) or

dφ(t)

dt
(.) = φ(t)({H, .}).(55)

7. Classical Hamiltonian mechanics and QM as subdisciplines of supmech.

(i) Classical Hamiltonian mechanics. Traditionally developed in the framework of a sym-

plectic manifold (M,ωcl)[41], it can be treated in supmech by taking A = C∞(M,C) ≡
Acl, the commutative algebra of smooth complex-valued functions on the phase space M.

The observables of this systems are the subclass of real-valued functions. For the algebra

Acl, the derivations are the smooth vector fields and the differential forms of section (1)

are the traditional differential forms on the manifold M. The symplectic structure on Acl

is given by the classical symplectic form on M given, in standard notation, by

ωcl =
n∑

j=1

dpj ∧ dqj
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where dim (M) = 2n. Writing, in terms of the general local coordinates ξa (a= 1,..,2n)

on M, ωcl = (ωcl)abdξ
a ∧ dξb, the supmech Poisson bracket on Acl is the classical Poisson

bracket on M :

{f, g}cl = ωabcl
∂f

∂ξa
∂g

∂ξb
=

∑

j

(
∂f

∂pj

∂g

∂qj
− ∂f

∂qj
∂g

∂pj
)(56)

where (ωabcl ) is the inverse of the matrix ((ωcl)ab). The supmech Hamilton equation (54)

is, in the present context, the traditional Hamilton’s equation

df

dt
= {Hcl, f}cl.(57)

States of Acl are probability measures on M; in obvious notation, they are of the form

φµ(f) =
∫
M fdµ. Pure states are Dirac measures (or, equivalently, points of M) µξ0 for

which φξ0(f) = f(ξ0).

The pair (O(Acl),S1(Acl)) of classical observables and pure states is easily sen to

be compatibly complete : Given two real-valued functions on M, there is a point of

M at which they take different values and, given two different points of M, there is a

real-valued function on M which takes different values at those points.

In ordinary mechanics, only pure states are used. More general states are used in

classical statistical mechanics where, in most applications, they are taken to be repre-

sented by densities on M [dµ = ρ(ξ)dξ where dξ = dqdp is the Liouville volume element

on M]. The state evolution equation of supmech gives, in the present context,

∫

M
(
∂ρ(ξ, t)

∂t
(ξ)f(ξ)dξ =

∫

M
ρ(ξ, t){H, f}cl(ξ)dξ.

Taking M = R2n, noting that the density ρ must vanish at infinity and performing a

partial integration, the right hand side becomes
∫
M{ρ,H}clfdξ giving the traditional

Liouville equation

∂ρ

∂t
= {ρ,H}cl.(58)

(ii) Quantum mechanics. Most of the needful has already been done in the previous

section. Given a quantum triple (H,D,AQ), the supmech system algebra is to be taken

as AQ. The familly of pure states consists of unit rays corresponding to vectors in D.

The condition of compatible completeness of the pair (AQ,S1(AQ)) is easily verified :

(i) Given A,B ∈ O(AQ) and (ψ,Aψ) = (ψ,Bψ) for all ψ ∈ D, we have (φ,Aψ) = (φ,Bψ)

for all φ, ψ ∈ D implying A = B. [Hint: Consider the given equality with state vectors

(φ+ ψ)/
√

2 and (φ+ iψ)/
√

2.]

(ii) Given normalized vectors φ, ψ ∈ D, and (φ,Aφ) = (ψ,Aψ) for all A ∈ O(AQ), the
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equality φ = ψ (up to a phase) can be seen by using the given equality with A taken as

the projection operators corresponding to members of an orthonormal basis containg ψ

as a member.

We have the quantum symplectic algebra (AQ, ωQ) and the associated quantum Pois-

son brackets as in the previous section. The supmech Hamilton equation (54) in the

present case is clearly the Heisenberg equation of motion

dA(t)

dt
= {H,A(t)}Q = (−ih̄)−1[H,A(t)].

The supmech Liouville equation (55) with the states given by density operators ωρ(A) =

Tr(ρA) gives the ‘quantum Liouville equation’ (or the von Neumann equation)

dρ(t)

dt
= (−ih̄)−1[ρ,H ] = {ρ(t), H}Q.(59)

8. Supmech as a framework for an autonomous development of QM

In the traditional development of QM, one generally quantizes classical systems. For

example, to obtain the Schrödinger equation

ih̄
∂ψ

∂t
= [− h̄2

2m
∇2 + V ]ψ ≡ Hψ(60)

in the traditional treatment of the QM of a nonrelativistic spinless particle, one starts

with the classical Hamiltonian

H =
p2

2m
+ V,(61)

introduces the Hilbert space H = L2(R3) of complex square integrable functions, pre-

scribes rules for the replacement of the classical variables xj and pj by the operators Xj

and Pj of Eq.(39) [thus obtaining the quantum Hamiltonian operator H of Eq.(60)] and

finally (taking clue from the classical equation Hcl = E ), prescribes the rule for the

evolution equation for the Schrödinger wave function ψ(x, t) in the form Êψ = Hψ with

Ê = ih̄ ∂
∂t

.

In Ref. [9], the need for an autonomous development of QM was emphasized and some

stringent criteria were laid down for such a development. In the framework of supmech,

it is possible to develop the QM of particles autonomously satisfying those criteria [11].

We give here an outline of the steps involved in the autonomous development of the

Schrödinger equation (60). [The idea is to define a particle as a localizable elementary

system (which involves a discussion of the action of the appropriate relativity group on

the system algebra and and of localizable systems), have a systematic way to identify

the fundamental observables of a particle and obtain an expression for the Hamiltonian
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(infinitesimal generator of time translations) in terms of the fundamental observables

(which can be done group theoretically [2]), and have a systematic procedure to obtain

a/the Hilbert space realization of the relevant dynamics.]

(i) One defines the Poisson action [41, [11] of a Lie group G on a symplectic algebra

(A, ω) as an assignment, to every element g ∈ G, a canonical transformation of the

algebra such that the infinitesimal generators (‘hamiltonians’) of one-parameter sub-

groups of the canonical transformations have Poisson brackets in correspondence with

the commutation relations in the Lie algebra of G.

(ii) The concept of a localizable system is introduced [as one which has a configuration

space M (a topological space) associated with it and it is meaningful to talk about the

probability of the system being localized in a Borel subset of M] in which the concept of

a position/configuration observable naturally emerges. For systems with configuration

space Rn, the concept of concrete Euclidean-covariant localization is introduced in which

one has the position observables Xj and the Euclidean group generators Pj and Mjk(=

−Mkj) satisfying the standard Poisson bracket relations.

(iii) For the subclass of supmech systems for which the concept of space and time and of a

relativity scheme are relevant, the appropriate relativity scheme is implemented through

the Poisson action of the corresponding relativity group G0 on the system algebra. In

the nonrelativistic case (Galilean relativity), the need for a Poisson action requires the

replacement of the Galilean group G by its projective group [2] Ĝ which is a central

extension of the universal covering group of G. The additional generator corresponds

to mass. In this manner, the concept of mass appears naturally for the system at the

fundamental level.

For the implementation of a relativity scheme (with a relativity group G0), it is

useful to introduce the concept of the effective relativity group Ĝ0 which is the universal

covering group G̃0 of G0 if the latter admits Poisson actions and the projective group Ĝ0

if it does not.

(iv) In supmech, an elementary system [for a given relativity scheme (or relativity group)]

is defined (generalizing and extending the treatments of elementary systems by Wigner

[40] and Alonso [2]) as a supmech triple (A, ω,S1(A)) such that the effective relativity

group Ĝ0 has a Poisson action on the symplectic algebra (A, ω) and a transitive action

on the space S1(A) of pure states.

The fundamental observables of an elementary system are proposed to be identified

from the PBs of the ‘hamiltonians’ coming from the effective relativity group Ĝ0. For the

Galilean elementary systems, they turn out to be M,Xj , Pj and Sj (j=1,2,3) correspond-
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ing, respectively, to mass, position, momentum and spin. For a spinless particle they are

M,Xj and Pj . The observable M (mass) has zero PBs with all other observables. It is,

therefore, a constant; its value m characterizes the elementary system and the objects

Xj, Pj serve as kinematic observables. Simple group theory leads to the following general

expression (for massive elementary systems) for the generator H (the Hamiltonian ) of

time translations in terms of the fundamental observables :

H =
P2

2m
+ V (X,P).(62)

(v) A Hilbert space realization of the supmech kinematics and dynamics of a system with

noncommutative algebra, if it exists, is very much desirable because, in such a realization,

the CC condition treated above is automatically satisfied (as was seen in the subsection

7 above); otherwise, one has to keep track of it separately. The existence of a Hilbert

space realization is, in fact, guaranteed by the CC condition : there being a rich supply

of (pure) states, one can employ the GNS construction (the version of it best suited for

us is that of Ref.[24]) based on one of them to obtain a Hilbert space representation of

the algebra A. Such a representation is generally not faithful; for example, if the state

chosen is one with zero expectation value for the kinetic energy (of a non-relativistic

particle), the momentum operator in the resulting Hilbert space representation will be

identically zero. The CC condition again comes to the rescue; a faithful representation

can be obtained by taking an appropriate direct sum of the GNS representations of the

above sort.

All this trouble is, however, not necessary — at least for a system consisting of a

single particle. The condition of transitive action of Ĝ0 on pure states implies that a

Hilbert space realization (in which pure states are vector states) must employ an irre-

ducible representation of this group. This, combined with the points treated above, then

ensures that the representation must be the Schrödinger representation. The probability

interpretation of Schrödinger wave functions follows from the formalism. (This is because

the essential relevant physics is covered by the treatment of localizability above. This is,

in fact, very satisfying — the probability interpretation of ‘ψ’ is no longer mysterious.)

The supmech evolution equation for pure states, with the Hamiltonian of Eq.(62)

(with V a function of X only in simple applications), gives the traditional Schrödinger

equation. It should be noted that the classical Hamiltonian or Lagrangian for a particle

was not used at any stage in this development.

Note. Apart from ensuring an autonomous development of QM and the interpretation

of ‘ψ’ above, a couple of attractive features the formalism outlined above are :

(1) The Planck constant h̄ has to be introduced ‘by hand’ only once — in the quantum

20



symplectic form (the most natural place to do it); its appearance at other conventional

places — the canonical commutation relations (40), the Heisenberg equation and the

Schrödinger equation (60) — is then automatic.

(2) The Dirac bra-ket formalism (in its rigorous version) appears naturally in the present

setting. It is this formalism — and not von Neumann’s formalism [30] employing bounded

observables — which is used in most quantum mechanical work.

4. Interacting systems in supmech

In this section, we shall consider, in the framework of supmech, the interaction

of two systems S1 and S2 described individually as the supmech Hamiltonian systems

(A(i), ω(i), H(i)) (i=1,2). We shall treat the coupled system S1 + S2 also as a supmech

Hamiltonian system. To this end, we associate, with the coupled system S1 +S2 the (al-

gebraic) tensor product algebra A = A(1) ⊗A(2). The most important job in the present

section is, given the symplectic forms ω(1) and ω(2) on A(1) and A(2), to determine the

symplectic form and the PB on A.

4.1 The symplectic form and PB on the algebra A = A(1) ⊗A(2)

The algebra A(1) (resp. A(2)) has, in A, an isomorphic copy consisting of the elements

(A⊗ I2, A ∈ A(1)) (resp. I1 ⊗ B,B ∈ A(2)) to be denoted as Ã(1) (resp. Ã(2)) where I1

and I2 are the unit elements of A(1) and A(2) respectively. We shall also use the notations

Ã(1) ≡ A⊗ I2 and B̃(2) ≡ I1 ⊗B.

Objects in A(i) and Ã(i) are related through the induced mappings corresponding to

the isomorphisms Ξ(i) : A(i) → Ã(i) (i= 1,2) given by Ξ(1)(A) = A ⊗ I2 and Ξ(2)(B) =

I1 ⊗B. In particular

(i) The induced mapping Ξ
(1)
∗ : Der(A(1)) → Der(Ã(1)) gives Ξ

(1)
∗ (X) = X̃(1) where

X̃(1)(Ã(1)) = Ξ(1)[X(A)] = X(A) ⊗ I2.

Similarly, corresponding to Y ∈ Der(A(2)), we have Ỹ (2) ∈ Der(Ã(2)) given by Ỹ (2)(B̃(2)) =

I1 ⊗ Y (B).

(ii) The induced mappings on 1-forms give, corresponding to the 1-forms α ∈ Ω1(A(1))

and β ∈ Ω1(A(2)), we have α̃(1) ∈ Ω1(Ã(1)) and β̃(2) ∈ Ω1(Ã(2)) given by

α̃(1)(X̃(1)) = Ξ(1)[α(([Ξ(1)]−1)∗X̃
(1))] = Ξ(1)[α(X)] = α(X) ⊗ I2

and β̃(2)(Ỹ (2)) = I1 ⊗ β(Y ). Similar formulas hold for the higher forms.

To obtain the general differential forms and the exterior derivative on A, the most

straightforward procedure is to obtain the graded differential space (Ω(A), d) as the
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tensor product [21] of the graded differential spaces (Ω(A(1)), d1) and (Ω(A(2), d2). A

differential k-form on A is of the form (in obvious notation)

αk =
∑

i+j=k

α
(1)
i ⊗ α

(2)
j .

The exterior derivative d on Ω(A) is given by [here α ∈ Ωp(A(1)) and β ∈ Ω(A(2))]

d(α⊗ β) = (d1α) ⊗ β + (−1)pα⊗ (d2β).(63)

Given the symplectic forms ω(i) on A(i) (i= 1,2) and stipulating that the symplectic

form ω on A should not depend on anything other than the objects ω(i) and I(i) (i=1,2)

(the ‘naturality’/‘canonicality’ assumption), the only possible choice of ω is

ω = ω(1) ⊗ I2 + I1 ⊗ ω(2).(64)

To show that it is, indeed, a symplectic form, we must show that it is (i) closed and (ii)

non-degenerate. Eq.(63) gives

dω = (d1ω
(1)) ⊗ I2 + ω(1) ⊗ d2(I2) + d1(I1) ⊗ ω(2) + I1 ⊗ d2ω

(2) = 0

showing that ω is closed.

To show the non-degeneracy of ω, we must show that, given A⊗B ∈ A, there exists

a unique derivation Y = YA⊗B in Der(A) such that

iY ω = −d(A⊗ B) = −(d1A) ⊗B −A⊗ (d2B)

= i
Y

(1)
A

ω(1) ⊗ B + A⊗ i
Y

(2)
B

ω(2).(65)

The structure of Eq.(65) suggests that Y must be of the form

Y = Y
(1)
A ⊗ Ψ

(2)
B + Ψ

(1)
A ⊗ Y

(2)
B(66)

where Ψ
(1)
A and Ψ

(2)
B are linear mappings on A(1) and A(2) respectively such that Ψ

(1)
A (I1) =

A and Ψ
(2)
B (I2) = B. A general object of the form (66), however, need not be a derivation

of A; we must, therefore, impose the condition that Y must be a derivation. Recalling

Eq.(1) and denoting the multiplication operators in A(1),A(2) and A by µ1, µ2 and µ

respectively, we have

Y ◦ µ(C ⊗D) − µ(C ⊗D) ◦ Y = µ(Y (C ⊗D)).(67)

Noting that µ(C ⊗D) = µ1(C) ⊗ µ2(D), Eq.(67) with Y of Eq.(66) gives

(Y
(1)
A ◦ µ1(C)) ⊗ (Ψ

(2)
B ◦ µ2(D)) + (Ψ

(1)
A ◦ µ1(C)) ⊗ (Y

(2)
B ◦ µ2(D))

−(µ1(C) ◦ Y (1)
A ) ⊗ (µ2(D) ◦ Ψ

(2)
B ) − (µ1(C) ◦ Ψ

(1)
A ) ⊗ (µ2(D) ◦ Y (2)

B )

= µ[Y
(1)
A (C) ⊗ Ψ

(2)
B (D) + Ψ

(1)
A (C) ⊗ Y

(2)
B (D)].(68)
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Since Y
(1)
A and Y

(2)
B are derivations, we must have

Y
(1)
A ◦ µ1(C) − µ1(C) ◦ Y (1)

A = µ1(Y
(1)
A (C)) = µ1({A,C}1)

Y
(2)
B ◦ µ2(D) − µ2(D) ◦ Y (2)

B = µ2(Y
(2)
B (D)) = µ2({B,D}2).(69)

Putting D = I2 in Eq.(68), we have [noting that µ2(D) = µ2(I2) = id2, the identity

mapping on A(2) and Y
(2)
B (I2) = 0]

(Y
(1)
A ◦ µ1(C)) ⊗ Ψ

(2)
B + (Ψ

(1)
A ◦ µ1(C)) ⊗ Y

(2)
B

−(µ1(C) ◦ Y (1)
A ) ⊗ Ψ

(2)
B − (µ1(C)◦Y

(1)
A ) ⊗ Y

(2)
B

= µ[Y
(1)
A (C) ⊗ B] = µ1({A,C}1) ⊗ µ2(B)

which, along with Eq.(69), gives

µ1({A,C}1) ⊗ [Ψ
(2)
B − µ2(B)] = [µ1(C) ◦ Ψ

(1)
A − Ψ

(1)
A ◦ µ1(C)] ⊗ Y

(2)
B .(70)

Similarly, putting C = I1 in Eq.(68), we get

[Ψ
(1)
A − µ1(A)] ⊗ µ2({B,D}) = Y

(1)
A ⊗ [µ2(D) ◦ Ψ

(2)
B − Ψ

(2)
B ◦ µ2(D)].(71)

Now, equations (71) and (70) give

Ψ
(1)
A − µ1(A) = λ1Y

(1)
A(72)

µ2(D) ◦ Ψ
(2)
B − Ψ

(2)
B ◦ µ2(D) = λ1µ2({B,D}2)(73)

Ψ
(2)
B − µ2(B) = λ2Y

(2)
B(74)

µ1(C) ◦ Ψ
(1)
A − Ψ

(1)
A ◦ µ1(C) = λ2µ1({A,C}1)(75)

where λ1 and λ2 are complex numbers.

Equations (66), (72) and (74) give

Y = Y
(1)
A ⊗ [µ2(B) + λ2Y

(2)
B ] + [µ1(A) + λ1Y

(1)
A ] ⊗ Y

(2)
B

= Y
(1)
A ⊗ µ2(B) + µ1(A) ⊗ Y

(2)
B + (λ1 + λ2)Y

(1)
A ⊗ Y

(2)
B .(76)

Note that only the combination (λ1 + λ2) ≡ λ appears in Eq.(76). To have a unique Y,

we must obtain an equation fixing λ in terms of given quantities.

Substituting for Ψ
(1)
A and Ψ

(2)
B from equations (72) and (74) into equations (73) and

(75) and using equations (69), we obtain the equations

λµ1({A,C}1) = µ1([C,A]) for all A,C ∈ A(1)(77)

λµ2({B,D}2) = µ2([D,B]) for all B,D ∈ A(2).(78)
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We have not one but two equations of the type we have been looking for. This is a signal

for the emergence of nontrivial conditions (for the desired symplectic structure on the

tensor product algebra to exist).

Let us consider the equations (77,78) for the various possible situations:

(i) Let the algebra A(1) be commutative. Assuming the PB {, }1 is nontrivial, Eq.(77)

implies that λ = 0. Then Eq.(78) implies that the algebra A(2) is also commutative. It

follows that

(a) when both the algebras A(1) and A(2) are commutative, the unique Y is given by

Eq.(76) with λ = 0;

(b) a ‘natural’/‘canonical’ symplectic structure does not exist on the tensor product of

a commutative and a noncommutative algebra.

(ii) Let the algebra A(1) be noncommutative. Eq.(77) then implies λ 6= 0 which, in turn,

implies, through Eq.(78), that the algebra A(2) is also non-commutative [which is also

expected from (b) above]. Equations (77, 78) now give

{A,C}1 = −λ−1[A,C], {B,D}2 = −λ−1[B,D](79)

which shows that when both the algebras A(1) and A(2) are noncommutative, a ‘natu-

ral’/‘canonical’ symplectic structure on their tensor product exists if and only if each

algebra has a quantum symplectic structure with the same parameter (-λ) , i.e.

ω(1) = −λω(1)
c , ω(2) = −λω(2)

c(80)

where ω(1)
c and ω(2)

c are the canonical symplectic forms on the two algebras. It follows that

all noncommutative system algebras must have a universal quantum symplectic structure.

Comparison of Eq.(80) with the quantum symplectic form (44) shows that λ = ih̄.

In all the permitted cases, the PB on the algebra A = A(1) ⊗A(2) is given by

{A⊗B,C ⊗D} = {A,C}1 ⊗ BD + AC ⊗ {B,D}2

+λ{A,C}1 ⊗ {B,D}2(81)

where the parameter λ vanishes in the commutative case; in the noncommutative case,

it is the universal parameter appearing in the symplectic forms (80).

In Ref. [10], the following PB was reported for the tensor product algebra A :

{A⊗ B,C ⊗D} = {A,B}1 ⊗
CD +DC

2
+
AC + CA

2
⊗ {C,D}2.(82)

When both the algebras A(1) and A(2) are commutative, the equations (81) (with λ = 0)

and (82) are clearly the same. In fact, the same is also true when both the algebras are
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noncommutative. To see this, it is adequate to note that, using Eq.(79), we have

λ{A,C}1 ⊗ {B,D}2 = [C,A] ⊗ {B,D}2 = {A,C}1 ⊗ [D,B]

=
CA− AC

2
⊗ {B,D}2 + {A,C}1 ⊗

DB − BD

2
.

In Ref. [10], the PB of Eq.(82) was meant to be true for the general case which

includes the case when one of the two algebras is commutative and the other noncom-

mutative ( the mixed case). Shortly after the paper in Ref.[10] appeared in the arXiv,

M.J.W. Hall, in a private communication to the author, pointed out that the ‘Poisson

bracket’ (82) does not satisfy the Jacobi identity in some cases (as shown, for example,

in Ref.[6]). The present work is an outcome of the efforts to clarify the situation in this

matter.

The example of violation of the Jacobi identity belonged to the mixed case. We now

know that, in this case, Eq.(64) does not represent a valid symplectic structure. The

mistake in the earlier work of the author consisted in not ensuring that the Y of Eq.(66)

is a derivation.

Comment on a possible generalized symplectic structure (of the type mentioned in

section 1.5) is being postponed to the last section (item 5 there).

4.2 Dynamics of the interacting system. Given that the two systems S1 and S2 are

represented as supmech Hamiltonian systems as mentioned above, the coupled system

S1 + S2 is also to be represented as a supmech Hamiltonian system (A, ω,H) with the

symplectic form ω as in Eq.(64) and the Hamiltonian given by

H = H(1) ⊗ I2 + I1 ⊗H(2) +Hint.(83)

In most applications, the interaction hamiltonian is of the form

Hint =
n∑

i=1

Fi ⊗Gi(84)

where Fi and Gi are observables of the two systems and the coupling constants have

been absorbed in these observables.

In the Heisenberg type picture, evolution of a typical observable A(t) ⊗ B(t) is gov-

erned by the supmech Hamilton equation

d

dt
[A(t) ⊗ B(t)] = {H,A(t) ⊗ B(t)}

= {H(1), A(t)}1 ⊗ B(t) + A(t) ⊗ {H (2), B(t)}2

+{Hint, A(t) ⊗ B(t)}.(85)
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In Ref.[10], this formalism was applied to the treatment of measurements in quan-

tum mechanics taking S1 to be the measured quantum system and S2 the apparatus

(assumed macroscopic) treated as a classical system and using the PB of Eq.(82). Since

a quantum-classical interaction is now not permitted, we must go back to the original

von Neumann idea [30] to treat the apparatus as a quantum mechanical system. We are,

however, not constrained to adopt the von Neumann procedure [30], [38] of introducing

vector states for the pointer positions (which is the basic cause of all the problems in

quantum measurement theory). Here supmech offers an advantage not available in von

Neumann’s treatment. Since both quantum and classical systems can be accommodated

in the supmech formalism, one can exploit the fact that the apparatus can be described

classically to a very good approximation. The best way to do this is to use the phase

space description of the QM of the apparatus (the Weyl-Wigner-Moyal formalism [37],

[39], [29])and then go to the classical approximation (doing it all within the supmech

formalism). With such a modification, the program of Ref[10] goes through successfully,

justifying the final results obtained there. We shall, however, skip the details here.

5. Concluding remarks

1. Supmech permits two kinds of ‘worlds’ : the commutative world in which all system

algebras are commutative and the noncommutative world in which they are all noncom-

mutative. There is no restriction (as far as the consistency of the supmech formalism

is concerned) on the possible symplectic structures on system algebras in the commu-

tative world; however, the system algebras in the noncommutative world must all have

a universal quantum symplectic structure. Since QM is known to describe systems in

nature substantially correctly, the real world is, of course, noncommutative; systems in

the commutative world can appear only as approximations to those in the real quantum

world.

2. The existence of a natural place for a universal Planck-like constant in the formalism

is an important feature of supmech and deserves further comment and elaboration.

In physics, out of the three fundamental constants G (Newton’s constant of grav-

itation), c (the speed of light in vacuum) and h̄ (the Planck constant), the first (G)

appears in the statement of a universal law of nature (in Newton’s law of gravitation and

in Einstein’s gravitational field equation in the general theory of relativity); the second

(c) appears in classical electromagnetic theory as the speed of electromagnetic waves in

vacuum, it is postulated as a universal speed in special relativity and maintains such

existence in general relativity through the equivalence principle. The last one (h̄) was

introduced in the relation E = hν = h̄ω as the proportionality constant between energy
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and frequency in the hypothesized fundamental unit (‘quantum’) of energy in the energy

exchange between interacting systems; in the traditional development of QM, it is put

‘by hand’ in various equations — the canonical commutation relations, the Heisenberg’s

equation of motion and the Schrödinger equation. As has been already mentioned, QM

is need of a proper formalism. The fact that supmech, apart from its geometrical setting

and other appealing features, predicts the existence of a universal Planck-like constant,

is a strong indication that the ‘right’ formalism has been chosen for an autonomous

development of QM.

3. If one could construct a formalism in which there are similar natural places for three

independent dimensional parameters [say, h̄, c and l (a fundamental length)], it would

constitute substantial progress towards construction of the ‘theory of everything’. For

this, one might try to find sub-theories of supmech with natural places for c and l or, more

generally, supmech-like theories which have the above-mentioned feature of supmech for

all the three parameters.

Emphasis on the word ‘similar’ in the previous para means that the other two uni-

versal constants should also appear as proportionality constants in the choices of appro-

priate geometrical objects as multiples of the corresponding ‘canonical’ objects (recall

ωQ = −ih̄ωc) — or through some similar compelling geometrical reasoning. If we relax

this requirement, one can find other ways of having reasonably ‘natural’ looking places

for universal constants which may not have as profound implications as the appearance

of the parameter h̄ had in supmech. For example, one may choose to work in a spatial

lattice of fundamental spacing ‘a’ and employ discrete evolution with step length ‘b’ of

the evolution parameter (‘time’); one can now take l = a and c = a/b. While such a

scheme may be of value, this is not what the author meant in the previous para.

4. The first three items in section 3 (relating to observables, states and the CC condi-

tion) were planned to constitute a reasonably standardized noncommutative probabilistic

setting which, as we have seen, holds promise for being the proper replacement of the

deterministic setting of classical mechanics for the description of dynamics of systems

and, more generally, for probability theoretic developments.

5. In the ‘mixed’ case, when one of the algebras, say A(1), is commutative and the other

noncommutative, it is possible to have a generalized symplectic structure (of the type

mentioned in section 1.5). Writing fA for f ⊗A, a general element of the tensor product

algebra A is of the form
∑
fiAi (finite sum); the product in A takes the form

(
∑

i

fiAi)(
∑

j

gjBj) =
∑

i,j

figjAiBj .

The subalgebra Ã(1) belongs to the center of A. Taking, in the notation of section 1.5,
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X = IDer(A), we can have the generalized symplectic algebra (A,X , ω) with ω = bωc

giving the PB

{fA, gB} = b−1fg[A,B].(86)

When A(1) represents a classical system and A(2) a quantum one, such an approach clearly

amounts to treating the classical observables as external fields. This is not adequate for

a proper treatment of the interaction of a classical and a quantum system.
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