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A scheme of mechanics, called ‘supmech’, is developed which aims at providing a base for a

solution of Hilbert’s sixth problem (seeking a unified axiomatization of physics and probability

theory) and serves to develop quantum mechanics autonomously (i.e. without having to quan-

tize classical systems). Integrating noncommutative symplectic geometry and noncommutative

probability in an algebraic setting, it associates, with every ‘experimentally accessible’ system,

a symplectic superalgebra and operates essentially as noncommutative Hamiltonian mechanics

with an extra condition of ‘compatible completeness’ between observables and pure states incor-

porated. A noncommutative analogue of the Poincaré-Cartan form is introduced. It is shown

that interactions between systems can be consistently described in supmech only if either (i) all

system algebras are supercommutative, or (ii) all system algebras are non-supercommutative

and have a quantum symplectic structure characterized by a universal Planck type constant of

the dimension of action. ‘Standard quantum systems’, defined algebraically, are shown to have

faithful Hilbert space - based realizations; the rigged Hilbert space - based Dirac bra-ket formal-

ism naturally appears. The formalism has a natural place for commutative superselection rules.

Treating massive particles as localizable elementary quantum systems, the Schrödinger equa-

tion for them is obtained without ever using a classical Hamiltonian or Lagrangian. Quantum

measurements are satisfactorily treated; the unwanted macroscopic superpositions are shown

to be suppressed when the observations on the apparatus are restricted to macroscopically

distinguishable pointer readings. This treatment automatically incorporates the decohering

effects of the internal environment of the apparatus; a trivial extension also serves to include

the external environment.
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Underlying everything you see

There is motion

Governed by

Noncommutative symplectics.

I. INTRODUCTION

The statement of the famous sixth problem of Hilbert [1] (henceforth referred to as H6)

reads :

“To treat in the same manner, by means of axioms, the physical sciences in which mathematics

plays an important part; in the first rank are the theory of probabilities and mechanics.”

It appears reasonable to have a somewhat augmented version of H6; the following formal

statement is being hereby proposed for this :

“To evolve an axiomatic scheme covering all physics including the probabilistic framework

employed for the treatment of statistical aspects of physical phenomena.”

A solution of this problem must include a satisfactory treatment of the dynamics of the

universe and its subsystems. Since all physics is essentially mechanics, the formalism under-

lying such a solution must be an elaborate scheme of mechanics (with elements of probability

incorporated). Keeping in view the presently understood place of quantum mechanics (QM)

in the description of nature, such a scheme of mechanics must incorporate, at least as a sub-

discipline or in some approximation, an ambiguity-free development of QM without resorting

to the prevalent practice of quantization of classical systems. Since a large class of systems in

nature admit a classical description to a very high degree of accuracy, the envisaged mechanics

must also facilitate a transparent treatment of quantum-classical correspondence. For this to

be feasible, the underlying framework must be such that both quantum and classical mechanics

can be described in it [2].

Wightman’s article [3] is a decent review of the work relating to the solution of H6 upto

mid-seventies. It covers Hilbert’s own work in this connection and the main developments

relating to the axiomatization of QM and of quantum field theory (QFT). Highlights in his

treatment of axiomatization of QM are: von Neumann’s Hilbert space based axiomatics; Al-

gebraic generalization of QM by Jordan, von Neumann and Wigner; Segal’s postulates for

general quantum mechanics; Variants of the quantum logic approach by Birkhoff, von Neu-

mann, Mackey, Piron and others; Hidden variable theories; EPR paradox and the question of

completeness of QM. The highlights in the axiomatization of QFT are : Perturbative S-matrix

and renormalization; Fock space; Reduction formulas; Representations of the inhomogeneous

Lorentz group and relativistic wave equations; Haag’ theorem; Wightman formalism; PCT and

Spin-statistics theorems in axiomatic field theory; Haag-Ruelle collision theory; C∗-algebraic

approach to quantum field theory and statistical mechanics and Constructive field theory. De-
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tailed references may be found in Wightman’s paper.

Highlights of the developments during the past four decades are : Progress in gauge the-

ories of fundamental interactions [4]; String theory [5,6]; Loop quantum gravity (LQG) [7,8];

Progress in algebraic QFT [9-13] and in Constructive field theory [14,15] and some develop-

ments relating to the quantum mechanical formalism [16-27]. None of these appears to provide

key ingredients to the solution of H6. In gauge models, concrete progress has been made by

the usual not-quite-rigorous field theoretic techniques and they need to be brought within the

domain of rigorous mathematics for axiomatization. String theory and LQG are both quanti-

zation programs and have yet to develop as concrete autonomous theories. Algebraic QFT has

yet to make firm contact with mainstream particle physics. Constructive field theory has yet

to show concrete progress in four space-time dimensions. Developments in QM have generally

been concerned with the measurement problem, histories approach, quantum nonlocality and

quantum information and operational approach to QM; none of these can be claimed to have

contributed substantially to the solution of H6.

It appears fair to say that, at present, there does not exist a formalism which can provide for

an unambiguous autonomous development of QM which, starting with some appealing basics,

connects smoothly to the traditional Hilbert space QM and facilitates a satisfactory treatment

of measurements.

In this paper, we shall present such a formalism. It satisfies the somewhat stringent criteria

(for an autonomous development of QM) laid down in Ref.[2], namely

(i) the basic concepts and equations of QM should be developed autonomously;

(ii) there should be a framework which can accommodate both QM and CM (classical mechan-

ics); in this framework, the basic concepts and equations of CM should be derivable from those

of QM in an appropriate limit.

The traditional development of special relativity, for example, satisfies analogous require-

ments [2]; there is a transparent c→ ∞ limit to Galilean relativity.

[The insistence on an autonomous development of quantum physics is not just a matter of

aesthetic satisfaction. It is the author’s view that, if we have such a formalism, many problems

of theoretical physics, when reformulated in the autonomous quantum framework, will be easier

to solve. To get a feel for this, suppose that, instead of having the elaborate (Poincaré group

based) formalism for special relativity, we had only somehow found some working rules to

relativize nonrelativistic equations. The several important results obtained by using Lorentz-

covariant formalisms (for example, the covariant renormalization programme of QFT and the

theorems of axiomatic QFT) would either have not been obtained or obtained using a highly

cumbersome formalism.]

The natural choice for the underlying geometry of the desired formalism is noncommuta-

tive geometry (NCG) [28-32]. Noncommutativity is the hallmark of QM. Indeed, the central

point made in Heisenberg’s paper [33] that marked the birth of QM was that the kinematics
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underlying QM must be based on a non-commutative algebra of observables. This idea was de-

veloped into a scheme of mechanics — called matrix mechanics — by Born, Jordan, Dirac and

Heisenberg [34-36]. The proper geometrical framework for the construction of the quantum

Poisson brackets of matrix mechanics is provided by non-commutative symplectic geometry

[29,37-39]. The NCG scheme employed in these works is a straightforward generalization of the

scheme of commutative differential geometry in which the algebra C∞(M) of smooth functions

on a manifold M is replaced by a general (not necessarily commutative) complex associative

*-algebra A and the Lie algebra of smooth vector fields on M by that of derivations on A.

While Heisenberg presented the quantum view of observables, Schrödinger [40] dealt with

wave functions which, through the Born interpretation [41], brought out the important aspect

of QM as an intrinsically probabilistic theory. Noncommutativity of the algebra of observables

has important implications relating to the basic character of the operative probability theory –

the so-called ‘quantum probability’ of which a variety of versions/formulations have appeared

in literature [42-50]. Among these formulations, the one that suits our needs best is the one

provided by the observable-state framework based on complex associative, unital (topologi-

cal) *-algebras [50-53]. This choice serves the important purpose of allowing us to adopt the

strategy of combining elements of noncommutative symplectic geometry and noncommutative

probability in an algebraic framework.

The scheme based on normed algebras [43,44,54-56,9-11,57,58], although it makes use of

observables and states, does not serve our needs because it is not suitable for the treatment of

noncommutative symplectic geometry. Iguri and Castagnino [59] have analyzed the prospects

of a more general class of algebras (nuclear, barreled b*-algebras) as a mathematical frame-

work for the formulation of quantum principles better than that of the normed algebras. These

algebras accommodate unbounded observables at the abstract level. Following essentially the

‘footsteps’ of Segal [44], they obtain results parallel to those in the C*-algebra theory — an

extremal decomposition theorem for states, a functional representation theorem for commu-

tative subalgebras of observables and an extension of the classical GNS theorem. In a sense,

this work is complementary to the present one where the emphasis is on the development of

noncommutative Hamiltonian mechanics. We have employed locally convex (super-)algebras

restricted by a condition of ‘compatible completeness’ on the collections of observables and

pure states (it is satisfied in classical Hamiltonian mechanics and the traditional Hilbert space

QM) which plays a crucial role in connecting the algebraic scheme of mechanics (supmech) to

the traditional Hilbert space QM.

In section 4 of Ref[2], a scheme of mechanics based on noncommutative symplectic geom-

etry was introduced; it was designed to provide a proper geometrical setting for the matrix

mechanics mentioned above. States were, however, not introduced in the algebraic setting.

This work, therefore, falls short of a proper realization of the strategy mentioned above. In the

present work, this deficiency has been removed and a proper integration of noncommutative

symplectic geometry and noncommutative probability has been achieved. The improvement

in the definition of noncommutative differential forms introduced in Ref.[38] [i.e. demanding
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ω(...,KX, ...) = Kω(...,X, ...) where K is in the center of the algebra; for notation, see section

III] is also incorporated. Moreover, to accommodate fermionic objects on an equal footing with

the bosonic ones, the scheme developed here is based on superalgebras. The scheme of me-

chanics developed along the above lines is given, for easy reference, the name ‘Supmech’(short

form for ‘supersymplectic mechanics’).

Supmech has quantum and classical mechanics as special subdisciplines. This fact appears

to open the prospects of a consistent treatment of the interaction of a quantum and a classical

system. In Ref.[60], the author applied such a formalism to the treatment of measurements in

QM providing what appeared to be the most natural solution to the measurement problem in

QM. An important ingredient in this work was the Poisson bracket on the tensor product of two

algebras [the non-super version of the formula (154) below]. Shortly after that paper appeared

in the archive, M.J.W. Hall [61] pointed out to the author that the ‘Poisson bracket’ mentioned

above does not satisfy the Jacobi identity in some cases (as shown, for example, in Ref.[62]).

A revised calculation by the author produced results which were partly discouraging [in that

a ‘natural’/‘canonical’ symplectic structure on the tensor product of a (super-)commutative

and a non- (super-)commutative (super-)algebra (both the (super-)algebras being of the above

mentioned type) does not exist] and partly very very interesting : a symplectic structure of the

above sort on the tensor product of two non-(super)commutative (super-)algebras exists if and

only if each of the (super-)algebras has a ‘quantum symplectic structure’ [i.e. one which gives

a Poisson bracket which is a (super-)commutator up to multiplication by a constant (iλ−1)

where λ is a real-valued constant of the dimension of action] characterized by a universal

parameter λ. The formalism, therefore, has a natural place for the Planck constant as a

universal constant — just as special relativity has a natural place for a universal speed. In

fact, the situation in supmech is somewhat better because, whereas, in special relativity, the

existence of a universal speed is postulated, in supmech, the existence of a universal Planck-like

constant is dictated/predicted by the formalism.

The negative result about the possibility of a consistent quantum-classical interaction in

the supmech framework is by no means ‘fatal’ for the treatment of measurement problem

in supmech. It turns out that it is adequate to treat the apparatus as a quantum system

approximated well by a classical system (in the sense of, for example, phase space descriptions of

quantum and classical dynamics). It is shown in section VIII that such a treatment reproduces

the results of Ref.[60].

The detailed plan of the rest of the paper is as given in the contents. In section II, we

present arguments, based on physics fundamentals, for adopting the kind of formalism that we

do. These arguments make it quite plausible that the formalism being evolved is the appropriate

one for doing physics at the deepest level. In section III, essential developments in the (super-)

derivation -based noncommutative differential calculus and symplectic structure are presented.

The induced mappings on (super-)derivations and differential forms (Φ∗ and Φ∗— analogues

of the push-forward and pull-back mappings induced by diffeomorphisms in the traditional

differential geometry) are described; they play important roles in supmech. In section IV,
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the formalism of supmech is developed. A special feature of this formalism is the condition

of ‘compatible completeness’ mentioned above. The development includes, besides the basic

formalism as noncommutative Hamiltonian mechanics, a treatment of symplectic actions of

Lie groups and the noncommutative avatars of the Poincaré- Cartan form and the symplectic

version of Noether’s theorem. A general treatment of localizable systems is also given. In

section V, elementary systems are defined in supmech and the special cases of nonrelativistic and

relativistic elementary systems are treated. The role of relativity groups in the identification

of fundamental observables of elementary systems is emphasized. Particles are treated as

localizable elementary systems. In section VI, coupled systems are treated and the results

about the symplectic structure on the tensor products of the superalgebras mentioned above

are obtained. (A reasonably self-contained presentation of the non-super version of these results

was given in Ref.[63].)

Section VII is devoted to the treatment of quantum and classical systems as special cat-

egories of systems in supmech. Quantum systems are taken up before classical systems to

emphasize the autonomous nature of the treatment of QM. ‘Standard quantum systems’ are

defined in the algebraic setting; the CC condition ensures the existence of their Hilbert space

- based faithful realizations.The formalism is shown to have a natural place for commutative

superselection rules. A transparent treatment of quantum - classical correspondence is given

emphasizing some formal aspects. The superclassical extension of classical mechanics (incor-

porating fermionic objects in the setting of a supercommutative superalgebra) is treated and

is shown (for the case of a finite number of fermion generators) to generally violate the CC

condition which disqualifies it from being a bonafide subdiscipline of supmech. In section VIII,

measurements in quantum systems are treated and, a straightforward solution of the mea-

surement problem is given along the lines mentioned above; the treatment of the apparatus

(properly as a system) automatically incorporates the desirable decoherence effects to suppress

the unwanted macroscopic quantum interference terms. In section IX, a set of axioms underly-

ing the work presented in sections IV-VIII is given. The last section contains some concluding

remarks.

II. FROM BASICS TO ALGEBRAS

In this section, we shall present arguments based on fundamentals relating to physical

theories, for making the choice of the type of formalism for supmech.

We look for the ingredients that should go into the formalism that is intended to cover all

physics. To this end, we start by considering the primitive elements which every physical theory

— classical, quantum, or more general — is expected to possess (explicitly or implicitly). The

author came across the term ‘primitive elements of physical theory’ (PEPT) in a not so well

known but an instructive and insightful paper by Houtappel, Van Dam and Wigner (HVW)

[64] which aimed at a treatment of symmetries [especially the ‘geometric invariance principles’

(space-time symmetries)] in a very general setting involving the PEPT which, according to
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HVW, were ‘measurements and their results’. We, however, would like to have a reasonably

‘complete’ minimal set of such primitive elements. (The word ‘complete’ here should be un-

derstood in the intuitive sense of ‘good enough for doing some concrete physics’.) To this end,

a promising route to take is to have a close look at the ingredients going into the construction

of the mathematical objects employed by HVW (the Π-functions — the ‘forefathers’ of the

objects presently known as histories [65,66,23,67]). Doing this, one finds that such a minimal

set may be taken as [68, last section]

(i) observations/measurements;

(ii) description of evolution of systems (typically in terms of a discrete or continuous parameter

called ‘time’);

(iii) conditional predictions about systems : given some information about a system (typically

in terms of values of appropriate measurable quantities at one or more instants of time), to

make predictions/retrodictions about its behavior.

Item (iii) above generally involves elements of probability. It is not difficult to see why

Hilbert, while formulating his VIth problem, chose to put probability along with physics. Any

formal axiomatization of probability must include hypotheses about the way uncontrollable

random influences affect outcomes of experiments. Since these influences have physical causes,

any comprehensive (theory construction)/axiomatization of physics must appropriately treat

these causes. In any physical theory, the theoretical apparatus employed to cover item (iii)

above is very much a part of the theory and, in case a (partial or total) failure of the theory

occurs, may well have to be subjected to scrutiny along with other ingredients of the theory.

A useful concept that serves to introduce elements of probability in a sufficiently general

way and integrate items (i)-(iii) above is that of state. A state of a system encodes available

information about the system in terms of values of appropriate observables (i.e. measurable

quantities). Evolution of systems can be described in terms of change of state with time.

Problems of conditional predictions can be formulated in terms of probabilities of transitions

of systems prepared in given states to various possible states.

This reasoning leads to the prospects of a reasonably economical and general description

of systems in terms of observables and states. In contrast to, for example, Araki’s book [11],

where these objects were introduced through analysis of experiments, we have introduced them

by considering some basics of theory construction. This is obviously more in tune with the

general theme of the present work.

The traditional algebraic schemes (generally based on C*-algebras) have employed these ob-

jects as basic structures and have achieved some good results. They, however, do not realize the

true potential of such an approach. In these works, one generally puts the Weyl form of com-

mutation relations (for finite as well infinite number of degrees of freedom) ‘by hand’ without

connecting them to some underlying geometry. This deficiency can be overcome by dropping

the restriction to normed algebras. As pointed out in the previous section, the underlying ge-

ometry of QM is noncommutative symplectic geometry whose vehicles are complex associative
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algebras. A program based on such algebras, integrating noncommutative symplectic geometry

with noncommutative probability (arrived at in the previous section as an intuitively appealing

step taken after noting the two roles of these algebras), therefore, appears to be the best bet

for the desired formalism also from considerations based on physics fundamentals.

Taking an appropriate class of (super-)algebras as the basic objects, we shall define noncom-

mutative symplectic structure on them. The promised mechanics (Supmech) will be developed

in the form of Hamiltonian mechanics in the setting of this structure. We shall try to exploit

the underlying noncommutative symplectic geometry as much as possible . For systems admit-

ting a space-time description, for example, we shall insist on the action of the relativity group

on the system algebra to be a Poisson action (for its definition, see section IV D) so that their

infinitesimal actions are generated, through Poisson brackets, by some observables. We shall

use this feature to identify the fundamental observables for appropriately defined elementary

systems (material particles will be in the localizable subclass of these systems); their system

algebras may then be taken as those generated by the fundamental observables. Employing

appropriate tensor products, one then has a canonical procedure for setting up the system

algebras for systems of a finite number of particles.

A point worth noting is the generality of the reasoning employed above. We did not restrict

ourselves to any distinguished class of physical systems (particles, fields,. . . ) nor did we talk

about space as the arena for all dynamics. In fact, the formalism evolved will be general enough

to permit, in principle, construction of theories in which one starts (for the treatment of the

dynamics of the universe as a whole) with matter and its dynamics and space as an arena

appears in the description of a later stage in its evolution.

III. SUPERDERIVATION-BASED DIFFERENTIAL CALCULUS; SYMPLEC-

TIC STRUCTURES

In this section we describe a scheme of non-commutative differential calculus which is a

superalgebraic version of Dubois-Violette’s scheme of noncommutative geometry (henceforth

referred to as DVNCG). The induced mappings on (super-)derivations and differential forms

(Φ∗ and Φ∗) [69,2], which play an important role in the scheme of mechanics to be developed, are

treated in some detail. A generalization of DVNCG, which replaces a superalgebra A by a pair

(A, X ) (where X is a Lie sub-superalgebra of the Lie superalgebra SDer(A) of superderivations

of A) as the basic entity, is also described. This generalization will be employed in the treatment

of general quantum systems admitting superselection rules.

Note. In most applications of supmech, the non-super version of the formalism developed below

is adequate; this can be obtained by simply putting,in the formulas below, all the epsilons

representing parities equal to zero and all the etas equal to one. Ref [63] contains a brief

account of the non-super version.

A. Superalgebras and superderivations
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In superalgebra [70-73], all mathematical structures for which addition is defined (vector

spaces, algebras, derivations, differential forms etc), have a Z2-grading where Z2 = Z/2Z =

{0, 1}. This means that each element of such a structure can be uniquely written as a sum of

two parts each of which is assigned a definite parity (0 or 1; correspondingly it is called even or

odd). Elements with definite parity are called homogeneous. When a multiplicative operation

is defined between homogeneous elements of the same or different mathematical types, the

product is a homogeneous element (of appropriate mathematical type) and its parity is the

sum (mod 2) of the parities of the multiplicands. We shall denote the parity of a homogeneous

object w by ǫ(w) or ǫw according to convenience.

A supervector space is a (complex) vector space V admitting a direct sum decomposition

V = V (o) ⊕V (1) into spaces of even and odd vectors; a vector v ∈ V can be uniquely expressed

as a sum v = v0 + v1 of even and odd vectors. A superalgebra A is a supervector space which

is an associative algebra with identity; it becomes a *-superalgebra if an antilinear *-operation

or involution ∗ : A → A is defined which satisfies the relations

(AB)∗ = ηABB
∗A∗, (A∗)∗ = A, I∗ = I

where I is the identity element and ηAB = (−1)ǫAǫB . An element A ∈ A will be called hermitian

if A∗ = A.

The supercommutator of two elements A,B of a superalgebra is defined as [A,B] = AB −
ηABBA. For ordinary (anti-)commutators, we shall employ the notations [A,B]∓ = AB∓BA.

A superalgebra A is said to be supercommutative if the supercommutator of every pair of its

elements vanishes.

The graded center of A , denoted as Z(A), consists of those elements of A which have van-

ishing supercommutators with all elements of A; it is clearly a supercommutative superalgebra.

Writing Z(A) = Z0(A) ⊕ Z1(A), the object Z0(A) is the traditional center of A.

A (*-)homomorphism of a superalgebra A into B is a linear mapping Φ : A → B which

preserves products, identity elements, parities (and involutions) :

Φ(AB) = Φ(A)Φ(B), Φ(IA) = IB, ǫ(Φ(A)) = ǫ(A), Φ(A∗) = (Φ(A))∗;

if it is, moreover, bijective, it is called a (*-)isomorphism.

A Lie superalgebra is a supervector space L with a superbracket operation [ , ] : L×L → L
which is (i) bilinear, (ii) graded skew-symmetric which means that, for any two homogeneous

elements a, b ∈ L, [a, b] = −ηab[b, a] and (iii) satisfies the super Jacobi identity

[a, [b, c]] = [[a, b], c] + ηab[b, [a, c]].

A (homogeneous) superderivation of a superalgebra A is a linear map X : A → A such that

X(AB) = X(A)B + ηXAAX(B); this is the superalgebraic generalization of the concept of

derivation of an algebra. Introducing the multiplication operator µ on A defined as µ(A)B =
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AB, the (necessary and sufficient) condition that a linear map X : A → A is a superderivation

may be expressed as

X ◦ µ(A) − ηXAµ(A) ◦X = µ(X(A)). (1)

Proof. In the equation defining the superderivation X above, express every term as a sequence

of mappings acting on the element B; the resulting equation is precisely the equation obtained

by operating each side of Eq.(1) on B. �

The set of all superderivations of A constitutes a Lie superalgebra SDer(A) [= SDer(A)(0) ⊕
SDer(A)(1)]; this is the superalgebraic generalization of the Lie algebra Der(A) of all derivations

of the algebra A. The inner superderivations DA defined by DAB = [A,B] are easily seen to

satisfy the relation

[DA,DB ] = D[A,B]

and constitute a Lie sub-superalgebra ISDer(A) of SDer(A).

As in DVNCG, it will be implicitly assumed that the superalgebras being employed have a

reasonably rich supply of superderivations so that various constructions involving them have a

nontrivial content. Some discussion and useful results relating to the precise characterization

of the relevant class of algebras may be found in Ref.[74].

The following two facts involving the graded center and the superderivations will be useful

[in proving the subcomplex property of Ω(A) below]:

(i) If K ∈ Z(A), then X(K) ∈ Z(A) for all X ∈ SDer(A).

(ii) For any K ∈ Z(A) and X,Y ∈ SDer(A), we have

[X,KY ] = X(K)Y + ηXKK[X,Y ]. (2)

Proof. (i) Expand the two sides of the the relation X(AK) = ηAKX(KA) (for any A ∈ A) and

cancel the terms containing K on the two sides.

(ii) Expand [X,KY ](A) (for any A ∈ A). �

Corollary. SDer(A) is a Z(A)-module.

An involution * on SDer(A) is defined by the relation X∗(A) = [X(A∗)]∗. We have

(i) [X,Y ]∗ = [X∗, Y ∗]; (ii)(DA)∗ = −DA∗ .

Proof. In each case, apply the left hand side to a general element B ∈ A and follow the

definitions. [For an illustration of the kind of steps involved, see the proof of the equations (4)

below.] The minus sign in the second relation appears because the definition of DA involves a

supercommutator and a *-operation on a product reverses the order of elements in the product.

�

A superalgebra-isomorphism Φ : A → B induces a mapping

Φ∗ : SDer(A) → SDer(B) given by (Φ∗X)(B) = Φ(X[Φ−1(B)]) (3)
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for all X ∈ SDer(A) and B ∈ B. It is the analogue (and a generalization) of the push-forward

mapping induced by a diffeomorphism between two manifolds on the vector fields and satisfies

the expected relations (with Ψ : B → C)

(Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗; Φ∗[X,Y ] = [Φ∗X,Φ∗Y ]. (4)

Proof : (i) For any X ∈ Sder(A) and C ∈ C,

[(Ψ ◦ Φ)∗X](C) = (Ψ ◦ Φ)(X[(Ψ ◦ Φ)−1(C)])

= Ψ[Φ(X[Φ−1(Ψ−1(C))])]

= Ψ[(Φ∗X)(Ψ−1(C)]

= [Ψ∗(Φ∗X)](C).

(ii) For any B ∈ B

(Φ∗[X,Y ])(B) = Φ([X,Y ](Φ−1(B)))

= Φ[X(Y (Φ−1(B))) − ηXY Y (X(Φ−1(B))].

Now insert Φ−1 ◦ Φ between X and Y in each of the two terms on the right and follow the

obvious steps. �.

Note that, Φ∗ is a Lie superalgebra isomorphism (i.e. it is bijective and linear and preserves

superbrackets).

B. The cochain complex C(SDer(A), A)

In DVNCG, one starts with a complex associative algebra A and constructs a differen-

tial calculus on it which means a formalism involving differential form like objects on A with

analogues of exterior product, exterior derivative and involution defined on them. For non-

commutative A, the choice of differential calculus is not unique; a systematic discussion of

the variety of choices may be found in Ref[38]. In applications of NCG, one makes a choice

according to convenience. Our needs are best served by a DVNCG type formalism.

For the constructions involving the superalgebraic generalization of DVNCG given in this

subsection, some relevant background is provided in Ref.[38,75,76,73]. Grosse and Reiter [75]

have given a detailed treatment of the differential geometry of graded matrix algebras. Some

related work on supermatrix geometry has also appeared in Ref[77,78]; however, the approach

adopted below is closer to Ref[75].

The central object in our scheme is a superalgebra A [complex, associative, unital (i.e.

possessing a unit element), not necessarily supercommutative]; it is the counterpart of C∞(M),

the commutative algebra of complex smooth functions on the manifold M, in commutative

geometry. The Lie superalgebra SDer(A) is the analogue of the Lie algebra X (M) of smooth

vector fields on M.

Recalling that, in the commutative differential geometry, the differential p-forms are defined

as skew-symmetric multilinear maps of X (M)p into C∞(M), the natural first choice for the
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space of (noncommutative) differential p-forms is the space

Cp(SDerA,A)[= Cp,0(SDer(A),A) ⊕ Cp,1(SDer(A),A)]

of graded skew-symmetric multilinear maps (for p ≥ 1) of [SDer(A)]p into A (the space of

A-valued p-cochains of SDer(A); it is the super-analogue of the Chevalley-Eilenberg p-cochain

space [79]). We have C0(SDer(A),A) = A. For ω ∈ Cp,s(SDer(A),A), we have

ω(..,X, Y, ..) = −ηXY ω(.., Y,X, ..). (5)

For a general permutation σ of the arguments of ω, we have

ω(Xσ(1), ..,Xσ(p)) = κσγp(σ; ǫX1 , .., ǫXp)ω(X1, ..,Xp) (6)

where κσ is the parity of the permutation σ and

γp(σ; s1, .., sp) =
∏

j, k = 1, .., p;

j < k, σ−1(j) > σ−1(k)

(−1)sjsk . (7)

An involution * on the cochains is defined by the relation ω∗(X1, ..,Xp) = [ω(X∗
1 , ..,X

∗
p )]

∗;

ω is said to be real (imaginary) if ω∗ = ω(−ω).

The exterior product

∧ : Cp,r(SDer(A),A) × Cq,s(SDer(A),A) → Cp+q,r+s(SDer(A),A)

is defined as

(α ∧ β)(X1, ..,Xp+q) =
1

p!q!

∑

σ∈Sp+q

κσγp+q(σ; ǫX1 , .., ǫXp+q
)(−1)

s
Pp

j=1 ǫXσ(j)

α(Xσ(1), ..,Xσ(p))β(Xσ(p+1), ..,Xσ(p+q)). (8)

With this product, the graded vector space

C(SDer(A),A) =
⊕

p≥0

Cp(SDer(A),A)

becomes an N0 × Z2-bigraded complex algebra. (Here N0 is the set of non-negative integers.)

The Lie superalgebra SDer(A) acts on itself and on C(SDer(A),A) through Lie derivatives.

For each Y ∈ SDer(A)(r), one defines linear mappings LY : SDer(A)(s) → SDer(A)(r+s) and

LY : Cp,s(SDer(A),A) → Cp,r+s(SDer(A),A) such that the following three conditions hold :

LY (A) = Y (A) for all A ∈ A (9)

LY [X(A)] = (LYX)(A) + ηXYX[LY (A)] (10)
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LY [ω(X1, ..,Xp)] = (LY ω)(X1, ..,Xp) +

p∑

i=1

(−1)ǫY (ǫω+ǫX1
+..+ǫXi−1

).

.ω(X1, ..,Xi−1, LYXi,Xi+1, ..,Xp). (11)

The first two conditions give

LYX = [Y,X] (12)

which, along with the third, gives

(LY ω)(X1, ..,Xp) = Y [ω(X1, ..,Xp)] −
p∑

i=1

(−1)ǫY (ǫω+ǫX1
+..+ǫXi−1

).

.ω(X1, ..,Xi−1, [Y,Xi],Xi+1, ..,Xp). (13)

Two important properties of the Lie derivative are, in obvious notation,

[LX , LY ] = L[X,Y ] (14)

LY (α ∧ β) = (LY α) ∧ β + ηY α α ∧ (LY β). (15)

For each X ∈ SDer(A)(r), we define the interior product

iX : Cp,s(SDer(A),A) → Cp−1,r+s(SDer(A),A) ( for p ≥ 1) by

(iXω)(X1, ..,Xp−1) = ω(X,X1, ..,Xp−1). (16)

One defines iX(A) = 0 for all A ∈ A. Note that there is no ηXω factor on the right in Eq.(16). A

more appropriate notation (from the point of view of proper/unambiguous placing of symbols)

for iXω is ωX . (See Ref[80].) Some important properties of the interior product are :

iX ◦ iY + ηXY iY ◦ iX = 0 (17)

iX(α ∧ β) = ηXβ(iXα) ∧ β + (−1)pα ∧ (iXβ) (18)

(LY ◦ iX − iX ◦ LY ) = ηXωi[X,Y ]ω. (19)

The exterior derivative d : Cp,r(SDer(A),A) → Cp+1,r(SDer(A),A) is defined through

the relation

(iX ◦ d+ d ◦ iX)ω = ηXω LXω. (20)

For p = 0, it takes the form

(dA)(X) = ηXA X(A). (21)
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Taking, in Eq.(20), ω a homogeneous p-form and contracting both sides with homogeneous

derivations X1, ..,Xp gives the quantity (dω)(X,X1, ..,Xp) in terms of evaluations of exterior

derivatives of lower degree forms. This determines dω recursively giving

(dω)(X0,X1, ..,Xp) =

p∑

i=0

(−1)i+aiXi[ω(X0, .., X̂i, ..,Xp)]

+
∑

0≤i<j≤p

(−1)j+bijω(X0, ..,Xi−1, [Xi,Xj ],Xi+1, .., X̂j , ..,Xp) (22)

where the hat indicates omission and

ai = ǫXi
(ǫω +

i−1∑

k=0

ǫXk
); bij = ǫXj

j−1∑

k=i+1

ǫXk
.

Some important properties of the exterior derivative are

d2(= d ◦ d) = 0 (23)

d ◦ LY = LY ◦ d (24)

d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ (dβ) (25)

where α is a p-cochain. Eq.(23) shows that the pair, (C(SDer(A), A), d) constitutes a cochain

complex. We shall call a cochain α closed if dα = 0 and exact if α = dβ for some cochain β.

C. Differential forms

Taking clue from Ref[38] [where the subcomplex of Z(A)-linear cochains ( Z(A) being, in

the notation of Ref[38], the center of the algebra A) was adopted as the space of differential

forms], we consider the subset Ω(A) of C(SDer(A),A) consisting of Z0(A)-linear cochains.

Eq.(2) ensures that this subset is closed under the action of d and, therefore, a subcomplex.

We shall take this space to be the space of differential forms in subsequent geometrical work.

We have, of course,

Ω(A) = ⊕p≥0Ω
p(A)

with Ω0(A) = A and Ωp(A) = Ωp,0(A) ⊕ Ωp,1(A) for all p ≥ 0.

D. Induced mappings on differential forms

A superalgebra *-isomorphism Φ : A → B induces, besides the Lie superalgebra-isomorphism

Φ∗ : SDer(A) → SDer(B), a mapping

Φ∗ : Cp,s(SDerB,B) → Cp,s(SDer(A),A)

given, in obvious notation, by

(Φ∗ω)(X1, ..,Xp) = Φ−1[ω(Φ∗X1, ..,Φ∗Xp)]. (26)
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The maping Φ preserves (bijectively) all the algebraic relations. Eq.(3) shows that Φ∗ preserves

Z0(A)-linear combinations of the superderivations. It follows that Φ∗ maps differntial forms

onto differential forms.

These mappings are analogues (and generalizations) of the pull-back mappings on differ-

ential forms (on manifolds) induced by diffeomorphisms. They satisfy the expected relations

[with Ψ : B → C]

(Ψ ◦ Φ)∗ = Φ∗ ◦ Ψ∗ (27)

Φ∗(α ∧ β) = (Φ∗α) ∧ (Φ∗β) (28)

Φ∗(dα) = d(Φ∗α). (29)

Outlines of proofs of Eqs.(27-29) :

Eq.(27) : For ω ∈ Cp,s(Sder(C), C) and X1, ..,Xp ∈ Sder(A),

[(Ψ ◦ Φ)∗ω](X1, ..,Xp) = (Φ−1 ◦ Ψ−1)[ω(Ψ∗(Φ∗X1), ..,Ψ∗(Φ∗Xp))]

= Φ−1[(Ψ∗ω)(Φ∗X1, ..,Φ∗Xp)]

= Φ∗(Ψ∗ω)(X1, ..,Xp). �

Eq.(28) : For α ∈ Cp,r(SDer(B),B), β ∈ Cq,s(Sder(B),B) and X1, ..,Xp+q ∈ SDer(A),

[Φ∗(α ∧ β)](X1, ..,Xp+q) = Φ−1[(α ∧ β)(Φ∗X1, ..,Φ∗Xp+q)].

Expanding the wedge product and noting that

Φ−1[α(..)β(..)] = Φ−1[α(..)].Φ−1[β(..)],

the right hand side is easily seen to be equal to [(Φ∗α) ∧ (Φ∗β)](X1, ..,Xp+q). �

Eq.(29) : We have

[Φ∗(dα)](X0, ..,Xp) = Φ−1[(dα)(Φ∗X0, ..,Φ∗Xp)].

Using Eq.(22) for dα and noting that

Φ−1[(Φ∗Xi)(α(Φ∗X0, ..)) = Φ−1[Φ(Xi[Φ
−1(α(Φ∗X0, ..))]]

= Xi[(Φ
∗α)(X0, ..)]

and making similar (in fact, simpler) manipulations with the second term in the expression

for dα, it is easily seen that the left hand side of Eq.(29), evaluated at (X0, ..,Xp), equals

[(d(Φ∗α)](X0, ..,Xp). �
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Now, let Φt : A → A be a one-parameter family of transformations (i.e. superalgebra

isomorphisms) given, for small t, by

Φt(A) ≃ A+ tg(A) (30)

where g is some (linear, even) mapping of A into itself. The condition Φt(AB) = Φt(A)Φt(B)

gives g(AB) = g(A)B+Ag(B) implying that g(A) = Y (A) for some even superderivation Y of

A ( to be called the infinitesimal generator of Φt). From Eq.(3), we have, for small t,

(Φt)∗X ≃ X + t[Y,X] = X + tLYX. (31)

Similarly, for any p-form ω, we have

Φ∗
tω ≃ ω − tLY ω. (32)

Proof : We have

(Φ∗
tω)(X1, ..,Xp) = Φ−1

t [ω ((Φt)∗X1, ..(Φt)∗Xp)]

≃ ω(X1, ..,Xp) − tY ω(X1, ..,Xp)

+t

p∑

i=1

ω(X1, .., [Y,Xi], ..,Xp)

= [ω − tLY ω]](X1, ..,Xp). �

Note that (as in the commutative geometry), the Lie derivative term appears with a plus sign

in Eq.(31) and a minus sign in Eq.(32). This is because, in the pull-back action, the effective

mapping is Φ−1
t .

E. A generalization of the DVNCG scheme [69,2]

In the formula (22) for dω, the superderivations Xj appear on the right either singly or as

supercommutators. It should, therefore, be possible to restrict them to a Lie sub-superalgebra

X of SDer(A) and develop the whole formalism with the pair (A,X ) obtaining thereby a useful

generalization of the formalism developed in the previous three subsections. Working with such

a pair is the analogue of restricting oneself to a leaf of a foliated manifold as the first example

below indicates.

Examples : (i) A = C∞(R3); X= the Lie subalgebra of the Lie algebra X (R3) of vector fields

on R3 generated by the Lie differential operators Lj = ǫjklxk∂l for the SO(3)-action on R3.

These differential operators, when expressed in terms of the polar coordinates r, θ, φ,contain

only the partial derivatives with respect to θ and φ; they, therefore, act on the 2-dimensional

spheres that constitute the leaves of the foliation R3 −{(0, 0, 0)} ≃ S2 ×R. The restriction [of

the pair (A,X (R3))] to (A,X ) amounts to restricting oneself to a leaf (S2) in the present case.

(ii) A = M4(C), the algebra of complex 4 × 4 matrices. The vector space C4 on which these

matrices act serves as the carrier space of the spin s = 3
2 projective irreducible representation
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of the rotation group SO(3). Denoting by Sj (j=1,2,3) the 4 × 4 matrices representing the

generators of the Lie algebra so(3), let X be the real Lie algebra generated by the inner

derivations DSj
. The pair (A, X ) is relevant for the treatment of spin dynamics for s = 3

2 .

A formalism analogous to that of sections III B and III C can be developed by working with a

pair (A,X ) as mentioned above. One obtains the cochains Cp,s(X ,A) for which the formulas of

these sections are valid (with the Xjs restricted to X ). The differential forms Ωp,s(A) will now

be replaced by the objects Ωp,s(X ,A) obtained by restricting the cochains to the Z0(A)-linear

ones. [In the new notation, the objects Ωp,s(A) will be called Ωp,s(SDer(A),A).]

Note. In Ref[2], the notation Ωp(A,X ) was used for the space of differential p-forms [which

appeared natural in view of the notation (A, X ) for the pairs called algebraic differential

systems there]. In the present work, we have changed it to Ωp(X ,A) to bring it in tune with

the notation for Lie algebra cochains in the mathematics literature.

To define the induced mappings Φ∗ and Φ∗ in the present context, one should employ a pair-

isomorphism Φ : (A,X ) → (B,Y) which consists of a superalgebra *- isomorphism Φ : A → B
such that the induced mapping Φ∗ : SDer(A) → SDer(B) restricts to an isomorphism of X
onto Y. Various properties of the induced mappings hold as before.

Given a one-parameter family of transformations Φt : (A,X ) → (A,X ), the condition

(Φt)∗X ⊂ X implies that the infinitesimal generator Y of Φt must satisfy the condition [Y,X] ∈
X for all X ∈ X . In practical applications one will generally have Y ∈ X which trivially satisfies

this condition.

This generalization will be used in sections IV E and VII E below.

F. Symplectic structures

Note. The sign conventions about various quantities adopted below are parallel to those of

Woodhouse [81]. This results in a (super-) Poisson bracket which (when applied to classical

Hamiltonian mechanics) gives one differing from the Poisson bracket in most current books on

mechanics by a minus sign. [See Eq.(46).] The main virtue of the adopted conventions is that

Eq.(38) below has no unpleasant minus sign.

A symplectic structure on a superalgebra A is a 2- form ω (the symplectic form) which

is even, closed and non-degenerate in the sense that, for every A ∈ A, there exists a unique

superderivation YA in SDer(A) [the (globally) Hamiltonian superderivation corresponding to

A] such that

iYA
ω = −dA. (33)

The pair (A, ω) will be called a symplectic superalgebra. A symplectic structure is said to be

exact if the symplectic form is exact ( ω = dθ for some 1-form θ called the symplectic potential).

A symplectic mapping from a symplectic superalgebra (A, α) to another one (B, β) is a

superalgebra isomorphism Φ : A → B such that Φ∗β = α. (If the symplectic structures involved
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are exact, one requires a symplectic mapping to preserve the symplectic potential under the

pull-back action; the commutation of the exterior derivative with the pull-back action then

guarantees the preservation of the symplectic form.) A symplectic mapping from a symplectic

superalgebra onto itself will be called a canonical/symplectic transformation. The symplectic

form and its exterior powers are invariant under canonical transformations.

If Φt is a one-parameter family of canonical transformations generated by X ∈ SDer(A),

the condition Φ∗
tω = ω implies, with Eq.(32),

LXω = 0. (34)

The argument just presented gives Eq.(34) with X an even superderivation. More generally,

a superderivation X (even or odd or inhomogeneous) satisfying Eq.(34) will be called a lo-

cally Hamiltonian superderivation. Eq.(20) and the condition dω = 0 imply that Eq.(34) is

equivalent to the condition

d(iXω) = 0. (35)

The (globally) Hamiltonian superderivations defined by Eq(33) constitute a subclass of locally

Hamiltonian superderivations for which iXω is exact. Note from Eq(33) that ǫ(YA) = ǫ(A).

In analogy with the commutative case, the supercommutator of two locally Hamiltonian su-

perderivations is a globally Hamiltonian superderivation. Indeed, given two locally Hamiltonian

superderivations X and Y, we have, recalling Equations (19) and (20),

ηXωi[X,Y ]ω = (LY ◦ iX − iX ◦ LY )ω

= ηY ω(iY ◦ d+ d ◦ iY )(iXω)

= ηY ωd(iY iXω)

which is exact. It follows that the locally Hamiltonian superderivations constitute a Lie super-

algebra in which the globally Hamiltonian superderivations constitute an ideal.

The Poisson bracket (PB) of two elements A and B of A is defined as

{A,B} = ω(YA, YB) = YA(B) = −ηABYB(A). (36)

It obeys the superanalogue of the Leibnitz rule :

{A,BC} = YA(BC) = YA(B)C + ηABBYA(C)

= {A,B}C + ηABB{A,C}. (37)

As in the classical case, we have the relation

[YA, YB ] = Y{A,B}. (38)
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Eqn.(38) follows by using the equation for i[X,Y ]ω above with X = YA and Y = YB and Eq.(33),

remembering that Eq.(33) determines YA uniquely. The super-Jacobi identity

0 =
1

2
(dω)(YA, YB , YC)

= {A, {B,C}} + (−1)ǫA(ǫB+ǫC){B, {C,A}}
+(−1)ǫC(ǫA+ǫB){C, {A,B}} (39)

is obtained by using Eqn.(22) and noting that

YA[ω(YB, YC)] = {A, {B,C}}
ω([YA, YB], YC) = ω(Y{A,B}, YC) = {{A,B}, C}.

Clearly, the pair (A, {, }) is a Lie superalgebra. Eq.(38) shows that the linear mapping A 7→ YA

is a Lie-superalgebra homomorphism.

An element A of A can act, via YA, as the infinitesimal generator of a one-parameter family

of canonical transformations. The change in B ∈ A due to such an infinitesimal transformation

is

δB = ǫYA(B) = ǫ{A,B}. (40)

In particular, if δB = ǫI (infinitesimal ‘translation’ in B), we have

{A,B} = I (41)

which is the noncommutative analogue of the classical PB relation {p, q} = 1. A pair (A,B) of

elements of A satisfying the condition (41) will be called a canonical pair.

G. Reality properties of the symplectic form and the Poisson bracket

For classical superdynamical systems, conventions about reality properties of the symplectic

form are based on the fact [82,83] that the Lagrangian is a real, even object. The matrix of the

symplectic form is then real- antisymmetric in the ‘bosonic sector’ and imaginary-symmetric

in the ‘fermionic sector’ (which means anti-Hermitian in both sectors). Keeping this in view,

we impose, in supmech, the following reality condition on the symplectic form ω:

ω∗(X,Y ) = −ηXY ω(Y,X) for all X,Y ∈ SDer(A); (42)

but this means,by Eq.(5), that ω∗ = ω (i.e. ω is real) which is the most natural assumption to

make about ω. Eq.(42) is equivalent to the condition

ω(X∗, Y ∗) = −ηXY [ω(Y,X)]∗. (43)

Now, for arbitrary A,B ∈ A, we have

{A,B}∗ = YA(B)∗ = Y ∗
A(B∗) = ηABdB

∗(Y ∗
A)

= −ηABω(YB∗ , Y ∗
A) = [ω(YA, Y

∗
B∗ ]∗

= −[dA(Y ∗
B∗)]∗ = −ηAB[Y ∗

B∗(A)]∗

= −ηABYB∗(A∗)
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giving finally

{A,B}∗ = −ηAB{B∗, A∗}. (44)

Eq.(44) is consistent with the reality properties of the classical and quantum Poisson brack-

ets.[See equations (46) and (54) below.]

H. The algebra Acl and the classical Poisson bracket

Classical symplectic structure, traditionally treated in the framework of a symplectic man-

ifold (M,ωcl) [where M is a differentiable manifold of even dimension (say, 2n) and ωcl , the

classical symplectic form, a nondegenerate differential 2-form on M], can be realized as a special

case of the symplectic structure treated above by taking A = C∞(M,C) ≡ Acl, the commu-

tative algebra of smooth complex-valued functions on M [with pointwise product (fg)(x) =

f(x)g(x)]. The star operation in this case is the complex conjugation : f∗(x) = f(x). The

derivations of Acl are the smooth complex vector fields. The differential forms of subsection C

above are easily seen, for A = Acl, to be the traditional differential forms on M. The symplectic

structure is defined in terms of the classical differential form (in canonical coordinates)

ωcl =
n∑

j=1

dpj ∧ dqj. (45)

In terms of the general local coordinates ξa(a = 1, .., 2n), writing ωcl = (ωcl)abdξ
a ∧ dξb, the

classical PB is given by

{f, g}cl = ωabcl
∂f

∂ξa
∂g

∂ξb

where (ωabcl ) is the inverse of the matrix ((ωcl)ab); in canonical coordinates, it takes the tradi-

tional form

{f, g}cl =

n∑

j=1

(
∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)
. (46)

Noting that the form ωcl and the coordinates ξa are real, the reality properties embodied in

the equations (42) and (44) are obvious in the present case.

I. Special algebras; the canonical symplectic form

In this subsection, we shall consider a distinguished class of superalgebras [69,38,2] which

have a canonical symplectic structure associated with them. As we shall see in section VII,

these superalgebras play an important role in Quantum mechanics.

A complex, associative, non-supercommutative *-superalgebra will be called special if all

its superderivations are inner. The differential 2-form ωc defined on such a superalgebra A by

ωc(DA,DB) = [A,B] (47)
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is said to be the canonical form on A. It is easily seen to be closed [the equation (dωc)(DA,DB ,DC) =

0 is nothing but the Jacobi identity for the supercommutator], imaginary (i.e. ω∗
c = −ωc) and

dimensionless. For any A ∈ A, the equation

ωc(YA,DB) = −(dA)(DB) = [A,B]

has the unique solution YA = DA. (To see this, note that, since all derivations are inner,

YA = DC for some C ∈ A; the condition ωc(DC ,DB) = [C,B] = [A,B] for all B ∈ A implies

that C −A ∈ Z(A). But then DC = DA. QED) This gives

iDA
ωc = −dA. (48)

The form ωc is, therefore, non-degenerate and defines, on A, the canonical symplectic structure.

It gives, as Poisson bracket, the supercommutator :

{A,B} = YA(B) = DA(B) = [A,B]. (49)

Using equations (48) and (20), it is easily seen that the form ωc is invariant in the sense that

LXωc = 0 for all X ∈ SDer(A). The invariant symplectic structure on the algebra Mn(C) of

complex n×n matrices obtained by Dubois-Violette and coworkers [37] is a special case of the

canonical symplectic structure on special algebras described above.

If, on a special superalgebra A, instead of ωc, we take ω = bωc as the symplectic form

(where b is a nonzero complex number), we have

YA = b−1DA, {A,B} = b−1[A,B]. (50)

We shall make use of such a symplectic structure (with b = −i~) in the following subsection

and in the treatment of quantum mechanics in section VII. (Note that b must be imaginary

to make ω real.) Such a symplectic structure with general nonzero b will be referred to as the

quantum symplectic structure with parameter b.

J. The quantum symplectic form

Let us consider the traditional QM of a non-relativistic spinless particle. The central object

in it is the Hilbert space H = L2(R3, dx) of complex square-integrable functions on R3. The

fundamental observables of such a particle are the Cartesian components Xj , Pj(j = 1, 2, 3)

of position and momentum vectors which are self-adjoint linear operators represented, in the

oft-used Schrödinger representation, as

(Xjφ)(x) = xjφ(x); (Pjφ)(x) = −i~ ∂φ
∂xj

. (51)

These operators satisfy the canonical commutation relations (CCR)

[Xj ,Xk] = 0 = [Pj , Pk]; [Xj , Pk] = i~I (j, k = 1, 2, 3) (52)
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where I is the unit operator. The functions φ in Eq.(51) must be restricted to a suitable dense

domain D in H which is generally taken to be the space S(R3) of Shwartz functions. Other

operators appearing in QM of the particle belong to the algebra A generated by the operators

Xj , Pj (j= 1,2,3) and I [subject to the CCR (52)]. The space D = S(R3) is clearly an invariant

domain for all elements of A. Defining a *-operation on A by A∗ = A†|D, the Hermitian

elements of A represent the general observables of the particle.

The algebra A obtained above is ‘special’ [38](in the sense defined in the previous subsec-

tion); one has, therefore, a canonical form ωc defined on it. The quantum symplectic structure

is defined on A by employing the quantum symplectic form

ωQ = −i~ωc. (53)

Note that the factor i serves to make ω real and ~ to give it the dimension of action (which

is the correct dimension of a symplectic form in mechanics). The minus sign is a matter of

convention. Eq.(50) now gives the quantum Poisson bracket

{A,B}Q = (−i~)−1[A,B]. (54)

The CCR (52) can now be expressed as the quantum Poisson brackets involving the canonical

pairs (Xj , Pj) :

{Xj ,Xk}Q = 0 = {Pj , Pk}Q; {Pj ,Xk}Q = δjkI (j, k = 1, 2, 3). (55)

IV. THE FORMALISM OF SUPMECH

A. The system algebra and states

Supmech associates, with every physical system, a symplectic superalgebra (A, ω) of the

type considered in the previous section. Here we shall treat the term ‘physical system’ infor-

mally as is traditionally done; some formalities in this connection will be taken care of in section

IX where the axioms are stated. The even Hermitian elements of A represent observables of

the system. The collection of all observables in A will be denoted as O(A).

To take care of limit processes and continuity of mappings, we must employ topological

algebras. The choice of the admissible class of topological algebras must meet the following

reasonable requirements:

(i) It should be closed under the formation of (a) topological completions and (b) tensor prod-

ucts. (Both are nontrivial requirements. [51])

(ii) It should include

(a) the Op∗-algebras [12] based on the pairs (H,D) where H is a separable Hilbert space and

D a dense linear subset of H. [Recall that such an algebra is the algebra of operators which,

along with their adjoints, map D into itself. These are the algebras of operators (not necessarily

bounded) appearing in the traditional Hilbert space QM; for example, the algebra A in section

III J belongs to this class.];
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(b) noncommutative *-algebras having Gel’fand-Naimark-Segal (GNS) representations in sepa-

rable Hilbert spaces (this is to ensure that the Hilbert spaces corresponding to quantum systems

defined initially algebraically are separable);

(c) Algebras of smooth functions on manifolds (to accommodate classical dynamics).

The right choice appears to be the ⊗̂-(star-)algebras of Helemskii [84] (i.e. locally convex

*-algebras which are complete and Hausdorff with a jointly continuous product) satisfying the

additional condition of being separable. [Note. The condition of separability may have to be

dropped in applications to quantum field theory.] Henceforth all (super-)algebras employed

will be assumed to belong to this class. For easy reference, unital *-algebras of this class

will be called supmech-admissible. Mappings between topological spaces should henceforth be

understood as continuous.

A state on a (unital) *-algebra A (which may or may not be a superalgebra) is a linear

functional φ on A which is (i) positive [which means φ(A∗A) ≥ 0 for all A ∈ A) and (ii)

normalized [i.e. φ(I) = 1]. Given a state φ, the quantity φ(A) for any observable A is real (this

can be seen by considering, for example, the quantityφ[(I+A)∗(I+A)]) and is to be interpreted

as the expectation value of A in the state φ. Following general usage in literature, we shall

call observables of the form A∗A or sum of such terms positive (strictly speaking, the term

‘non-negative’ would be more appropriate); states assign non-negative expectation values to

such observables. The family of all states on A will be denoted as S(A). It is easily seen to be

closed under convex combinations: given φi ∈ S(A) , i = 1,..,n and pi ≥ 0 with p1 + ..+pn = 1,

we have φ =
∑n

i=1 piφi also in S(A).[More generally, the integral of an S(A)-valued function

on a probability space integrated over the probability measure is an element of S(A).] States

which cannot be expressed as nontrivial convex combinations of other states will be called pure

states and others mixed states or mixtures. The family of pure states of A will be denoted as

S1(A). The triple (A,S1(A), ω) will be referred to as a symplectic triple.

Note. In physics literature, it is sometimes found convenient to include, among states, those for

which the magnitudes of expectation values of some observables are infinite. For example, in

practical work in QM, one employs wave functions which give infinite values for the expectation

values of some unbounded observables like position, momentum or energy. It needs to be made

clear, however, that physical states (or physically realizable states) must be restricted to those

for which the expectation values of all observables are finite. In practical quantum mechanical

work this would mean that only wave functions lying in a common invariant dense domain of

all observables must be treated as representing physical states. Our formal definition of state,

in fact, allows only physical states. (This is because the domain of definition of the functionals

defining states is the whole algebra A.)

In a sensible physical theory, the collection of pure states must be rich enough to distinguish

between two different observables. (Mixtures represent averaging over ignorances over and

above those implied by the irreducible probabilistic aspect of the theory; they, therefore, are
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not the proper objects for a statement of the above sort.) Similarly, there should be enough

observables to distinguish between different pure states. These requirements are taken care of

in supmech by stipulating that the pair (O(A), S1(A)) be compatibly complete in the sense

that

(i) given A,B ∈ O(A), A 6= B, there should be a state φ ∈ S1(A) such that φ(A) 6= φ(B);

(ii) given two different states φ1 and φ2 in S1(A), there should be an A ∈ O(A) such that

φ1(A) 6= φ2(A).

We shall refer to this condition as the ‘CC condition’ for the pair (O(A),S1(A)).

Expectation values of all even elements of A can be expressed in terms of those of the ob-

servables (by considering the breakup of such an element into its Hermitian and anti-Hermitian

part). This leaves out the odd elements of A. It appears reasonable to demand that, if observ-

ables are to be restricted to even Hermitian elements of A, the expectation values φ(A) of all

odd elements A ∈ A must vanish for all pure states (and, therefore, for all states).

Next, we consider the relation between states and traditional probability measures. We

shall introduce classical probabilities in the formalism through a straightforward formalization

of a measurement situation. To this end, we introduce a measurable space (Ω,F) and associate,

with every measurable set E ∈ F , a positive observable ν(E) such that

(i) ν(∅) = 0, (ii) ν(Ω) = I, (iii) ν(∪iEi) =
∑

i

ν(Ei) (for disjoint unions).

(The last equation means that, in the relevant topological algebra, the infinite sum on the right

hand side is well defined and equals the left hand side.) Then, given a state φ, we have a

probability measure pφ on (Ω,F) given by

pφ(E) = φ(ν(E)) ∀E ∈ F . (56)

The family {ν(E), E ∈ F} will be called a positive observable-valued measure (PObVM) on

(Ω,F). It is the abstract counterpart of the ‘positive operator-valued measure’ (POVM) em-

ployed in Hilbert space QM [18,21]. The objects ν(E) may be called supmech events (represent-

ing possible outcomes in a measurement situation); a state assigns probabilities to these events.

Eq.(56) brings out quite transparently the relationship between the supmech expectation values

and classical probabilities.

Denoting the algebraic dual of the superalgebra A by A∗, an automorphism Φ : A → A
induces the transpose mapping Φ̃ : A∗ → A∗ such that

Φ̃(φ)(A) = φ(Φ(A)) or < Φ̃(φ), A >=< φ,Φ(A) > (57)

where the second alternative has employed the dual space pairing <,>. The mapping Φ̃ (which

is easily seen to be linear and bijective) maps states (which form a subset of A∗) onto states.

To see this, note that

(i) Φ̃(φ)(A∗A) = φ(Φ(A∗A)) = φ(Φ(A)∗Φ(A)) ≥ 0;
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(ii)[Φ̃(φ)](I) = φ(Φ(I)) = φ(I) = 1.

The linearity of Φ̃ (as a mapping on the dual space of A ) ensures that it preserves convex

combinations of states. In particular, it maps pure states onto pure states. We have, therefore,

a bijective mapping Φ̃ : S1(A) → S1(A).

When Φ is a canonical transformation, the condition Φ∗ω = ω gives, for X,Y ∈ SDer(A),

ω(X,Y ) = (Φ∗ω)(X,Y ) = Φ−1[ω(Φ∗X,Φ∗Y )]

which gives

Φ[ω(X,Y )] = ω(Φ∗X,Φ∗Y ). (58)

Taking expectation value of both sides of this equation in a state φ, we get

(Φ̃φ)[ω(X,Y )] = φ[ω(Φ∗X,Φ∗Y )]. (59)

The dependence on X,Y in this equation can be gotten rid of by defining ωΦ by

ωΦ(X,Y ) = ω(Φ∗X,Φ∗Y ). (60)

Eq(59) can now be written as

(Φ̃φ)[ω(., .)] = φ[ωΦ(., .)]. (61)

It is generally simpler to use Eq.(59). When Φ is an infinitesimal canonical transformation

generated by G ∈ A, we have

Φ̃(φ)(A) = φ(Φ(A)) ≃ φ(A+ ǫ{G,A}). (62)

Putting Φ̃(φ) = φ+ δφ, we have

(δφ)(A) = ǫφ({G,A}). (63)

B. Dynamics

Dynamics is described by specifying an observable H, called the Hamiltonian; the evolution

of the system is given in terms of the one-parameter family Φt of canonical transformations

generated by H. (The parameter t is supposed to be an evolution parameter which need not

always be the conventional time.) Writing Φt(A) = A(t) and recalling Eq.(40), we have the

Hamilton’s equation of supmech :

dA(t)

dt
= YH [A(t)] = {H,A(t)}. (64)

The triple (A, ω,H) [or, more appropriately, the quadruple (A,S1(A), ω,H)] will be called a

supmech Hamiltonian system; it is the analogue of a classical Hamiltonian system (M,ωcl,Hcl)
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[where (M, ωcl) is a symplectic manifold and Hcl, the classical Hamiltonian (a smooth real-

valued function on M); note that the specification of the symplectic manifold M serves to define

both observables and pure states in classical mechanics]. As far as the evolution is concerned,

the Hamiltonian is, as in the classical case, arbitrary up to the addition of a constant multiple

of the identity element.

This is the analogue of the Heisenberg picture in traditional QM. An equivalent description

is obtained by transferring the time dependence to states through the relation [see Eq.(57)]

< φ(t), A >=< φ,A(t) >

where φ(t) = Φ̃t(φ). The mapping Φ̃t satisfies the condition (61) which [with Φ = Φt] may be

said to represent the canonicality of the evolution of states.

With Φ = Φt and G = H, Eq.(63) gives the Liouville equation of supmech:

dφ(t)

dt
(A) = φ(t)({H,A}) or

dφ(t)

dt
(.) = φ(t)({H, .}). (65)

This is the analogue of the Schrödinger picture in traditional QM.

C. Equivalent descriptions; Symmetries and conservation laws

By a ‘description’ of a system, we shall mean specification of its triple (A, ω,S(A)). Two

descriptions are said to be equivalent if they are related through a pair of isomorphisms Φ1 :

A → A and Φ2 : S(A) → S(A) such that the symplectic form and the expectation values are

preserved :

Φ∗
1ω = ω; Φ2(φ)[Φ1(A)] = φ(A) (66)

for all A ∈ A and φ ∈ S(A). The second equation above and Eq(57) imply tht we must

have Φ2 = (Φ̃1)
−1. Two equivalent descriptions are, therefore, related through a canonical

transformation on A and the corresponding inverse transpose transformation on the states. An

infinitesimal transformation of this type generated by G ∈ A takes the form

δA = ǫ{G,A}, (δφ)(A) = −ǫφ({G,A}) (67)

for all A ∈ A and φ ∈ S(A).

These transformations may be called symmetries of the formalism; they are the analogues

of simultaneous unitary transformations on operators and state vectors in a Hilbert space

preserving expectation values of operators. Symmetries of dynamics are the subclass of these

which leave the Hamiltonian invariant:

Φ1(H) = H. (68)

For an infinitesimal transformation generated by G ∈ A, this equation gives

{G,H} = 0. (69)
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It now follows from the Hamilton equation (64) that (in the ‘Heisenberg picture’ evolution) G

is a constant of motion. This is the situation familiar from classical and quantum mechanics:

generators of symmetries of the Hamiltonian are conserved quantities and vice-versa.

Note. Noting that a symmetry operation is uniquely defined by any one of the two mappings

Φ1 and Φ2, we can be flexible in the implementation of symmetry operations. It is often useful

to implement them such that the symmetry operations act, in a single implementation, either

on states or on observables, and the two actions are related the Heisenberg and Schrödinger

picture evolutions above [see Eq.(57)]; we shall refer to this type of implementation as unimodal.

In such an implementation, the second equation in (67) will not have a minus sign on the right.

For future reference, we define equivalence of supmech Hamiltonian systems. Two supmech

Hamiltonian systems

(A,S1(A), ω,H) and (A′,S1(A′), ω′,H ′)

are said to be equivalent if they are related through a pair Φ = (Φ1,Φ2) of bijective mappings

such that Φ1 : (A, ω) → (A′, ω′) is a symplectic mapping connecting the Hamiltonians [i.e.

Φ1(H) = H ′] and Φ2 : S1(A) → S1(A′) such that < Φ2(φ),Φ1(A) >=< φ,A > .

D. Symplectic actions of Lie groups

In this subsection and the next section, we shall generally employ bosonic objects. The

square brackets will, therefore, be commutators; the subscript – (minus) for the latter will be

omitted.

The study of symplectic actions of Lie groups in supmech proceeds generally parallel to the

classical case [85-87,81] and promises to be quite rich and rewarding. Here we shall present the

essential developments mainly to provide background material for the next section.

Let G be a connected Lie group with Lie algebra G. Elements of G, G and G∗ (the dual space

of G) will be denoted, respectively, as g,h,.., ξ, η, .. and λ, µ, ... The pairing between G∗ and G
will be denoted as < ., . >. Choosing a basis {ξa; a = 1, .., r} in G, we have the commutation

relations [ξa, ξb] = Ccabξc. The dual basis in G∗ is denoted as {λa} (so that < λa, ξb >= δab ).

The action of G on G (adjoint representation) will be denoted as Adg : G → G and that on

G∗ (the coadjoint representation) by Cadg : G∗ → G∗; the two are related as < Cadgλ, ξ >=<

λ,Adg−1ξ > . With the bases chosen as above, the matrices in the two representations are

related as (Cadg)ab = (Adg−1)ba.

Recalling the mappings Φ1 and Φ2 of the previous subsection, the symplectic action of of

G on a symplectic superalgebra (A, ω) is given by the assignment, to each g ∈ G, a symplectic

mapping (canonical transformation) Φ1(g) : A → A which is a group action [which means that

Φ1(g)Φ1(h) = Φ1(gh) and Φ1(e) = idA in obvious notation]. The action on the states is given

by the mappings Φ2(g) = [Φ̃1(g)]
−1.

A one-parameter subgroup g(t) of G generated by ξ ∈ G induces a locally Hamiltonian

derivation Zξ ∈ SDer(A) as the generator of the one-parameter family Φ1(g(t)) of canonical

transformations of A. The correspondence ξ → Zξ is a Lie algebra homomorphism : Z[ξ,η] =

[Zξ, Zη]. The G-action is said to be hamiltonian if these derivations are Hamiltonian, i.e. for
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each ξ ∈ G, Zξ = Yhξ
for some hξ ∈ A (called the hamiltonian corresponding to ξ). These

hamiltonians are arbitrary upto addition of multiples of the unit element. This arbitrariness

can be somewhat reduced by insisting that hξ be linear in ξ.(This can be achieved by first

defining the hamiltonians for the members of a basis in G and then defining them for general

elements as appropriate linear combinations of these.) We shall always assume this linearity.

A hamiltonian G-action satisfying the additional condition

{hξ , hη} = h[ξ,η] for all ξ, η ∈ G (70)

is called a Poisson action. The hamiltonians of a Poisson action have the following equivariance

property :

Φ1(g)(hξ) = hAdg(ξ). (71)

Since G is connected, it is adequate to verify this relation for infinitesimal group actions.

Denoting by g(t) the one-parameter group generated by η ∈ G, we have, for small t,

Φ1(g(t))(hξ) ≃ hξ + t{hη , hξ} = hξ + th[η,ξ] = hξ+t[η,ξ] ≃ hAdg(t)ξ

completing the verification.

A Poisson action is not always admissible. The obstruction to such an action is determined

by the objects

α(ξ, η) = {hξ, hη} − h[ξ,η] (72)

which are easily seen to have vanishing Hamiltonian derivations [i.e. Yα(ξ,η) = 0] and hence

vanishing Poisson brackets with all elements of A. [This last condition defines the so-called

neutral elements [85] of the Lie algebra(A, {, }). They clearly form a complex vector space

which will be finite dimensional in in the situations we shall encounter.] We also have

α([ξ, η], ζ) + α([η, ζ], ξ) + α([ζ, ξ], η) = 0;

i.e. α is a 2-cocycle of G taking values in the space N of the neutral elements of A. (The

derivation [81] of this result in classical mechanics employs only the standard properties of PBs

and remains valid in supmech.) A redefinition of the hamiltonians hξ → h′ξ = hξ + kξI (where

the scalars kξ are linear in ξ) changes α by a coboundary term:

α′(ξ, η) = α(ξ, η) − k[ξ,η]

showing that the obstruction is characterized by a cohomology class of G. A necessary and

sufficient condition for the admissibility of Poisson action of G on A is that it should be possible

to transform away all the obstruction 2-cocycles by redefining the hamiltonians, or, equivalently,

H2(G,N ) = 0.

As in classical symplectic mechanics [85,88], Hamiltonian group actions (more generally, the

Lie algebra actions) with nontrivial neutral elements can be treated as Poisson actions of a (Lie
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group with a) larger Lie algebra Ĝ obtained by adding, to a basis of G, elements corresponding

to a basis of the space N of neutral elements mentioned above. Let ηr(., .)(r = 1, ..,m) be a

basis of N . We add extra generators Mr to the basis {ξa} and take the commutation relations

of the larger Lie algebra Ĝ as

[ξa, ξb] = Ccabξc +

m∑

r=1

ηr(ξa, ξb)Mr; [ξa,Mr] = 0 = [Mr,Ms]. (73)

The simply connected Lie group Ĝ with the Lie algebra Ĝ is called the projective group [88] of

G; it is generally a central extension of the universal covering group G̃ of G.

Momentum map. In classical mechanics, given a Poisson action of a connected Lie group G

on a symplectic manifold (M,ωcl) [with hamiltonians/comoments h
(cl)
ξ ∈ C∞(M)], a useful

construction is the so-called momentum map [89,86,87] P : M → G∗ given by

< P (x), ξ > = h
(cl)
ξ (x) ∀x ∈M and ξ ∈ G. (74)

This map relates the symplectic action Φg of G on M (Φg : M →M,Φ∗
gωcl = ωcl ∀g ∈ G) and

the transposed adjoint action on G∗ through the equivariance property

P (Φg(x)) = Ad∗g(P (x)) ∀x ∈M and g ∈ G. (75)

Noting that points of M are pure states of the algebra Acl = C∞(M), the map P may be

considered as the restriction to M of the dual/transpose h̃(cl) : A∗
cl → G∗ of the linear map

h(cl) : G → Acl [given by h(cl)(ξ) = h
(cl)
ξ ]:

< h̃(cl)(u), ξ >=< u, h(cl)(ξ) > ∀ u ∈ A∗
cl and ξ ∈ G. (76)

The analogue of M in supmech is S1 = S1(A). Defining h : G → A by h(ξ) = hξ, the analogue

of the momentum map in supmech is the mapping h̃ : S1 → G∗ (considered as the restriction

to S1 of the mapping h̃ : A∗ → G∗) given by

< h̃(φ), ξ >=< φ, h(ξ) >=< φ, hξ > . (77)

Recalling the symplectic mappings Φ1 and Φ2 and Eq.(71), we have

< h̃(Φ2(g)φ), ξ > = < Φ2(g)φ, hξ >=< φ,Φ1(g
−1)(hξ) >=< φ, hAd

g−1 (ξ) >

= < φ, h(Adg−1(ξ)) >=< Cadg(h̃(φ)), ξ >

giving finally

h̃(Φ2(g)φ) = Cadg(h̃(φ)) (78)

which is the supmech analogue of Eq.(75). [Note. In Eq.(78),the co-adjoint (and not the

transposed adjoint) action appears on the right because Φ2(g) is inverse transpose (and not

transpose) of Φ1(g).]

30



E. Generalized symplectic structures and Hamiltonian systems

The generalization of the DVNCG scheme introduced in section III E can be employed to

obtain a corresponding generalization of the supmech formalism. One picks up a distinguished

Lie sub-superalgebra X of SDer(A) and restricts the superderivations of A in all definitions

and constructions to those in X . Thus, a symplectic superalgebra (A, ω) is now replaced by

a generalized symplectic superalgebra (A,X , ω) and a symplectic mappings Φ : (A,X , α) →
(B,Y, β) is restricted to a superalgebra-isomorphism Φ : A → B such that Φ∗ : X → Y is a

Lie-superalgebra- isomorphism and Φ∗β = α. A supmech Hamiltonian system (A,S1(A), ω,H)

is now replace by a generalized supmech Hamiltonian sytem (A,S1(A),X , ω,H). In section VII

E, we shall employ the pairs (A, X ) with X= ISDer(A) to define quantum symplectic structure

on superalgebras admitting outer as well as inner superderivations.

Note. In Ref.[2], the formalism in section IV (of that paper) was developed right from the

beginning in terms of the pairs (A, X ) (called ‘algebraic differential systems’ there; we have

chosen to dispense with this nomenclature to avoid confusion of the term ‘differential system’

with its use elsewhere in mathematics literature). This has the advantage of extra generality;

however, noting that this generality is needed only at very few places and its use everywhere

would make the formalism unnecessarily more complicated, the author has not opted for it in

the present work.

F. Augmented symplectics including time; the generalized Poincaré-Cartan form

We shall now augment the kinematic framework of supmech by including time and obtain

the non-commutative analogues of the Poincaré-Cartan form and the symplectic version of

Noether’s theorem [89].

For a system S with associated symplectic superalgebra (A, ω) we construct the extended

system algebra Ae = C∞(R) ⊗ A (where the real line R is the carrier space of the ‘time’ t)

whose elements are finite sums
∑

i fi ⊗ Ai (with fi ∈ C∞(R) ≡ A0) which may be written

as
∑

i fiAi. This algebra is the analogue of the algebra of functions on the evolution space of

Souriau [89] (the Cartesian product of the time axis and the phase space — often referred to as

the phase bundle).The superscript e in Ae, may, therefore, also be taken to refer to ‘evolution’.

Derivations on A0 are of the form g(t) ddt and one-forms of the form h(t)dt where g and h

are smooth functions; there are no nonzero higher order forms. We have, of course, dt( ddt ) = 1.

A (super-)derivation D1 on A0 and D2 on A extend trivially to (super-)derivations on Ae

as D1 ⊗ idA and idA0 ⊗D2 respectively (where idA is the identity mapping on A); these trivial

extensions may be informally denoted as D1 and D2. With f ⊗A written as fA, we can write

D1(fA) = (D1f)A and D2(fA) = f(D2A).

The mapping Ξ : A → Ae given by Ξ(A) = 1⊗A(= A) is an isomorphism of the algebra A
onto the subalgebra Ã ≡ 1 ⊗A of Ae and can be employed to pull back the differential forms

on A to those on Ã. We write (Ξ−1)∗(ω) = ω̃ and extend this form on Ã to one on Ae by
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defining

ω̃(
d

dt
,X) = 0 ∀X ∈ SDer(A).

We shall generally skip the tilde. Similarly, we may extend the one-form dt on A0 to one on

Ae by defining (dt)(X) =0 for all X ∈ SDer(A).

The symplectic structure ω on A induces, on Ae, a generalized symplectic structure (of the

type introduced in section IV E) with the distinguished Lie sub-superalgebra X of Sder(Ae)

taken to be the one consisting of the objects {idA0 ⊗D;D ∈ SDer(A)} which constitute a Lie

sub-superalgebra of SDer(Ae) isomorphic to SDer(A), thus giving a generalized symplectic

superalgebra (Ae,X , ω̃). The corresponding PBs on Ae are trivial extensions of those on A
obtained by treating the ‘time’ t as an external parameter; this amounts to extending it by

A0-linearity :

{fA+ gB, hC}Ae = fh{A,C}A + gh{B,C}A

where, for clarity, we have put subscripts on the PBs to indicate the underlying superalgebras.

We shall often drop these subscripts; the underlying (super-)algebra will be clear from the

context.

To describe dynamics in Ae, we extend the one-parameter family Φt of canonical transforma-

tions on A generated by a Hamiltonian H ∈ A to a one-parameter family Φe
t of tansformations

on Ae (which are ‘canonical’ in a certain sense, as we shall see below) given by

Φe
t(fA) ≡ (fA)(t) = f(t)A(t) ≡ (Φ

(0)
t f)Φt(A)

where Φ
(0)
t is the one-parameter group of translations on A0 generated by the derivation d

dt .

An infinitesimal transformation under the evolution Φe
t is given by

δ(fA)(t) ≡ (fA)(t+ δt) − (fA)(t)

= [
df

dt
A+ f{H,A}A]δt ≡ ŶH(fA)δt

where

ŶH =
∂

∂t
+ ỸH . (79)

Here ∂
∂t is the derivation on Ae corresponding to the derivation d

dt on A0 and

ỸH = {H, .}Ae . (∗)

Note that

(i) dt(ŶH) = 1;

(ii) the right hand side of the equation (*) remains well defined if H ∈ Ae (‘time dependent’

Hamiltonian). Henceforth, in various formulas in this subsection, H will be understood to be

an element of Ae.
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The obvious generalization of the supmech Hamilton equation (64) to Ae is the equation

dF (t)

dt
= ŶHF (t) =

∂F (t)

∂t
+ {H(t), F (t)}. (80)

We next consider an object in Ae which contains complete information about the symplectic

structure and dynamics [i.e. about ω̃ and H (up to an additive constant multiple of I)] and is

canonically determined by these objects. It is the 2-form

Ω = ω̃ + dt ∧ dH (81)

which is ‘obviously’ closed. [To have a formal proof, apply Eq.(133) below with Ω = 1⊗ω+d1t∧
d2H where the exterior product is considered as the appropriate linear combination of tensor

product terms.] If the symplectic structure on A is exact (with ω = dθ), we have (‘obviously’)

Ω = dΘ where

Θ = θ̃ −Hdt (82)

is the supmech avatar of the Poincaré-Cartan form in classical mechanics. [Again, for a formal

derivation, use Eq.(133) with Θ = 1 ⊗ θ − dt⊗H.]

The closed form Ω is generally not non-degenerate. It defines what may be called a presym-

plectic structure [89] on Ae. In fact, we have here the noncommutative analogue of a special

type of presymplectic structure called contact structure [90,91]; it may be called the Poincaré-

Cartan contact structure. We shall, however, not attempt a formal development of noncom-

mutative contact structures here.

A symplectic action of a Lie group G on the presymplectic space (Ae,Ω) is the assignment,

to every g ∈ G, an automorphism Φ(g) of the superalgebra Ae having the usual group action

properties and such that Φ(g)∗Ω = Ω. This implies, as in section IV D, that, to every element

ξ of the Lie algebra G of G, corresponds a derivation Zξ such that LZξ
Ω = 0 which, in view of

the condition dΩ = 0, implies

d(iZξ
Ω) = 0. (83)

We shall now verify that the one-parameter family Φ
(e)
t of transformations on Ae is sym-

plectic/canonical. For this, it is adequate to verify that Eq.(83) holds with Zξ = ŶH . We have,

in fact, the stronger relation

iŶH
Ω = 0. (84)

Indeed

iŶH
Ω = i∂/∂tΩ + iỸH

Ω

= i∂/∂t(dt ∧ dH) + iỸH
ω̃ + iỸH

(dt ∧ dH)

= dH − dH − iỸH
(dH)dt

= [iỸH
(iỸH

ω̃)]dt = 0.
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The equation in note (i) above and Eq.(84) are analogous to the properties of the ‘char-

acteristic vector field’ of a contact structure. The derivation ŶH may, therefore, be called the

characteristic derivation of the Poincaré-Cartan contact structure.

A symplectic G-action (in the present context) is said to be hamiltonian if the 1-forms iZξ
Ω

are exact, i.e. to each ξ ∈ G, corresponds a ‘hamiltonian’ ĥξ ∈ Ae (unique upto an additive

constant) such that

iZξ
Ω = −dĥξ . (85)

These ‘hamiltonians’ (Noether invariants) are constants of motion :

dĥξ(t)

dt
= ŶH(ĥξ(t)) = (dĥξ)(ŶH)(t)

= −(iZξ
Ω)(ŶH)(t) = 0 (86)

where, in the last step, Eq.(84) has been used. This is the supmech analogue of the symplectic

version of Noether’s theorem. For some concrete examples of Noether invariants, see section V

B.

G. Systems with configuration space; lacalizability

We shall now consider the class of systems each of which has a configuration space (say, M)

associated with it and it is meaningful to ask questions about the localization of the system in

subsets of M. To start with, we shall take M to be a topological space and restrict the permitted

domains of localization to belong to B(M), the family of Borel subsets of M.

Some good references containing detailed treatment of localization in conventional ap-

proaches are Ref.[92,93,47,94]. We shall follow a relatively more economical path exploiting

some of the constructions described above.

We shall say that a system S [with associated symplectic superalgebra (A, ω)] is localizable

in M if, we have a positive observable-valued measure (as defined in section IV A) on the

measurable space (M,B(M)), which means that, corresponding to every subset D ∈ B(M),

there is a positive observable P(D) in A satisfying the three conditions

(i) P (∅) = 0; (ii) P(M) = I;

(iii)for any countable family of mutually disjoint sets Di ∈ B(M),

P (∪iDi) =
∑

i

P (Di). (87)

For such a system, we can associate, with any state φ, a probability measure µφ on the mea-

surable space (M,B(M)) defined by [see Eq.(56)]

µφ(D) = φ(P (D)), (88)

making the triple (M,B(M), µφ) a probability space. The quantity µφ(D) is to be interpreted as

the probability of the system, given in the state φ, being found (on observation/measurement)

in the domain D.
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Generally it is of interest to consider localizations having suitable invariance properties

under a transformation group G. Typically G is a topological group with continuous action

on M assigning, to each g ∈ G, a bijection Tg : M → M such that, in obvious notation,

TgTg′ = Tgg′ and Te = idM ; it also has a symplectic action on A and S(A) given by the

mappings Φ1(g) and Φ2(g) introduced in section IV D. The localization on M described above

will be called G-covariant (or, loosely, G-invariant) if

Φ1(g)(P (D)) = P (Tg(D)) ∀g ∈ G and D ∈ B(M). (89)

In most practical applications, M is a manifold and G is a Lie group with smooth action on M

and a Poisson action on the symplectic superalgebra (A, ω).

In Hilbert space QM, the problem of G-covariant localization is traditionally formulated in

terms of the so-called ‘systems of imprimitivity’ [95,47,93]. We are operating in the more general

algebraic setting trying to exploit the machinery of noncommutative symplectics developed

above. Clearly, there is considerable scope for mathematical developments in this context

parallel to those relating to systems of imprimitivity. We shall, however, restrict ourselves

to some essential developments relevant to the treatment of localizable elementary systems

(massive particles) later.

We shall be mostly concerned with M = Rn (equipped with the Euclidean metric). In this

case, one can consider averages of the form (denoting the natural coordinates on Rn by xj)

∫

Rn

xjdµφ(x), j = 1, ..., n. (90)

It is natural to introduce position/configuration observables Xj such that the quantity (90)

is φ(Xj). Let En denote the Euclidean group in n dimensions and let pj ,mjk(= −mkj) be

its generators satisfying the usual commutation relations. We shall say that a system S with

configuration space Rn has concrete Euclidean-covariant localization if it is localizable as above

and

(i) it has position observables Xj ∈ A such that the above mentioned relation holds :

φ(Xj) =

∫

Rn

xjdµφ(x); (91)

(The term ‘concrete’ is understood to imply this condition.)

(ii) the group En has a Poisson action on A so that we have the hamiltonians Pj ,Mjk associated

with pj,mjk such that

{Pj , Pk} = 0, {Mjk, Pl} = δjlPk − δklPj

{Mjk,Mpq} = δjpMkq − δkpMjq − δjqMkp + δkqMjp; (92)

(iii) the covariance condition (89) holds with the Euclidean action on Rn given by

T(R,a)x = Rx+ a, R ∈ SO(n), a ∈ Rn. (93)
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Equations (91) and (89) for infinitesimal Euclidean transformations and Eq.(67) then give the

analogues of the classical canonical PBs of Xjs with the Euclidean generators :

{Pj ,Xk} = δjkI, {Mjk,Xl} = δjlXk − δklXj. (94)

Proof. Using Eq.(91) with φ replaced by φ′ = Φ2(g)(φ), we have

φ′(Xj) =

∫
xjdµφ′(x) =

∫
xjdµφ(x

′) =

∫
(x′j − δxj)dµφ(x

′) (95)

where x′ ≡ Tg(x) = x + δx and we have used Eq.(89) with D as a single point set (these are

included in B(Rn)) to write dµφ′(x) = dµφ(x
′). Writing φ′ = φ + δφ and taking Tg to be a

general infinitesimal transformation generated by ǫξ = ǫaξa, we have

ǫφ({hξ ,Xj}) =

∫

Rn

δxjdµφ(x). (96)

For translations, with ξ = pk, hpk
= Pk, δxj = ǫδjk, Eq.(96) gives

φ({Pk,Xj}) = δjk = δjkφ(I).

Since this holds for all φ ∈ S(A), we have the first of the equations (94). The second equation

is similarly obtained by taking, in obvious notation, ǫξ = 1
2ǫjkmjk and

δxl = ǫlkxk = ǫjkδjlxk =
1

2
ǫjk(δjlxk − δklxj). �

The hamiltonians Pj and Mjk will be referred to as the momentum and angular momentum

observables of the system S. It should be noted that the PBs obtained above do not include the

expected relations {Xj ,Xk} = 0; these relations, as we shall see in the following section, come

from the relativity group. [Recall that, in the treatments of localalization based on systems of

imprimitivity, the commutators [Xj ,Xk] = 0 appear because there the analogues of the objects

P(D) are assumed to be projection operators satisfying the relation P (D)P (D′) = P (D∩D′)(=

P (D′)P (D)). In our more general approach, we have no basis for making such assumptions.]

V. RELATIVITY GROUPS, ELEMENTARY SYSTEMS AND FUNDAMENTAL

OBSERVABLES

Having presented the general formalism of supmech, we now proceed to take the first steps

towards the treatment of concrete systems. We start with the simplest ones : particles. In this

section, we take up the question of the definition of a particle and the fundamental observables

relating to the characterization/labelling and kinematics of a particle. Relativity group will be

seen to play a very important role in this context.

A. General considerations about relativity groups and elementary systems

A particle is basically an irreducible entity (in the sense that it cannot be represented as the

composite of more than one identifiable entities) localized in what we traditionally call ‘space’
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and the description of its dynamics involves ‘time’. We must, therefore, introduce the concepts

of space and time or, more generally, space-time before we talk about particles.

In the following developments, space-time will be understood to be a (3+1)- dimensional

differentiable manifold equipped with a suitable metric to define spatial distances and time-

intervals.[The breakup (3+1) means that one of the four dimensions is in some way distinguished

from the other three. Details about the metric will be given only when needed.] A reference

frame is an atlas providing a coordinatization of the spacetime points. Observers are supposedly

intelligent beings employing reference frames for doing concrete physics; they will be understood

to be in one-to-one correspondence with reference frames.

Observables of systems localized in space are generally observer-dependent. This observer

dependence is systematically taken into consideration by adopting a relativity scheme which

incorporates (i) specification of the geometry of spacetime, (ii) selection of a class of reference

frames to to be treated as distinguished (all members of the chosen class to be treated as phys-

ically equivalent) and (iii) transformation laws between coordinatizations of different members

of the chosen class (these transformations constitute a group called the relativity group of the

scheme).

Assuming a fixed background spacetime M, we shall assume the relativity group to be a con-

nected Lie group G0 (with Lie algebra G0) acting as a transformation group on M. For concrete

applications, we shall take G0 to be the Galilean group and the Poincaré group (the inhomo-

geneous Lorentz group) in the schemes of Galilean relativity and special relativity respectively.

Both these groups have the one-parameter group T of time translations as a subgroup.

Treatment of kinematics and dynamics of a system in accordance with a relativity scheme

involves the action of the relevant relativity group on the symplectic algebra (A, ω) of the

system. To exploit the availability of a symplectic framework, we would like this action to

be a Poisson action so that we can associate observables with the infinitesimal generators of

the relativity group. As one of the relativity groups (the Galilean group) to be considered

for concrete applications does not admit Poisson action, we shall employ its projective group

Ĝ0 defined in section IV D. In fact, we shall operate directly with what we call the effective

relativity group (denoted as Ĝ0) which is the universal covering group G̃0 of the relativity group

G0 if it admits Poisson action and its projective group if it does not.

We may formally state, in the sub-domain of supmech covering theories admitting a back-

ground space-time, the ‘principle of relativity’ as follows :

(i) There is a preferred class of reference frames whose space-time coordinatisations are related

through the action of a connected Lie group G0.

(ii) For a system with the system algebra A, the effective relativity group Ĝ0 has a Poisson

action on the symplectic algebra (A, ω) [or the generalized symplectic superalgebra (A,X , ω)

in appropriate situations].

(iii) All reference frames in the chosen class are physically equivalent in the sense that the

fundamental equations of the theory are covariant with respect to the G0-transformations of
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the relevant variables.

We shall call such a scheme G0-relativity and systems covered by it G0-relativistic.

Heisenberg and Schrödinger pictures of dynamics corresponding to two observers O and

O′ may be related through the symplectic action of Ĝ0 by following the strategy of Ref.[85]

exploiting the fact that Ĝ0 has T as a subgroup. Showing the observer dependence of the

algebra elements explicitly, the two Heisenberg picture descriptions A(O,t) and A(O′,t′)of an

element A of A can be related through the sequence (assuming a common zero of time for the

two observers)

A(O, t) −→ A(O, 0) −→ A(O′, 0) −→ A(O′, t′)

where the first and the last steps involve the operations of time translations in the two

frames.We shall be concerned only with the symplectic action of Ĝ0 involved in the middle

step. A similar strategy can be adopted for the Schrödinger picture. Detailed treatments of

the relativistic Heisenberg and Schrödinger pictures in the classical hamiltonian formalism may

be found in Ref.[85].

Construction of Noether invariants, on the other hand, involves explicit consideration of the

transformation of the time variable. The formalism of section IV F has obvious limitations in

this regard because time was treated as an external parameter in the Poisson brackets employed

there. We shall, therefore, construct the Noether invariants only for the Galilean group where

the only admitted transformations of the time variable are translations.

To formalize the notion of a particle as an irreducible entity, Wigner [96] introduced the

concept of an ‘elementary system’ as a quantum system whose Hilbert space carries a projective

unitary irreducible representation of the Poincaré group. The basic idea is that the state space

of an elementary system should not admit a decomposition into more than one invariant (under

the action of the relevant relativity group) subspaces. Following this idea, elementary systems

in classical mechanics [85,88a] have been defined in terms of a transitive action of the relativity

group on the phase space of the system. Alonso [88a] gave a unified treatment of classical

and quantum elementary systems by treating them as special cases of (irreducible/transitive)

kinematical action of the relativity groups (called ‘invariance groups’ in that work) on the state

space of a dynamical system.

In this section, we shall treat elementary systems in the framework of supmech. Traditional

classical and quantum elementary systems will be seen as special cases of these. This treatment

goes a step further than that of Alonso in that the unification is achieved in a single symplectic

framework.

A system S having associated with it the symplectic triple (A,S1, ω) is called an elementary

system in G0-relativity if it is a G0-relativistic system such that the action of Ĝ0 on the

space S1 of its pure states is transitive. Formally, an elementary system may be represented

as a collection E = (G0,A,S1, ω,Φ) where Φ = (Φ1,Φ2) are mappings as in section IV D

implementing the Ĝ0-actions — Φ1 describing a Poisson action on (A, ω) and Φ2 a transitive

action on S1.
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Note that, unlike the prevalent practice in the literature on classical and quantum elemen-

tary systems, our definition directly employs the action of the effective relativity group Ĝ0.

This not only simplifies the theoretical treatment, but also makes sense from the point of view

of concrete everyday physics. For example, in Newtonian mechanics, which is governed by the

Galilean relativity scheme, one cannot proceed an inch before introducing the concept of mass

and this comes directly (along with other kinematic variables), as we shall see below, when

working with the projective group of the Galilean group.

Let ξa (a = 1,..,r) be a basis in the Lie algebra Ĝ0 of Ĝ0 satisfying the commutation relations

as in section IV D. The admissibility of Poisson action of Ĝ0 on A implies that, corresponding

to the generators ξa, we have the hamiltonians ha ≡ hξa in A satisfying the PB relations

{ha, hb} = Ccabhc. (97)

Recalling Eq.(78), the condition of transitive action on S1 implies that the h̃-images of pure

states of an elementary system are coadjoint orbits in Ĝ∗
0 .

In classical mechanics, one has an isomorphism between the symplectic structures on the

symplectic manifolds of elementary systems and those on the coadjoint orbits. In our case, the

state spaces of elementary systems and coadjoint orbits of relativity groups are generally spaces

of different types and the question of an isomorphism does not arise. We can, however, use

Eq.(78) to obtain useful information about the transformation properties of the quantities ha

under the Ĝ0- action. Recalling the notations in section IV D, writing Cadg[h̃(φ)] = ua(g)λ
a,

we have

ua(g) =< Cadg[h̃(φ)], ξa >=< h̃[Φ2(g)(φ)], ξa >=< φ,Φ1(g
−1)ha > (98)

showing that the transformation properties of hamiltonians ha are directly related to those of

the corresponding coordinates (with respect to the dual basis) of points on the relevant co-

adjoint orbit. This is adequate to enable us to to use the descriptions of the relevant co-adjoint

actions in Ref.[88a] and draw parallel conclusions.

We shall adopt the following strategy :

(i) Given a relativity scheme, use the Poisson action of the corresponding effective relativity

group Ĝ0 on the symplectic superalgebra of an elementary system to obtain the corresponding

hamiltonians and their PBs [Eq.(97)]. These PBs are clearly the same for all elementary systems

of the group.

(ii) Use these PBs to identify some fundamental observables [i.e. those which cannot be obtained

from other observables (through algebraic relations or PBs)]. These include observables (like

mass) that Poisson-commute with all has and the momentum observables (the group of space

translations being a subgroup of both the relativity groups we consider).

(iii) Determine the transformation laws of has under finite transformations of Ĝ0 following

the relevant developments in Ref.[85,88a]. Use these transformation laws to identify the Ĝ0-
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invariants and some other fundamental observables (the latter will be configuration and spin

observables).

The transitive action of Ĝ0 on S1 implies that the expectation value of a Ĝ0-invariant observable

is the same in every pure state (hence in every state). To see this, let Q be such an observable

and φ1, φ2 two pure states such that Φ2(g)(φ1) = φ2 for some g ∈ Ĝ0. We have

< φ2, Q >=< Φ2(g)(φ1), Q >=< φ1,Φ1(g
−1)(Q) >=< φ1, Q >

as desired. Denoting this common expectation value of Q by q (we shall call it the value of

Q for the system), we have, by the CC condition, Q = qI. The values of invariant observables

characterize (or serve to label) an elementary system.

(iv) The system algebra A for an elementary system is to be taken as the (topological completion

of) the one generated by the fundamental observables and the identity element.

(v) Obtain (to the extent possible) the general form of the Hamiltonian as a function of the

fundamental observables as dictated by the PB relations (97).

(vi) (For the Galilean group) use the formalism of section IV F to consider the action of Ĝ0

on the presymplectic space (Ae,Ω) and, noting that this action satisfies Eq.(85), identify the

Noether invariants related to Ĝ0.

We shall now obtain an equation that will be useful for this last job. Let ξ ∈ Ĝ0 generate an

infinitesimal transformation giving δt = ǫf(t) (and possibly some changes in other quantities).

[In view of the limitations of the formalism of section IV F mentioned above, arguments other

than t for the function f have been excluded.] The relation between the induced derivations Zξ

on A and Ẑξ on Ae is given by

Ẑξ = Zξ + f(t)
∂

∂t
. (99)

We have Zξ = Yhξ
(see section IV D). We look for the quantity ĥξ (the prospective Noether

invariant) such that Eq.(85) holds. (Finding such a quantity will establish invariance of Ω under

the relevant group action and also determine the corresponding Noether invariant.) Equations

(99) and (81) now give the desired relation

iẐξ
Ω = iZξ

ω̃ − iZξ
(dH)dt + f(t)dH

= −dhξ − Yhξ
(H)dt + f(t)dH. (100)

Most of the equations in the following two subsections have the same mathematical form

as some of the equations in Ref.[97,88a] and/or [85]. The following couple of remarks should

serve to clarify the situation.

(a) Classical elementary systems are defined in terms of a transitive canonical action of the

relevant relativity group on symplectic manifolds. These are obviously special cases of supmech

elementary systems corresponding to commutative system algebras of the type treated in section
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III H. Those results in the treatment of classical elementary systems whose derivation does

not use the commutativity of the algebra Acl are expected to be valid for general supmech

elementary systems.

(b) Quantum elementary systems are defined in terms of projective unitary representations of

the relevant relativity group on separable Hilbert spaces. Keeping the developments in section

III J in view, these are seen as special cases of supmech elementary systems when the system

algebra A is a member of a triple (H,D,A) [a ‘quantum triple’; see section VII B] where

H is a separable Hilbert space, D a dense linear subset of H and A an algebra of operators

having D as an invariant domain. According to theorem (3.2) in Ref.[88b], every projective

unitary representation of a relativity group G0 can be lifted to a unitary representation of

the corresponding projective group Ĝ0 (called the ‘projective covering group’ of G0 in that

work). The infinitesimal generators of Ĝ0 arising in such a (continuous) unitary representation

serve as hamiltonians of the corresponding supmech elementary system. Once the infinitesimal

generators have been obtained, the Hilbert space goes into the background ; the rest of the

work is algebraic. All the results obtained, in the traditional treatments of quantum elementary

systems, by algebraic manipulations and use of the quantum Poisson brackets (54) are expected

to be valid in the treatments of the corresponding elementary systems in supmech.

B. Nonrelativistic elementary systems

In this and the following subsection, we shall keep close to the notational conventions of

Alonso [88a]. Our PBs, however, follow the conventions of Woodhouse [81] and differ from

those of Ref.[85,88] by a sign; moreover, our Galilean generator K differs from that of Alonso

by a sign.

The relativity group G0 of the nonrelativistic domain of supmech is the Galilean group of

transformations of the Newtonian space-time R3 ×R given by

x′ = Rx+ tv + a, t′ = t+ b (101)

where R ∈ SO(3), v ∈ R3, a ∈ R3 and b ∈ R. This group does not admit Poisson action.

After a careful consideration of the freedom to modify the hamiltonians by additive terms, the

hamiltonians Ji,Ki, Pi,H corresponding to the ten generators Ji,Ki,Pi(i = 1, 2, 3),H of G0

[so that hPi
= Pi etc] satisfy the Poisson bracket relations [85]

{Ji, Jj} = −ǫijkJk, {Ji,Kj} = −ǫijkKk, {Ji, Pj} = −ǫijkPk
{Ki,H} = −Pi, {Ki, Pj} = −δijM, (102)

where M is a neutral element; all other PBs vanish. The element M ∈ A has vanishing PBs

with all the hamiltonian generators; this implies, by the argument presented above, M= mI,

m ∈ R. We shall identify m as the mass of the elementary system. The condition m ≥ 0 will

follow later from an appropriate physical requirement. The objects Pi and Ji, being generators

of the Euclidean subgroup E3 of Ĝ0, are the momentum and angular momentum observables

of section IV G.
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Following the procedure outlined in section IV D, we augment the Lie algebra G0 of G0 to a

larger Lie algebra Ĝ0 by including an additional generator M corresponding to M (which now

becomes the Hamiltonian corresponding to M ∈ Ĝ0); it commutes with all other generators

and appears only in the commutator

[Kj ,Pk] = −δjkM. (103)

The remaining commutation relations of Ĝ0 are those of G0 ([Jj , Jk] = −ǫjklJl etc.). The

projective group Ĝ0 of the Galilean group G0 is the connected and simply connected Lie group

with the Lie algebra Ĝ0.

Representing a general group element of Ĝ0 in the form

g = (A, v, b, a, τ)

= exp(−τM)exp(−a.P)exp(−bH)exp(−v.K)A (104)

where A ∈ SU(2) and τ ∈ R, the group law of Ĝ0 is obtained, after a straightforward calcula-

tion, as

g′g = (A′A, v′ +R(A′)v, b′ + b, a′ + bv′ +R(A′)a, τ ′ + τ +R(A′)jkv
′
jak). (105)

The transformation laws of the hamiltonians of Ĝ0 under its adjoint action may be found

following the procedure of either [85] or [88a]. These transformation laws give the following

three independent invariants :

M, C1 ≡ 2MH − P2, C2 ≡ (MJ − K × P)2. (106)

Of these, the first one is obvious; the vanishing of PBs of C1 with all the hamiltonians is also

easily checked. Writing C2 = BjBj where

Bj = MJj − ǫjklKkPl,

it is easily verified that

{Jj , Bk} = −ǫjklBl, {Kj , Bk} = {Pj , Bk} = {H,Bk} = 0

which finally leads to the vavishing of PBs of C2 with all the hamiltonians. By the argument

given above for M, the last two invariants also should be scalar multiples of the unit element in

A. The values of these three invariants characterize a Galilean elementary system in supmech.

We henceforth restrict ourselves to elementary systems with m 6= 0. Defining Xi = m−1Ki,

we have

{Xj ,Xk} = 0, {Pj ,Xk} = δjkI, {Jj ,Xk} = −ǫjklXl. (107)

Comparing the last two equations above with the equations (94)(for n=3), we identify Xj with

the position observables of section IV G. Note that the fact that the Xjs mutually Poisson-

commute comes from the relativity group.
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Writing S = J− X× P, we have C2 = m2S2. We have the PB relations

{Si, Sj} = −ǫijkSk, {Si,Xj} = 0 = {Si, Pj}. (108)

We identify S with the internal angular momentum or spin of the elementary system.

The invariant quantity

U ≡ C1

2m
= H − P2

2m
(109)

is interpreted as the internal energy of the elementary system. It is the appearance of this

quantity (which plays no role in Newtonian mechanics) which is responsible for energy being

defined in Newtonian mechanics only upto an additive constant.

Writing S2 = s2I and U = u I, we see that Galilean elementary systems with m 6= 0 can be

taken to be characterized/labelled by the parameters m, s and u. The fundamental kinematical

observables are Xj, Pj and Sj (j=1,2,3). Other observables are assumed in supmech to be

functions of the fundamental observables.

Henceforth we shall take u = 0 (a natural assumption to make if the elementary systems

to be treated are particles). Eq.(109) now gives

H =
P2

2m
(110)

which is the Hamiltonian for a free Galilean particle in supmech.

Note. (i) Full Galilean invariance (more generally, full invariance under a relativity group)

applies only to an isolated system. Interactions/(external influences) are usually described

with (explicit or implicit)reference to a fixed reference frame or a restricted class of frames. For

example, the interaction described by a central potential implicitly assumes that the center of

force is at the origin of axes of the chosen reference frame.

(ii) In the presence of external influences, translational invariance is lost and the PB {H,Pi} = 0

must be dropped. For a spinless particle, the Hamiltonian (assumed to be a function of the

fundamental observables X and P) then has the general form

H =
P2

2m
+ V (X,P). (111)

In most practical situations, V is a function of X only.

We can now rule out the case m < 0 on physical grounds because, by Eq.(110), this will

allow arbitrarily large negative values for energy. (Expectation values of the observable P2 are

expected to have no upper bound.)

Lastly, we consider the action of G0 on the augmented algebra Ae for a free massive spin-

less particle. As noted above, it is adequate, for each ξ in the chosen basis of G0, to find a

‘hamiltonian’ ĥξ such that Eq.(85) holds; for this we must show the exactness of the form on

the right hand side of Eq.(100). We have
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(i)for rotations (ξ = Ji, hξ = Ji) f(t) =0, Yξ(H) = 0, giving ĥξ = hξ = Ji;

(ii) for Galilean boosts (ξ = Ki, hξ = Ki = mXi) f(t) = 0, vYξ(H) = v{Ki,H} = −vPi
giving ĥξ = mXi − Pit;

(iii)for space translations ( ξ = Pi, hξ = Pi) f(t) =0, Yξ(H) = 0, giving ĥξ = hξ = Pi;

(iv) for time translations (ξ = H, hξ = H) f(t,.) =1, Yξ = 0, giving ĥξ = H.

Finally, the Noether invariants of the Galilean group are

J, mX− Pt, P, H (112)

which are (up-to signs) the supmech avatars of those in Ref.(89).

C. Relativistic elementary systems

In the scheme of special relativity, the relativity group G0 is the (identity component of)

Poincaré group of transformations on the Minkowski space-time [(R4, ηµν) where µ, ν =0,1,2,3

and ηµν = diag(-1,1,1,1)]:

x′ = Λx+ a, Λ ∈ SO(3, 1) (withΛ0
0 ≥ 1), a ∈ R4. (113)

This group admits Poisson actions and the effective relativity group Ĝ0 is just the universal

covering group of G0 which has the group law

(A2, a2)(A1, a1) = (A2A1,Λ(A2)a1 + a2) (114)

where Λ(A) denotes the Lorentz group element corresponding to A ∈ SL(2, C).

As the general method (of treating elementary systems in supmech) has been illustrated in

the previous subsection, we shall be relatively more brief here. Some more details relevant to

the algebraic work involved here may be found in Ref[97,88a,85]. We shall generally keep close

to the developments in Ref[97,88a].

The generators of Ĝ0 are {Mµν = −Mνµ,Pµ} or, equivalently, {Ji,Ki,Pi,H} where P0 =

H,M0i = Ki and Mij = ǫijkJk. The hamiltonians (Ji,Ki, Pi,H) arising from the Poisson

action of Ĝ0 on the symplectic superalgebra (A, ω) of an elementary system satisfy the PB

relations

{Ji, Jj} = −ǫijkJk, {Ji,Kj , } = −ǫijkKk, {Ji, Pj} = −ǫijkPk,
{Ki,Kj} = ǫijkJk, {Ki, Pj} = −δijH, {Ki,H} = −Pi; (115)

all other PBs vanish. The PBs for the manifestly Lorentz-covariant hamiltonians Mµν , Pµ are

those of Eq.(92) with j,k,l,p,q replaced by µ, ν, λ, ρ, σ and δjl by ηµλ etc.

Defining W µ = 1
2ǫ
µνλρMνλPρ ( the Pauli-Lubanski vector), the two independent invariants

of the Ĝ0-action are P 2 ≡ PµPµ and W 2; this can be directly checked from the covariant PBs

mentioned above. For elementary systems, they take values p2I and w2I (where I is the unit
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element of the algebra A); the real-valued quantities p2 and w2 characterize the elementary

systems. It is useful to note that

W 0 = −J.P, W = −HJ + P × K. (116)

We shall restrict ourselves to the cases with p2 ≤ 0 (i.e. pµ non-spacelike) and write

p2 = −m2 (with m ≥ 0). For situations with m > 0 and H and (H + mI) invertible, one can

define the position and spin observables as follows :

X = −1

2
[K,H−1]+ + [mH(H +mI)]−1P ×W (117)

S = −m−1W + [mH(H +mI)]−1W.PP. (118)

The expected PB relations hold :

{Xi,Xj} = 0, {Pi,Xj} = δijI,

{Xi, Sj} = 0 = {Pi, Sj}
{Ji,Xj} = −ǫijkXk, {Ji, Sj} = {Si, Sj} = −ǫijkSk. (119)

We have W 2 = m2S2 and the relations

H2 = P2 +m2I, J = X ×P + S

K = −1

2
[X,H]+ + (H +mI)−1S× P. (120)

Writing |S|2 = s2I (with s ≥ 0), the invariant quantities quantities m (mass) and s (spin)

characterize an elementary system and the fundamental kinematical observables are again

Xj , Pj , Sj(j= 1,2,3).

VI. COUPLED SYSTEMS IN SUPMECH

We shall now consider the interaction of two systems S1 and S2 described individually

as the supmech Hamiltonian systems (A(i), ω(i),H(i)) (i=1,2) and treat the coupled system

S1 + S2 also as a supmech Hamiltonian system. To facilitate this, we must obtain the relevant

mathematical objects for the coupled system.

A. The symplectic form and Poisson bracket on the tensor product of two super-

algebras

The superalgebra corresponding to the coupled system (S1+S2 ) will be taken as the (skew)

tensor product A = A(1) ⊗A(2); its elements are finite sums of tensored pairs :

m∑

j=1

Aj ⊗Bj Aj ∈ A(1), Bj ∈ A(2)

with the multiplication rule

(

m∑

j=1

Aj ⊗Bj)(

n∑

k=1

Ak ⊗Bk) =
∑

j,k

ηBjAk
(AjAk) ⊗ (BjBk). (121)
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The superalgebra A(1) (resp. A(2)) has, in A, an isomorphic copy consisting of the elements

(A⊗I2, A ∈ A(1)) (resp. I1⊗B,B ∈ A(2)) to be denoted as Ã(1) (resp. Ã(2)). Here I1 and I2 are

the unit elements of A(1) and A(2) respectively. We shall also use the notations Ã(1) = A⊗ I2

and B̃(2) = I1 ⊗B.

Derivations and differential forms on A(i) and Ã(i) (i = 1,2) are formally related through

the induced mappings corresponding to the isomorphisms Ξ(i) : A(i) → Ã(i) given by Ξ(1)(A) =

A ⊗ I2 and Ξ(2)(B) = I1 ⊗ B. For example, corresponding to X ∈ SDer(A(1)), we have

X̃(1) = Ξ
(1)
∗ (X) in SDer(Ã(1)) given by [see Eq.(3)]

X̃(1)(Ã(1)) = Ξ
(1)
∗ (X)(Ã(1)) = Ξ(1)[X(A)] = X(A) ⊗ I2. (122)

Similarly, corresponding to Y ∈ SDer(A(2)), we have Ỹ (2) ∈ SDer(Ã(2)) given by Ỹ (2)(B̃2) =

I1 ⊗ Y (B). For the 1-forms α ∈ Ω1(A(1)) and β ∈ Ω1(A(2)), we have α̃(1) ∈ Ω1(Ã(1)) and

β̃(2) ∈ Ω1(Ã(2)) given by [see Eq.(26)]

α̃(1)(X̃(1)) = Ξ(1)[α(((Ξ(1))−1)∗X̃
(1))] = Ξ(1)[α(X)] = α(X) ⊗ I2 (123)

and β̃(2)(Ỹ (2)) = I1 ⊗ β(Y ). Analogous formulas hold for the higher forms.

We can extend the action of the superderivations X̃(1) ∈ SDer(Ã(1)) and Ỹ (2) ∈ SDer(Ã(2))

to Ã(2) and Ã(1) respectively by defining

X̃(1)(B̃(2)) = 0, Ỹ (2)(Ã(1)) = 0 for all A ∈ A(1) and B ∈ A(2). (124)

Note that an X ∈ SDer(A) is determined completely by its action on the subalgebras Ã(1)

and Ã(2) :

X(A⊗B) = X(Ã(1)B̃(2)) = (XÃ(1))B̃(2) + ηXAÃ
(1)X(B̃(2)).

With the extensions described above, we have available to us superderivations belonging to the

span of terms of the form [see Eq.(122)]

X = X(1) ⊗ I2 + I1 ⊗X(2). (125)

Replacing I2 and I1 in Eq.(125) by elements of Z(A(2)) and Z(A(1)) respectively, we again

obtain superderivations of A. We, therefore, have the space of superderivations

[SDer(A(1)) ⊗ Z(A(2))] ⊕ [Z(A(1)) ⊗ SDer(A(2))]. (126)

This space, however, is generally only a Lie sub-superalgebra of SDer(A). For example, for

A(1) = Mm(C) and A(2) = Mn(C), recalling that all the derivations of these matrix algebras

are inner and that their centers consist of scalar multiples of the respective unit matrices ,

we have the (complex) dimensions of SDer(A(1)), and SDer(A(2)) respectively, (m2 − 1) and

(n2 − 1) [so that the dimension of the space (126) is m2 + n2 − 2 ] whereas that of SDer(A) is

(m2n2 − 1).

46



It is instructive to obtain explicit representation(s) for a general derivation of the matrix

algebra A = Mm(C) ⊗Mn(C). We have

[A⊗B,C ⊗D]ir,js = AikBrtCkjDts − CikDrtAkjBts

which gives

[A⊗B,C ⊗D]− = AC ⊗BD − CA⊗DB (127)

= [A,C]− ⊗ 1

2
[B,D]+ +

1

2
[A,C]+ ⊗ [B,D]−. (128)

This gives, in obvious notation,

DA⊗B ≡ [A⊗B, .]− = A.(.) ⊗B.(.) − (.).A ⊗ (.).B (129)

= DA ⊗ JB + JA ⊗DB (130)

where JB is the linear mapping on A(2) given by JB(D) = 1
2 [B,D]+ and a similar expression for

JA as a linear mapping on A(1). Eq.(129) shows that a derivation of the algebra A = A(1)⊗A(2)

need not explicitly contain those of A(i). We shall, however, not get involved in the search for

the most general expression for a derivation of the tensor product algebra A(although such an

expression would be very useful). The expression (130) is more useful for us; it is a special case

of the more general form

X = X1 ⊗ Ψ2 + Ψ1 ⊗X2 (131)

where Xi ∈ SDer(A(i)) (i=1,2) and Ψi : A(i) → A(i) (i =1,2) are linear mappings. Our

constructions below will lead us to the form (131). It is important to note, however, that

an expression of the form (131) (which represents a linear mapping of A into itself) need not

always be a derivation as can be easily checked. We shall impose the condition (1) on such an

expression to obtain a derivation.

To obtain the differential forms and the exterior product on A, the most straightforward

procedure is to obtain the graded differential space (Ω(A), d) as the tensor product [98] of the

graded differential spaces (Ω(A(1)), d1) and (Ω(A(2)), d2). A (homogeneous) differential k-form

on A is of the form (in obvious notation)

αkt =
∑

i+ j = k

r + s = t mod(2)

α
(1)
ir ⊗ α

(2)
js . (132)

The d operation on Ω(A) is given by [here α ∈ Ωp(A(1)) and β ∈ Ω(A(2))]

d(α⊗ β) = (d1α) ⊗ β + (−1)pα⊗ d2β. (133)

Given the symplectic forms ω(i) on A(i) (i=1,2) we shall construct the induced symplectic

form ω on Asatisfying the following conditions :
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(a) It should not depend on anything other than the objects ω(i) and I(i) (i=1,2) [the ‘natural-

ity’/‘canonicality’ assumption for ω (the unit elements are the only distinguished elements of

the algebras being considered)].

(b) The restrictions of ω to Ã(1) and Ã(2) be, respectively, ω(1) ⊗ I2 and I1 ⊗ ω(2).

this determines ω uniquely :

ω = ω(1) ⊗ I2 + I1 ⊗ ω(2). (134)

To verify that it is a symlectic form, we must show that it is (i) closed and (ii) nondegenerate.

Eq.(133) gives

dω = (d1ω
(1)) ⊗ I2 + ω(1) ⊗ d2(I2) + d1(I1) ⊗ ω(2) + I1 ⊗ d2ω

(2) = 0

showing that ω is closed. To show the nondegeneracy of ω, we must show that, given A⊗B ∈ A,

there exists a unique superderivation Y = YA⊗B in SDer(A) such that

iY ω = −d(A⊗B) = −(d1A) ⊗B −A⊗ d2B

= i
Y

(1)
A

ω(1) ⊗B +A⊗ i
Y

(2)
B

ω(2). (135)

where Y
(1)
A and Y

(2)
B are the Hamiltonian superderivations associated with A ∈ A(1) and B ∈

A(2). The structure of Eq.(135) suggests that Y must be of the form [see Eq.(131)]

Y = Y
(1)
A ⊗ Ψ

(2)
B + Ψ

(1)
A ⊗ Y

(2)
B (136)

where the linear mappings Ψ
(1)
A and Ψ

(2)
B satisfy the conditions Ψ

(1)
A (I1) = A and Ψ

(2)
B (I2) = B.

Recalling the discussion after Eq.(131) and Eq.(1) [and denoting the multiplication operators

in A(1),A(2) and A by µ1, µ2 and µ respectively], the condition for Y to be a derivation may

be written as

Y ◦ µ(C ⊗D) − ηY,C⊗Dµ(C ⊗D) ◦ Y = µ(Y (C ⊗D)). (137)

Noting that µ(C ⊗D) = µ1(C) ⊗ µ2(D) , Eq.(137) with Y of Eq.(136) gives

ηBC{[Y (1)
A ◦ µ1(C)] ⊗ [Ψ

(2)
B ◦ µ2(D)] + [Ψ

(1)
A ◦ µ1(C)] ⊗ Y

(2)
B ◦ µ2(D)]}

−(−1)ǫ{[µ1(C) ◦ Y (1)
A ] ⊗ [µ2(D) ◦ Ψ

(2)
B ] + [µ1(C) ◦ Ψ

(1)
A ] ⊗ [µ2(D) ◦ Y (2)

B ]}
= ηBC [µ1({A,C}1) ⊗ µ2(Ψ

(2)
B (D)) + µ1(Ψ

(1)
A (C)) ⊗ µ2({B,D}2)] (138)

where ǫ ≡ ǫAǫC+ǫBǫD+ǫBǫC and we have used the relations Y
(1)
A (C) = {A,C}1 and Y

(2)
B (D) =

{B,D}2.

The objects Y
(1)
A and Y

(2)
B , being superderivations, satisfy relations of the form (1) :

Y
(1)
A ◦ µ1(C) − ηACµ1(C) ◦ Y (1)

A = µ1(Y
(1)
A (C)) = µ1({A,C}1)

Y
(2)
B ◦ µ2(D) − ηBDµ2(D) ◦ Y (2)

B = µ2({B,D}2). (139)
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Putting D = I2 in Eq.(138), we have [noting that µ2(D) = µ2(I2) = id2, the identity mapping

on A(2) and that {B, I2}2 = Y
(2)
B (I2) = 0]

[Y
(1)
A ◦ µ1(C)] ⊗ Ψ

(2)
B + [Ψ

(1)
A ◦ µ1(C)] ⊗ Y

(2)
B

−ηAC{[µ1(C) ◦ Y (1)
A ] ⊗ Ψ

(2)
B + [µ1(C) ◦ Ψ

(1)
A ] ⊗ Y

(2)
B }

= µ1({A,C}1) ⊗ µ2(B) (140)

which, along with equations (139), gives

µ1({A,C}1) ⊗ [Ψ
(2)
B − µ2(B)] =

−[Ψ
(1)
A ◦ µ1(C) − ηACµ1(C) ◦ Ψ

(1)
A ] ⊗ Y

(2)
B . (141)

Similarly, putting C = I1 in Eq.(138), we get

[Ψ
(1)
A − µ1(A)] ⊗ µ2({B,D}2) =

−Y (1)
A ⊗ [Ψ

(2)
B ◦ µ2(D) − ηBDµ2(D) ◦ Ψ

(2)
B ]. (142)

Now, equations (142) and (141) give the relations

Ψ
(1)
A − µ1(A) = λ1Y

(1)
A (143)

Ψ
(2)
B ◦ µ2(D) − ηBDµ2(D) ◦ Ψ

(2)
B = −λ1µ2({B,D}2) (144)

Ψ
(2)
B − µ2(B) = λ2Y

(2)
B (145)

Ψ
(1)
A ◦ µ1(C) − ηACµ1(C) ◦ Ψ

(1)
A = −λ2µ1({A,C}1) (146)

where λ1 and λ2 are complex numbers.

Equations (136), (143) and (145) now give

Y = Y
(1)
A ⊗ [µ2(B) + λ2Y

(2)
B ] + [µ1(A) + λ1Y

(1)
A ] ⊗ Y

(2)
B

= Y
(1)
A ⊗ µ2(B) + µ1(A) ⊗ Y

(2)
B + (λ1 + λ2)Y

(1)
A ⊗ Y

(2)
B . (147)

Note that only the combination (λ1 + λ2) ≡ λ appears in Eq.(147). To have a unique Y, we

must obtain an equation fixing λ in terms of given quantities.

Substituting for Ψ
(1)
A and Ψ

(2)
B from equations (143) and (145) into equations (144) and

(146) and using equations (139), we obtain the equations

λµ1({A,C}1) = −µ1([A,C]) for all A,C ∈ A(1) (148)

λµ2({B,D}2) = −µ2([B,D]) for all B,D ∈ A(2). (149)

We have not one but two equations of the type we have been looking for. This is a signal

for the emergence of nontrivial conditions (for the desired symplectic structure on the tensor

product superalgebra to exist).
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Let us consider the equations (148,149) for the various possible situations (corresponding

to whether or not one or both the superalgebras are super-commutative) :

(i) Let A(1) be supercommutative. Assuming that the PB {, }1 is nontrivial, Eq.(148) implies

that λ = 0. Eq.(149) then implies that A(2) must also be super-commutative. It follows that

(a) when both the superalgebras A(1) and A(2) are super-commutative, the unique Y is given

by Eq.(147) with λ = 0;

(b) a ‘natural’/‘canonical’ symplectic structure does not exist on the tensor product of a super-

commutative and a non-supercommutative superalgebra.

(ii) Let the superalgebra A(1) be non-supercommutative. Eq.(148) then implies that λ 6= 0,

which, along with Eq.(149) implies that the superalgebra A(2) is also non-supercommutative

[which is also expected from (b) above]. Equations (148,149) now give

{A,C}1 = −λ−1[A,C], {B,D}2 = −λ−1[B,D] (150)

which shows that, when both the superalgebras are non-supercommutative, a ‘natural’/‘canonical’

symplectic structure on their (skew) tensor product exists if and only if each superalgebra has

a quantum symplectic structure with the same parameter (−λ), i.e.

ω(1) = −λω(1)
c , ω(2) = −λω(2)

c (151)

where ω
(i)
c (i=1,2) are the canonical symplectic forms on the two superalgebras. The traditional

quantum symplectic structure is obtained with λ = i~.

Note. The two forms ω(i)(i=1,2) of Eq.(151) represent bonafide symplectic structures only

if the superalgebras A(i) (i=1,2) have only inner superderivations (see section III I). More

generally, we can have generalized symplectic superalgebras (A(i),X (i), ω(i)) (i=1,2) where

X (i) = ISDer(A(i)).

In all the permitted cases, the PB on the superalgebra A = A(1) ⊗A(2) is given by

{A⊗B,C ⊗D} = YA⊗B(C ⊗D) = ηBC [{A,C}1 ⊗BD +AC ⊗ {B,D}2

+λ{A,C}1 ⊗ {B,D}2] (152)

where the parameter λ vanishes in the super-commutative case; in the non-supercommutative

case, it is the universal parameter appearing in the symplectic forms (151).

Noting that, in the non-supercommutative case,

λ{A,C}1 ⊗ {B,D}2 = −[A,C] ⊗ {B,D}2 = −{A,C}1 ⊗ [B,D]

= −1

2
[A,C] ⊗ {B,D}2 −

1

2
{A,C}1 ⊗ [B,D], (153)

the PB of Eq.(152) can be written in the more symmetric form

{A⊗B,C ⊗D}
= ηBC [{A,C}1 ⊗ BD+ηBDDB

2 + AC+ηACCA
2 × {B,D}2].

(154)
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Recalling that, for the matrix algebra Mn(C)(n ≥ 2), the Poisson bracket (with the canon-

ical symplectic form) is a commutator, Eq.(128) is a special case of Eq.(154). In fact, had we

employed supermatrices, we would have got exactly Eq.(154) as can be easily verified using the

equation preceding Eq.(127). As shown below, a direct calculation for the tensor product of

two classical algebras of observables also gives results consistent with Eq.(154).

Example [Both algebras commutative]

A(1) = C∞(Rm), A(2) = C∞(Rn); (m,n even).

Let xi and yr be the coordinates on Rm and Rn respectively and let the Poisson brackets on

them be

{f, g}1 = ωij1
∂f

∂xi
∂g

∂xj
; {u, v}2 = ωrs2

∂u

∂yr
∂v

∂ys
.

Let za = (xi, yr) be the coordinates on Rm×Rn = Rm+n. The PB on A(1)⊗A(2) = C∞(Rm+n)

is [putting F (z) ≡ (f ⊗ u)(x, y) = f(x)u(y) and G(z) = g(x)v(y) and choosing the symplectic

form on Rm+n in accordance with Eq.(134)]

{F,G} = ωab
∂F

∂za
∂G

∂zb

= ωij1
∂f

∂xi
∂g

∂xj
uv + ωrs2

∂u

∂yr
∂v

∂ys
fg

= {f, g}1uv + {u, v}2fg, (155)

which is consistent with Eq.(154).

B. Dynamics of coupled systems

Given the individual systems S1 and S2 as the supmech Hamiltonian systems (A(i), ω(i),H(i))

(i = 1,2), the coupled system (S1+S2) is a supmech Hamiltonian system with the system algebra

and symplectic form as discussed above and the Hamiltonian H given by

H = H(1) ⊗ I2 + I1 ⊗H(2) +Hint (156)

where the interaction Hamiltonian is generally of the form

Hint =
n∑

i=1

Fi ⊗Gi. (157)

The evolution (in the Heisenberg type picture) of a typical obsevable A(t) ⊗ B(t) is governed

by the supmech Hamilton’s equation

d

dt
[A(t) ⊗B(t)] = {H,A(t) ⊗B(t)}

= {H(1), A(t)}1 ⊗B(t) +A(t) ⊗ {H(2), B(t)}2

+{Hint, A(t) ⊗B(t)}. (158)
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The last Poisson bracket in this equation can be evaluated using Eq.(152) or (154). When

both the systems are quantum systems, the equations above reduce to those of traditional QM

in the Heisenberg picture and when both are classical, they reduce to those of the classical

Hamiltonian formalism.

(In the Schrödinger type picture) the time evolution of states of the coupled system is given

by the supmech Liouville equation (65) with the Hamiltonian of Eq.(156).

In favorable situations, the supmech Heisenberg or Liouville equations may be written for

finite time intervals by using appropriate exponentiations of operators. We shall be doing

this in section VIII below in which a concrete application of the formalism of this section to

measurements in quantum mechanics will be described.

The main lesson from this section is that all systems in nature whose interaction with other

systems can be talked about must belong to one of the two ‘worlds’ : the ‘commutative world’

in which all system superalgebras must be super-commutative and the ‘noncommutative world’

in which all system superalgebras must be non-supercommutative with a universal quantum

symplectic structure. (There is no restriction on the type of symplectic structure on system

superalgebras in the commutative world.) In view of the familiar inadequacy of the commu-

tative world, the ‘real’ world must clearly be the noncommutative (hence quantum) world; its

systems will be called quantum systems. (This is formalized as axiom A7 in section IX.) The

classical systems with commutative system algebras and traditional symplectic structures will

appear only in the appropriately defined classical limit (or, more generally, in the classical

approximation) of quantum systems.

This brings us on the threshold of an autonomous development of QM.

VII. QUANTUM SYSTEMS, (SUPER-)CLASSICAL SYSTEMS AND QUANTUM-

CLASSICAL CORRESPONDENCE

We start by describing what we call ‘standard quantum systems’ (eventually to be seen as

quantum systems without superselection rules) in purely algebraic terms.

A. Standard quantum systems

By a standard quantum system (SQS) we shall mean a supmech Hamiltonian system (A,S1, ω,H)

in which the system algebra A is special (in the sense of section III I) and has a trivial graded

center and ω is the quantum symplectic form ωQ given by [see Eq.(53)]

ωQ = −i~ωc. (159)

(We have, in the terminology of section III I, the quantum symplectic structure with parameter

b = −i~.) This is the only place where we put the Planck constant ‘by hand’ (obviously the

most natural place to do it); its appearance at all conventional places (canonical commutation

relations, Heisenberg and Schrödinger equations, etc) will be automatic.
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The quantum Poisson bracket implied by the quantum symplectic form is [see Eq.(54)]

{A,B} = (−i~)−1[A,B]. (160)

Recall that the bracket [,] represents a supercommutator; it follows that the bracket on the right

in Eq.(160) is an anticommutator when both A and B are odd/fermionic and a commutator

otherwise.

A quantum canonical transformation is an automorphism Φ of the system algebra A such

that Φ∗ωQ = ωQ. Now

(Φ∗ωQ)(X1,X2) = Φ−1[ωQ(Φ∗X1,Φ∗X2)] (161)

where X1,X2 are inner superderivations, say, DA and DB . We have

(Φ∗DA)(B) = Φ[DA(Φ−1(B)] = Φ([A,Φ−1(B)]) = [Φ(A), B]

which gives

Φ∗DA = DΦ(A). (162)

Eq.(161) now gives

Φ(i[A,B]) = i[Φ(A),Φ(B)] (163)

which shows, quite plausibly, that quantum canonical transformations are (in the present alge-

braic setting — we have not yet come to the Hilbert space) the automorphisms of the system

algebra preserving the quantum PBs.

The evolution of an SQS in time is governed, in the Heisenberg picture, by the supmech

Hamilton’s equation (64) which now becomes the familiar Heisenberg equation of motion

dA(t)

dt
= (−i~)−1[H,A(t)]. (164)

In the Schrödinger picture, the time dependence is carried by the states and the evolution

equation (65) takes the form

dφ(t)

dt
(A) = (−i~)−1φ(t)([H,A]) (165)

which may be called the generalized von Neumann equation.

We shall call two SQSs Σ = (A,S1, ω,H) and Σ′ = (A′,S ′
1, ω

′,H ′) equivalent if they are

equivalent as supmech Hamiltonian systems. (See section IV C.) The main requirement is the

isomorphism of A and A′ as (special) topological algebras; the rest is almost automatic.

Note. In the abstract algebraic framework, the CC condition is to be kept track of. An

advantage, as we shall see below, of the Hilbert space based realization of quantum systems is

that the CC condition is automatically satisfied.
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B. Hilbert space based realizations of standard quantum systems

Recalling the brief treatment of the Schrödinger representation in section III J, it is useful

to introduce the concept of a quantum triple (H,D,A) where H is a complex Hilbert space,

D a dense linear subset of H and A a *-algebra of operators having D as an invariant domain

[which means that D is contained in the domain of each element A of A (and of its adjoint A†)

and is mapped into itself by every such A and A†]. The *-operation on A is defined to be the

restriction of the adjoint operation to D. We shall assume that, for a given A, D is maximal,

i.e. largest such domain. When A is generated by a finite set of fundamental observables

F1, .., Fn, then in the notation of Ref.[51], D = C∞(F1, .., Fn) (i.e. intersection of the domains

of all polynomials in F1, .., Fn).

If, in the quantum triple above, we take A as our system algebra, then its states are given

by the subclass of density operators ρ on H for which |Tr(ρA)| <∞ for all observables A in A;

pure states are the subclass of these consisting of one-dimensional projection operators. In view

of the maximality of D, the latter are precisely the one-dimensional projectors |ψ >< ψ| where

ψ is any normalized element of D (which means that pure states are the unit rays corresponding

to the elements of D).

When the algebra A of the quantum triple above is special, we obtain a Hilbert space

based SQS by choosing the quantum symplectic form as above and an even Hermitian element

H of A as the Hamiltonian. It is clear that, when the choice of Hamiltonian is not under

consideration, a Hilbert space-based SQS is adequately described as a quantum triple with the

algebra A qualified as above.

The CC condition for the pair (O(A),S1) can be explicitly verified for the Hilbert space

based SQSs. :

(i) Given A,B ∈ O(A), and (ψ,Aψ) = (ψ,Bψ) for all normalized ψ in D (hence for all ψ in

D), we have (φ,Aψ) = (φ,Bψ) for all φ,ψ ∈ D, implying A = B. [Hint : Consider the given

equality with the states (φ+ ψ)/
√

2 and (φ+ iψ)/
√

2.]

(ii) Given normalized vectors ψ1, ψ2in D and (ψ1, Aψ1) = (ψ2, Aψ2) for all A ∈ O(A), the equal-

ity ψ1 = ψ2 (upto a phase) can be seen by taking, for A, the projection operators corresponding

to members of an orthonormal basis in H containing ψ1 as a member.

Note. We have implicitly assumed above that all elements of D represent pure states. This

excludes the situations when H is a direct sum of more than one coherent subspaces in the

presence of superselection rules.

An interesting feature of the Hilbert space-based SQSs is that we have density operators

representing states which, being Hermitian operators, are also observables. A density operator

ρφ representing a state φ is the observable corresponding to the property of being in the

state φ. Given two states represented by density operators ρ1 and ρ2, we have the quantity

w12 = Tr(ρ1ρ2) defined (representing the expectation value of the observable ρ1 in the state

ρ2 and and vice versa) which has the natural interpretation of transition probability from one
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of the states to the other (the two are equal because w12 = w21). When ρi = |ψi >< ψi| (i =

1,2) are pure states, we have Tr(ρ1ρ2) = | < ψ1|ψ2 > |2 — the familiar text book expression

for the transition probability between two pure quantum states.

Recall that symmetry operations in supmech (defined in section IV C) involve pairs of

mappings Φ = (Φ1,Φ2) such that Φ1 is a canonical transformation on the system algebra and

Φ2 = [Φ̃1]
−1 is a transformation on states such that when both the mappings are applied, the

expectation values are preserved. In a Hilbert space-based SQS, a symmetry operation must

preserve transition probabilities (the condition defining a symmetry in Wigner’s treatment [99]

of symmetries in QM). Recalling Wigner’s theorem (leading to implementation of quantum

symmetries by unitary or antiunitary operators) and the fact that a symmetry operation on

the system algebra of an SQS must be an automorphism of the algebra, we see that, while uni-

tary transformations (mapping D onto itself – only these are permitted to represent quantum

symmetries in our formalism) are genuine symmetry operations, the antiunitary transforma-

tions are not.

A symmetry implemented (in the unimodal sense, as defined in section IV C) by a unitary

operator U acts on a state vector ψ ∈ D according to ψ → ψ′ = Uψ and (when its action is

transferred to operators) on an operator A ∈ A according to A→ A′ such that, for φ,ψ ∈ D,

(φ′, Aψ′) = (φ,A′ψ) ⇒ A′ = U−1AU. (166)

For an infinitesimal unitary transformation U ≃ I+ iǫG where G is an even, Hermitian element

of A [this follows from the condition (Uφ,Uψ) = (φ,ψ) for all φ,ψ ∈ D]. Considering the

transformation A→ A′ in Eq.(166) as a quantum canonical transformation, generated (through

PBs) by an element T ∈ A, we have

δA = −iǫ[G,A] = ǫ{T,A} (167)

giving

T = −i(−i~)G = −~G (168)

and

U ≃ I − i
ǫ

~
T. (169)

It is the appearance of ~ in Eq(169) which is responsible for the appearance of the Planck

constant at almost all conventional places in QM.

The quantum canonical transformation representing evolution in time of an SQS is im-

plemented on the state vectors by a one-parameter family of unitary operators [in the form

ψ(t) = U(t− s)ψ(s)] generated by the Hamiltonian operator H : U(ǫ) ≃ I− i ǫ
~
H. This gives, in

the Schrödinger picture, the Schrödinger equation for the evolution of pure states of a Hilbert

space based SQS :

i~
dψ(t)

dt
= Hψ(t). (170)
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In the Heisenberg picture, we have, of course, the Heisenberg equation of motion (164), which

is now an operator equation.

Quantum triples provide a natural setting for a mathematically rigorous development of the

Dirac bra-ket formalism [100]. The essence of this formalism lies in generalizing the orthogonal

expansions in a Hilbert space to include integrals over ‘generalized eigenvectors’ (Fourier trans-

forms, for example). This becomes necessary when some observables of interest have (partly

or wholly) continuous spectrum. The appropriate formalism for this is provided by a ‘rigged

Hilbert space’ (or Gel’fand triple) [101]; the latter appears as a natural development once a

pair (H,D) consisting of a Hilbert space H and a dense linear subset D in it is given.

Given a dense domain D in H, one can define the *-algebra L+(D) (in the notation of

Lassner [52]) of all operators A such that both A and A† are defined on D and map D into

itself; the *-operation on L+(D) is given by A∗ = A†|D. A unital *-subalgebra of L+(D) is

called an Op∗-algebra. The algebra A of our quantum triple is clearly an Op∗-algebra. [If,

instead of choosing A first and then constructing D, we had chosen D first and then proceeded

to choose A, then the natural/simplest choice of A would be L+(D).]

On D, a locally convex topology t is defined by the seminorms ‖.‖A given by

‖ψ‖A = ‖Aψ‖, A ∈ L+(D); (171)

we denote the resulting locally convex topological vector space by D[t]. Let D′[t′] be the dual

space of D[t] with the strong topology [102] t′ (it is defined by the seminorms

pB(φ) = supψ∈B | < φ,ψ > |

for all bounded subsetsB of D. Then the Gelfand triple

D[t] ⊂ H ⊂ D′[t′]

constitutes the canonical rigged Hilbert space [52] based on the pair (H,D). The space D′[t′]

( the space of continuous linear functionals or distributions on the test function space D[t]) is

the space of bra vectors of Dirac. The space of kets is the space D× of continuous antilinear

functionals on D[t]. [An element χ ∈ H defines a continuous linear functional Fχ and an

antilinear functional Kχ on H (hence on D) given by Fχ(ψ) = (χ,ψ) and Kχ(ψ) = (ψ,χ); both

the bra and ket spaces, therefore, have H as a subset.]

A Hermitian operator A (=A∗) in L+(D) which admits a unique self adjoint extension in

H ( often called ‘essentially self adjoint’) and is cyclic [i.e. there exists a vector ψ in D such

that the vectors P (A)ψ where P(A) is a polynomial in A are dense in H] has complete sets

of generalized eigenvectors [eigenkets {|λ >;λ ∈ σ(A), the spectrum of A } and eigenbras

{< λ|;λ ∈ σ(A)}] :

A|λ >= λ|λ >; < λ|A = λ < λ|;
∫

σ(A)
dµ(λ)|λ >< λ| = I (172)
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where I is the unit operator in H and µ is a unique measure on σ(A). These equations are to

be understood in the sense that, for all φ,ψ ∈ D,

< φ|A|λ >= λ < φ|λ >; < λ|A|φ >= λ < λ|φ >;
∫

σ(A)
dµ(λ) < φ|λ >< λ|ψ >=< φ|ψ > .

The last equation implies the expansion

|ψ >=

∫

σ(A)
dµ(λ)|λ >< λ|ψ > .

More generally, one has complete sets of generalized eigenvectors associated with complete sets

of commuting observables. For more details on the mathematically rigorous development of

the bra-ket formalism, we refer to the literature [103-106].

C. Inevitability of the Hilbert space

Having shown the advantages of a Hilbert space-based realization of a standard quantum

system, we now proceed to consider the existence and inevitability of such a realization.

Given an (abstract) SQS Σ = (A,S1, ω,H), by a Hilbert space realization of it we mean an

SQS Σ̂ = (Â, Ŝ1, ω̂, Ĥ) of the type treated in the previous subsection which is equivalent to Σ

as a supmech Hamiltonian system. This amounts to constructing a quantum triple (H,D, Â)

in which the algebra Â is isomorphic, as a topological algebra, to the system algebra A and

choosing D to be maximal (in the sense of section VII B). Elements of D then provide pure

states such that the observables (i.e. the Hermitian elements of Â) and pure states satisfy the

CC condition; moreover, once Â has been obtained (as a special algebra isomorphic to A),

construction of ω̂ and Ĥ is automatic.

From the above definition it is clear that, such a realization, if it exists, is unique upto

equivalence.

Mathematically we have the problem of obtaining a faithful irreducible *-representation

of the *-algebra A. Good references for the treatment of relevant mathematical concepts are

Powers [107] and Dubin and Hennings [51]. By a *-representation of a *-algebra A we mean a

triple (H,D, π) where H is a (separable) Hilbert space, D a dense linear subset of H and π a

*-homomorphism of A into the operator algebra L+(D) (defined earlier) satisfying the relation

(χ, π(A)ψ) = (π(A∗)χ,ψ) for all A ∈ A and χ,ψ ∈ D.

We shall build up our arguments such that no new assumptions will be involved in going

from the abstract algebraic setting to the Hilbert space setting; emergence of the Hilbert space

formalism will be automatic.

To this end, we shall exploit the fact that the CC condition guarantees the existence of

plenty of (pure) states of the algebra A. Given a state φ on A, a standard way to obtain a

representation of A is to employ the so-called GNS construction. Some essential points related

to this construction are given below :
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(i) Noting that the given algebra A is itself a complex vector space, one tries to define a scalar

product on it using the state φ, the obvious choice being (A,B) = φ(A∗B). This, however, is

prevented from being positive definite if the set

Lφ = {A ∈ A;φ(A∗A) = 0}

(which can be shown to be a left ideal of A) has nonzero elements in it. On the quotient space

D(0)
φ = A/Lφ, the object

([A], [B]) = φ(A∗B) (173)

is a well defined scalar product. Here [A] = A+Lφ denotes the equivalence class of A in D(0)
φ.

(ii) One then completes the inner product space (D(0)
φ , (, )) to obtain the Hilbert space Hφ; it

is guaranteed to be separable by the separability of the topological algebra A.

(iii) One defines a representation π
(0)
φ of A on the pair (Hφ,D(0)

φ ) by

π
(0)
φ (A)[B] = [AB]; (174)

it can be easily checked to be a well defined *-representation.

(iv) The operators π
(0)
φ (A) induce a topology on D(0)

φ [see Eq.(171)]; the completion Dφ of D(0)
φ

in this topology acts as the common invariant domain for the operators πφ(A) (where πφ is the

closure of the representation π
(0)
φ ).

(v) The original state φ is represented as a vector state in the representations π
(0)
φ and πφ by

the vector χφ = [I] (the equivalence class of the unit element of A); indeed, we have, from

Eq.(173),

φ(A) = ([I], [A]) = ([I], π
(0)
φ (A)[I])

= (χφ, π
(0)
φ (A)χφ) = (χφ, πφ(A)χφ). (175)

(vi) The triple (Hφ,Dφ, πφ) satisfying Eq.(175), referred to as the GNS representation of A in-

duced by the state φ [ some authors refer to the triple (Hφ,D(0)
φ , π

(0)
φ ) as the GNS representation

of A], is determined uniquely, up to unitary equivalence, by the state φ.

(vii) The representation πφ of A is irreducible if and only if the state φ is pure.

This construction, however, does not completely solve our problem because a GNS repre-

sentation is generally not faithful; for all A ∈ Lφ, we have obviously πφ(A) = 0. [For example,

a state with zero expectation value for the kinetic energy of a particle will yield a GNS repre-

sentation which will represent the momentum observable of the particle by the zero operator.]

Note. The GNS representation is faithful if the state φ is faithful (i.e. if Lφ = {0}). Such a

state, however, is not guaranteed to exist by our postulates.

A faithful but generally reducible representation of A can be obtained by taking the direct

sum of the representations of the above sort corresponding to all the pure states φ. (For the

construction of the direct sum of a possibly uncountable set of Hilbert spaces, see Ref.[108].)

58



Let K be the Cartesian product of the Hilbert spaces {Hφ : φ ∈ S1(A)}. A general element

ψ of K is a collection {ψφ : φ ∈ S1(A)}; here ψφ is called the component of ψ in Hφ. The

desired Hilbert space H consists of those elements ψ in K which have an at most countable set

of nonzero components ψφ satisfying the condition

∑

φ

‖ψφ‖2
Hφ

<∞.

The scalar product in H is given by

(ψ,ψ′) =
∑

φ

(ψφ, ψ
′
φ)Hφ

.

The direct sum of the representations {(Hφ,Dφ, πφ);φ ∈ S1(A)} is the representation (H,D, π)

where H is as above, D is the subset of H consisting of vectors ψ with ψφ ∈ Dφ for all φ ∈ S1(A)

and, for any A ∈ A,

π(A)ψ = {πφ(A)ψφ;φ ∈ S1(A)}.

Now, given any two different elements A1, A2 in A, let φ0 be a pure state (guaranteed to

exist by the CC condition) such that φ0(A1) 6= φ0(A2). Let ψ0 ∈ H be the vector with the

single nonzero component χφ0 . For any A ∈ A, we have

(ψ0, π(A)ψ0) = (χφ0 , πφ0(A)χφ0) = φ0(A).

This implies

(ψ0, π(A1)ψ0) 6= (ψ0, π(A2)ψ0), hence π(A1) 6= π(A2)

showing that the representation (H,D, π) is faithful.

The Hilbert space H obtained above may be non-separable (even if the spaces Hφ are

separable); this is because the set S1(A) is generally uncountable. To obtain a faithful rep-

resentation of A on a separable Hilbert space, we shall use again the separability of A as a

topological algebra. Let A0 = {A1, A2, A3, ...}be a countable dense subset of A consisting of

nonzero elements. The CC condition allows us to find pure states φj (j=1,2,...) such that

φj(A
∗
jAj) 6= 0, j = 1, 2, ... (176)

Now consider the GNS representations (Hφj
,Dφj

, πφj
) (j=1,2,...). Eq.(176) guarantees that

πφj
(Aj) 6= 0, j = 1, 2, ... (177)

Indeed

0 6= φj(A
∗
jAj) = (χφj

, πφj
(A∗

jAj)χφj
)

= (πφj
(Aj)χφj

, πφj
(Aj)χφj

).

Now consider the direct sum (H′,D′, π′) of these representations. To show that π′ is faithful,

we must show that, for any nonzero element A of A, π′(A) 6= 0. This is guaranteed by Eq.(177)

because, A0 being dense in A, A can be arranged to be as close as we like to some Aj in A0.
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The representation π′, however, is in general reducible. To obtain a faithful irreducible rep-

resentation, we should try to obtain the relations π(Aj) 6= 0 (j= 1,2,..) in a single representation

π. To this end, let B(k) = A1A2...Ak and choose φ(k) ∈ S1(A) such that

φ(k)(B(k)∗B(k)) 6= 0.

In the GNS representation (Hφ(k) ,Dφ(k) , πφ(k)), we have

0 6= πφ(k)(B(k)) = πφ(k)(A1)...πφ(k)(Ak)

which implies

πφ(k)(Aj) 6= 0, j = 1, ..., k. (178)

This argument works for arbitrarily large but finite k. If the k → ∞ limit of the above

construction leading to a limiting GNS representation (H,D, π) exists, giving

π(Aj) 6= 0, j = 1, 2, ..., (179)

then, by an argument similar to that for π′ above, one must have π(A) 6= 0 for all non-zero A

in A showing faithfulness of π.

Note. (i) For finitely generated system algebras (this covers all applications of QM in atomic

physics), a limiting construction is not needed; the validity of Eq.(178) for sufficiently large k

is adequate. [Hint : Take the generators of the algebra A as elements of A0.]

(ii) For general algebras, it appears that some extra condition is needed to arrive at a faithful

irreducible representation.

(iii) The developments in this subsection did not require the algebra A to be special; the

results obtained are, therefore, valid for more general quantum systems. We shall use this fact

in section VII E.

(iv) In fact, even non-commutativity of the algebra A was not used above. This, however, is not

surprising; commutative algebras, under fairly general conditions, can be realized as algebras

of operators in Hilbert spaces.

A more complete treatment of these matters is intended to be presented when the treatment

of quantum field theory in an appropriately augmented supmech framework is taken up.

Having shown the existence and desirability of the Hilbert space-based realizations for

finitely generated system algebras, we now have a formal justification for the direct route to

the Hilbert space taken in the traditional treatment of QM of localizable elementary systems

(massive particles), namely, employment of irreducible unitary representations of the effective

relativity group Ĝ0 (or, equivalently, projective unitary representations of the relativity group

G0). This is the simplest way to satisfy the condition of transitive action of Ĝ0 on the space

of pure states and simultaneously satisfy the CC condition.

We take up the QM of these objects in the next subsection.
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D. Quantum mechanics of localizable elementary systems (massive particles)

A quantum elementary system is an SQS which is also an elementary system. The concept of

a quantum elementary system, therefore, combines the concept of quantum symplectic structure

with that of a relativity scheme. The basic entities relating to an elementary system are

its fundamental observables which generate the system algebra A. For quantum elementary

systems, this algebra A has the quantum symplectic structure as described in subsection A

above. All the developments in section V can now proceed with the PBs understood as quantum

PBs. We shall employ the Hilbert space-based realizations of these systems.

The effective relativity group Ĝ0 has a Poisson action on A and a transitive action on

the set S1(A) of pure states of A. We have seen in section VII B that, in a Hilbert space

based realization of an SQS in terms of a quantum triple (H,D,A), a symmetry operation

can be represented as a unitary operator on H mapping D onto itself. A symmetry group

is then realized as a unitary representation on H such that the representative operators map

D onto itself. For an elementary system the condition of transitive action on S1 implies that

this representation must be irreducible.(There is no contradiction between this requirement and

that of invariance of D because D is not a closed subspace of H when H is infinite dimensional.)

By a (quantum) particle we shall mean a localizable (quantum) elementary system. We

shall first consider nonrelativistic particles. The configuration space of a nonrelativistic particle

is the 3-dimensional Euclidean space R3. The fundamental observables for such a system

were identified, in section V B, as the mass (m) and Cartesian components of position (Xj),

momentum (Pj) and spin(Sj) (j = 1,2,3) satisfying the PB relations in equations (107,108,102).

The mass m will be treated, as before, as a positive parameter. The system algebra A of the

particle is the *-algebra generated by the fundamental observables (taken as hermitian) and

the unit element. Since it is an ordinary *-algebra (i.e. one not having any fermionic objects),

the supercommutators reduce to ordinary commutators. The PBs mentioned above now take

the form of the commutation relations

[Xj ,Xk] = 0 = [Pj , Pk], [Xj , Pk] = i~δjkI (A)

[Sj, Sk] = i~ǫjklSl, [Sj,Xk] = 0 = [Sj, Pk]. (B) (180)

We shall first consider the spinless particles (S = 0). We, therefore, need to consider only

the Heisenberg comutation relations (180A)[often referred to as the canonical commutation

relations(CCR)]. Assuming the existence of a quantum triple (H,D, Â) corresponding to this

SQS, we shall employ some results obtained in section VII B to obtain the explicit construction.

Here Â is the algebra generated by (representatives of) the fundamental observables Xj , Pj (j

= 1,2,3) and the unit element I subject to the commutation relations (180A) and the pair

(H,D) carries a faithful irreducible representation of the system algebra as explained above.

We introduce the bra and ket spaces as in section VII B. Let x = (x1, x2, x3), dx = dx1dx2dx3

and |x >,< x| the simultaneous eigenkets and eigenbras of the operators Xj (j= 1,2,3):

Xj |x > = xj|x >, < x|Xj = < x|xj , xj ∈ R, j = 1, 2, 3; (181)
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they are assumed (with a promise of justification later) to form a complete set providing a

resolution of identity in the form

I =

∫

R3

|x > dx < x|. (182)

Given any vector |ψ >∈ D, the corresponding wave function ψ(x) =< x|ψ > must satisfy the

relation

(Xjψ)(x) =< x|Xj |ψ >= xjψ(x). (183)

Recalling the discussion of localization in section IV G, the localization observable P(D)

corresponding to a Borel set D in R3 is represented as the operator

P (D) =

∫

D
|x > dx < x|. (184)

[The required properties of P(D) are easily verified.] Given the particle in the state |ψ >∈ D,

the probability that it will be found in the domain D is given by

< ψ|P (D)|ψ >=

∫

D
< ψ|x > dx < x|ψ >=

∫

D
|ψ(x)|2dx (185)

giving the traditional Born interpretation of the wave function ψ. The integral above is mean-

ingful for all Borel sets D only if ψ is square integrable over R3 which implies H = L2(R3, dx).

To determine the operators Pj, we must choose the unitary operators U(a) representing

space translations such that the infinitesimal generators satisfy the last two equations in (180A).

The simplest choice for U(a), namely,

[U(a)ψ](x) = ψ(x− a)

[which is a special case of of the relation [U(g)ψ](x) = ψ(T−1
g x); these operators are unitary

when the transformation Tg preserves the Lebesgue measure on R3] happens to be adequate.

Recalling Eq.(169), we have, for an infinitesimal translation,

δψ = − i

~
a.Pψ = −a.▽ψ

giving the operators Pj representing momentum components as

(Pjψ)(x) = −i~ ∂ψ
∂xj

(186)

which satisfy the desired commutation relations.

We now identify the space D as [51]

D = C∞(Xj , Pj ; j = 1, 2, 3) = S(R3).

The operators U(a) clearly map this domain onto itself. With this choice of D, the operators

Xj and Pj given by equations (183) and (186) are essentially self adjoint. The two triples of

62



operators {Xj} and {Pj} separately constitute complete sets of commuting operators. The

completeness of the Xjs can be easily seen by (operating in the X-representation and) taking

the harmonic oscillator ground state wave function as the cyclic vector. Similar argument

works for the Pjs in the momentum representation. This confirms the legitimacy of the Dirac

constructions employed above.

The pair (H,D) = (L2(R3),S(R3)) with operators Xj and Pj as constructed above is known

as the Schrödinger representation of the CCR (180A).

Closures of the operators Pj ,Xj (which are self adjoint and are denoted by the same sym-

bols) generate the unitary groups of operators U(a) = exp(−ia.P ) and V (b) = exp(−ib.X)

(where a.P =
∑

j ajPj etc. and we have put ~ = 1.) which satisfy the Weyl commutation

relations

U(a)U(b) = U(b)U(a) = U(a+ b), V (a)V (b) = V (b)V (a) = V (a+ b)

U(a)V (b) = eia.bV (b)U(a). (187)

For all ψ ∈ D, we have

(U(a)ψ)(x) = ψ(x− a), (V (b)ψ)(x) = e−ib.xψ(x); (188)

this is referred to as the Schrödinger representation of the Weyl commutation relations. Ac-

cording to the uniqueness theorem [47] of von Neumann, the irreducible representation of the

Weyl commutation relations is, upto unitary equivalence, uniquely given by the Schrödinger

representation (188).

Note. (i) Not every representation of the CCR (180A) with essentially self adjoint Xj and Pj

gives a representation of the Weyl commutation relation. [For a counterexample, see Ref.[53],

example (4.3.3).] A necessary and sufficient condition for the latter to materialize is that the

harmonic oscillator Hamiltonian operator H = P 2/(2m)+kX2/2 be essentially self adjoint. In

the Schrödinger representation of the CCR obtained above, this condition is satisfied [14,51].

(ii) The von Neumann uniqueness theorem serves to confirm/verify, in the present case, the

uniqueness (up to equivalence) of the Hilbert space realization of an SQS mentioned in section

VII B.

Quantum dynamics of a free nonrelativistic spinless particle is governed, in the Schrödinger

picture, by the Schrödinger equation (170) with ψ ∈ D = S(R3) and with the Hamiltonian

(110)[where P is now the operator in Eq.(186)]:

i~
∂ψ

∂t
= − ~

2

2m
▽2 ψ (189)

Explicit construction of the projective unitary representation of the Galilean group G0 in the

Hilbert space H = L2(R3, dx) and Galilean covariance of the free particle Schrödinger equation

(189) have been treated in the literature [109,47,110].
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When external forces are acting, the Hamiltonian operator has the more general form (111).

Restricting V in this equation to a function of X only (as is the case in common applications),

we thus obtain the traditional Schrödinger equation

i~
∂ψ

∂t
= [− ~

2

2m
▽2 +V (X)]ψ. (190)

Note. In Ref.[2], the free particle Hamiltonian operator of Eq.(127)(there) was arrived at by

direct reasoning from the commutation relations of the projective Galilean group. (This has

some instruction value.) Here we have used essentially similar reasoning to arrive at the free

particle Hamiltonian of Eq.(108) in the more general context of supmech. In Ref.[2], the full

Hamiltonian of Eq.(128)(there) has V(X) [instead of the V(X,P) of Eq.(109) above]. This is due

to a mistake in the last stage of the argument there (which occurred while using the relation

[H ′,Xk] = 0 which need not be valid when interactions are present.)

It should be noted that, in the process of obtaining the Schrödinger equation (190) for

a nonrelativistic spinless particle with the traditional Hamiltonian operator, we did not use

the classical Hamiltonian or Lagrangian for the particle. No quantization algorithm has been

employed; the development of the quantum mechanical formalism has been autonomous, as

promised.

From this point on, the development of QM along the traditional lines can proceed.

For nonrelativistic particles with m > 0 and s ≥ 0, we have H = L2(R3, C2s+1) and

D = S(R3, C2s+1). The treatment of spin being standard, we skip the details.

Relativistic elementary quantum systems have been treated extensively in literature [96,111,47,88a,97].

These treatments employ projective irreducible representations of the Poincaré group which can

be obtained from the irreducible unitary representations of its covering group. The justification

for this already has been given in the supmech formalism in the last para of section VII C. We

shall skip the details.

E. Quantum systems with more general system algebras; Superselection rules

Now we consider general quantum systems which, as already defined in section VI B,

are those with (not necessarily special) non-supercommutative system algebras equipped with

quantum symplectic structure. Standard quantum systems are the subclass of these in which

the system algebra A has a trivial graded center and only inner superderivations. We shall now

relax these two conditions. On a noncommutative (super-)algebra A having a trivial graded

center but having both inner and outer (super-)derivations, a quantum symplectic structure

can be defined by employing the generalization of the supmech formalism treated in section IV

F and operate with the generalized symplectic superalgebra (A,X , ωQ) where X= ISDer(A)

(this gives, again, the quantum PBs of section VII A). For convenience of reference, we shall

call this class of systems quasi-standard quantum systems.

We next consider the generalization involving a nontrivial graded center. We shall restrict

ourselves to considering a nontrivial center only. The center C ≡ Z0(A) of A is a commutative
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locally convex algebra. Keeping in view that a faithful (not necessarily irreducible) Hilbert

space-based realization of the superalgebra A is always possible, we shall operate, in this

subsection, in the framework of a quantum triple (H,D, Â) where Â is a faithful realization of

A.

A nontrivial center C implies the presence of superselection rules and/or external fields.

The two are, in fact, related : values of the external fields define superselection rules. Before

taking up the general case, we consider a couple of illustrative situations :

(i) Consider first the situation when C is generated by a finite number of self-adjoint operators

Qs (s=1,..,n) each of which has a discrete spectrum (we shall call such observables charge type

observables). In this case, we have H = ⊕iHi where the spaces Hi are simultaneous eigenspaces

of the observables Qs. Defining Di = D | Hi and Ai = A | Hi, the algebras Ai have trivial

center and the quantum triples (Hi,Di,Ai) correspond to quasi-standard quantum systems; the

operators Qs act as superselection operators and the spaces Hi as coherent subspaces labeled

by the set of eigenvalues of the superselection operators.

(ii) Functions representing (components of) external fields belong to the commutative algebra of

functions on the space-time manifold; in the relevant situations, this algebra obviously belongs

to the center of the system algebra.

Regarding the general situation, we note that generalizations of the famous Gel’fand-

Năimark theorem on commutative C∗-algebras [9] to some classes of commutative locally

convex *-algebras have appeared in literature [59,112]. These generalizations relate (through

isomorphisms or, more generally, homomorphisms) the latter algebras to those of continuous

functions on reasonably ‘nice’ classes of topological spaces (typically Tychonoff spaces [112]);

these topological spaces will be referred to as the spectral spaces of the respective algebras.

In the above-mentioned Hilbert space-based realization, the center C will be represented as a

commutative algebra of operators with D as a common invariant domain. Generalization of

the spectral theorem to commutative algebras of operators leads to a representation of H as a

direct integral

H =

∫ ⊕

Σ
H(λ)dσ(λ) (191)

where Σ is the spectral space of C and σ is a measure uniquely determined by the algebra C.

Defining D(λ) and Â(λ) as the restrictions of D and Â to H(λ), we have the quantum triples

(H(λ),D(λ), Â(λ)) representing quasi-standard quantum systems. The Hilbert spaces H(λ)

are traditionally referred to as coherent subspaces.

Generally the space Σ will be disconnected; the integral (191) will then reduce to a sum of

integrals of the same type over the connected pieces of Σ. The examples (i) and (ii) above cor-

respond to the two extreme situations when the space Σ is, respectively, discrete and connected

(in the latter case a space-time domain).

An important class of examples corresponds to the situation when there are one or more

mutually commuting operators with continuous spectra defining superselection rules. The mass
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operator of a Galilean particle is a good example. Had we not invoked, in section V B, the

CC condition to have M = mI and had treated the mass observable M simply as an element

of the center C (thereby making the latter non-trivial), we could not have treated the system

in question as a standard quantum system. Instead, we would have the situation in Eq.(191)

with λ replaced by the mass parameter m and and Σ an interval of the form [a,∞) with a > 0.

Galilean relativity provides no clue to the value of a; it may tentatively be taken to be the

mass of the least massive among the positive mass particles in nature.

A more systematic treatment of the general case is expected to be presented in a future

work relating to a supmech-based treatment of quantum field theory.

Before closing this subsection, it is worth emphasizing that

(i) in the present formalism, there is a natural place for superselection rules, and

(ii) the superselection rules arising as described above are commutative — a highly desirable

feature.

For a somewhat complementary treatment of matters related to this subsection, we refer

to the insightful paper of Jauch and Misra [113].

F. Classical Systems

Continuing the treatment, in section III H, of classical symplectic structures as special cases

of the symplectic structures of section III F, we note here that a classical Hamiltonian system

(M,ωcl,Hcl) is realized in supmech as the Hamiltonian system (Acl, ωcl,Hcl) where Acl =

C∞(M) andHcl a smooth real-valued function which is bounded below. The supmech Hamilton

equation (64) is, in the present context, nothing but the traditional Hamilton equation:

df

dt
= {Hcl, f}cl. (192)

States in the present context are probability measures on M; in obvious notation, they are

of the form

φµ(f) =

∫

M
fdµ. (193)

Pure states are Dirac measures (or, equivalently, points of M) µξ0(ξ0 ∈M) for which φξ0(f) =

f(ξ0). The pair (O(Acl),S1(Acl)) of classical observables and pure states is easily seen to satisfy

the CC condition : Given two different real-valued smooth functions on M, there is a point of

M at which they take different values; conversely, given two different points of M, there is a

real-valued smooth function on M which takes different values at those points.

In ordinary mechanics, only pure states are used. Expectation values of all observables

in these states are their precise values at the relevant points and the theory is deterministic

(obtained here as a special case of a probabilistic theory). More general states are employed

in classical statistical mechanics where, in most applications, they are taken to be represented

by densities on M [dµ = ρ(ξ)dξ where dξ = dqdp is the Liouville volume element on M].
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The state evolution equation (65) of supmech gives, in the present context

∫

M
(
∂ρ(ξ, t)

∂t
)(ξ)f(ξ)dξ =

∫

M
ρ(ξ, t){H, f}cl(ξ)dξ. (194)

For the remainder of this subsection, we take M = R2n . To satisfy the normalization condition,

the density ρ must vanish at infinity. Now, using Eq.(46) for the Poisson bracket in Eq.(194),

performing a partial integration and discarding the (vanishing) surface term, the right hand

side of Eq.(194) becomes

−
∫

M
ωabcl (ξ)

∂H

∂ξa
∂ρ

∂ξb
fdξ =

∫

M
{ρ,H}clfdξ.

Since f is arbitrary, Eq.(194) now gives the traditional Liouville equation

∂ρ

∂t
= {ρ,H}cl. (195)

A classical Galilean elementary system is a system characterized/labelled by the three

Galilean invariants m,s,u. Its fundamental observables other than the invariants are the po-

sition, momentum and spin vectors X,P,S satisfying the PB relations of section VB (where

the symbols now represent phase space variables). The observable X has the interpretation of

the position vector of the center of mass of the system. A particle is an elementary system

with the internal energy u = 0 and negligible size so that X now refers to the particle posi-

tion. The free particle Hamiltonian for for a spinless particle is given by Eq.(110) and the one

with interaction in Eq.(111). For a detailed treatment of classical Galilean systems we refer

to the literature [85,88]. The treatment of classical spin in the framework of sphere S2 as the

symplectic manifold may be found in [94].

G. Superclasical systems

Superclassical mechanics is an extension of classical mechanics which employs, besides the

traditional phase space variables, Grassmann variables θα(α = 1, ..n, say) satisfying the rela-

tions

θαθβ + θβθα = 0 for all α, β;

[in particular (θα)2 = 0 for all α]. These objects generate the so -called Grassmann algebra

(with n generators) Gn whose elements are functions of the form

f(θ) = a0 + aαθ
α + aαβθ

βθα + ... (196)

where the coefficients a.. are complex numbers. If the coefficients in Eq.(196) are taken to

be smooth functions on, say, Rm, the resulting functions f(x, θ) are referred to as smooth

functions on the superspace Rm|n; the algebra of these functions is denoted as C∞(Rm|n).

With parity zero assigned to the variables xa (a = 1,..,m) and one to the θα, C∞(Rm|n) is

a supercommutative superalgebra. Restricting the variables xa to an open subset U of Rm,
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one obtains the superdomain Um|n and the superalgebra C∞(Um|n) in the above-mentioned

sense. Gluing such superdomains appropriately, one obtains the objects called supermanifolds

[72,71,114,115]. These are the objects serving as phase spaces in superclassical mechanics.

We shall, for simplicity, restrict ourselves to the simplest supermanifolds Rm|n and take, for

the development of supermechanics in the present context, A = C∞(Rm|n). The ‘coordinate

variables’ xa, θα will be jointly referred to as ξA. We shall write ǫ(ξA) = ǫA. A *-operation is

assumed to be defined on A for which (ξA)∗ = ξA.

It is useful to define left and right differentiations with respect to the odd variables as

follows (the subscripts l and r refer to left and right)

∂l
∂θα

(θα1 ..θαs) = δα1
α θα2..θαs − δα2

α θα1θα3..θαs + ..

(−1)s−1δαs
α θα1 ..θαs−1 (197)

∂r
∂θα

(θα1..θαs) = δαs
α θα1..θαs−1 − δαs−1

α θα1 ..θαs−2θαs + ..

(−1)s−1δα1
α θα2 ..θαs (198)

and extend by linearity to general elements of A. Taking

∂lf

∂xa
=
∂rf

∂xa
≡ ∂f

∂xa
,

we now have left and right derivatives with respect to ξA defined on A. Defining

Ae =
∂l
∂ξA

, eA =
∂r
∂ξA

we have, for any two homogeneous elements f,g of A,

Ae(fg) = (Aef)g + (−1)ǫf ǫAf(Aeg);

eA(fg) = f(eAg) + (−1)ǫgǫA(eAf)g. (199)

The objects Ae (but not eA) are superderivations of the superalgebra A. A general element of

SDer(A) (called a supervectorfield) is of the form

X = XA(ξ) Ae = eA
AX(ξ). (200)

The differential of a function f ∈ A can be written as

df = dξA
∂lf

∂ξA
=
∂rf

∂ξA
dξA (201)

where dξA are symbols serving as basis vectors in the space of 1-forms. We have

∂rf

∂ξA
= (−1)ǫA(ǫf +ǫA) ∂lf

∂ξA
. (202)
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A general 1-form ω(1) and a 2-form ω(2) can be written as

ω(1) = ω
(1)
A dξA = dξA Aω

(1) (203)

ω(2) = ω
(2)
ABdξ

BdξA = dξBdξA ABω = dξA AωBdξ
B . (204)

Note that, when A,B are odd, ω
(2)
AB = ω

(2)
BA. It follows that, the odd dimension n (in Rm|n) need

not be an even number for a symplectic form to exist; the number m must, of course, be even.

Given a symplectic form ω on A, we have, for any f ∈ A,

ω(Xf , Y ) = −(df)(Y ) (205)

where Xf is the Hamiltonian supervector field corresponding to f and Y ∈ SDer(A). Since ω

is even, Equations (204,205) give (writing f,A for ∂rf
∂ξA )

XA
f AωB = −f,B . (206)

On Rm|n, the symplectic form can be chosen so that the coefficients AωB are independent of ξ.

Assuming this and introducing the inverse (AωB) of the matrix (AωB) : AωB
BωC = δCA , we

have

XA
f = −f,B BωA. (207)

The Poisson bracket of f, g ∈ A is

{f, g} = Xf (g) = XA
f

∂lg

∂ξA
= − ∂rf

∂ξB
BωA

∂lg

∂ξA
. (208)

The dynamics is governed by the supmech Hamilton equation (64) with H an even Hermitian

element of A and the Poisson bracket of Eq.(208).

States in superclassical mechanics are linear functionals on A = C∞(Rm|n); they are gen-

eralizations of the states (193) given by

φ(f) =

∫

Rm|n

f(x, θ)dµ(x, θ) (209)

where the measure µ satisfies the normalization and positivity conditions

1 = φ(1) =

∫
dµ(x, θ) (210)

0 ≤
∫
ff∗dµ for all f ∈ A. (211)

In the rest of this subsection, we shall consider only states represented by a density function :

dµ(x, θ) = ρ(x, θ)dθ1...dθndmx. (212)
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To ensure real expectation values for observables, ρ(., .) must be even(odd) for n even(odd).

The condition (210) implies that

ρ(x, θ) = ρ0(x)θ
n...θ1 + terms of lower order in θ (213)

where ρ0 is a probability density on Rm.

The inequality (211) implies inequalities involving the coefficient functions on the right in

Eq.(213). They eventually determine a convex domain D in a real vector space. Pure states

correspond to points on the boundary of D (which is generally not a manifold).

The CC condition is, unfortunately not generally satisfied by the pair (O(A),S1(A)) in

super-classical mechanics. To show this, it is adequate to give an example [71]. Taking A =

C∞(R0|3) ≡ G3, we have

ρ(θ) = θ3θ2θ1 + cαθ
α. (214)

The inequality (211) with f = aθ1 + bθ2 (with a and b arbitrary complex numbers) implies

c3 = 0; similarly, c1 = c2 = 0, giving, finally

ρ(θ) = θ3θ2θ1. (215)

There is only one possible state which must be pure. This state does not distinguish, for

example, observables f = a + bθ1θ2 with the same ‘a’ but different ‘b’, thus verifying the

assertion made above.

The fermionic extension of classical mechanics, therefore, appears to have a fundamental

inadequacy [at least when the states are restricted as in Eq.(212)]; no wonder, therefore, that

it is not realized by systems in nature.

The argument presented above, however, does not apply to the n = ∞ case.

H. Quantum-Classical Correspondence

In this subsection, it will be shown that supmech permits a transparent treatment of quantum-

classical correspondence satisfying the criteria laid down in the introduction. In contrast to

the general practice in this domain, we shall, in our treatment, be careful about the domains

of operators and avoid some usual pitfalls in the treatment of the ~ → 0 limit.

Our strategy will be to start with a quantum Hamiltonian system, transform it to an

isomorphic supmech Hamiltonian system involving phase space functions and ⋆-products (Weyl-

Wigner-Moyal formalism [116-118]) and show that, in this latter Hamiltonian system, the

subclass of phase space functions in the system algebra which go over to smooth functions

in the ~ → 0 limit yield the corresponding classical Hamiltonian system. For simplicity, we

restrict ourselves to the case of a spinless nonrelativistic particle though the results obtained

admit trivial generalization to systems with phase space R2n.

In the existing literature, the works on quantum-classical correspondence closest to the

present treatment are those of Ref.[119-121]; some results from these works, especially Liu[119]
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are used below. Ref.[122] is a comprehensive work reporting on some detailed features of

quantum-classical correspondence employing some techniques of noncommutative geometry;

its theme, however, is very different from ours.

In the case at hand, we have the quantum triple (H,D,A) where H = L2(R3),D = S(R3)

and A is the algebra of the spinless Galilean particle treated in section VII D as a standard

quantum system. As in Eq.(190), we shall take the potential function V to be a function of X

only. For A ∈ A and φ,ψ normalized elements in D, we have the well defined quantity

(φ,Aψ) =

∫ ∫
φ∗(y)KA(y, y′)ψ(y′)dydy′ (216)

where the kernel KA is a (tempered) distribution. Recalling the definition of Wigner function

[117,123] corresponding to the wave function ψ :

Wψ(x, p) =

∫

R3

exp[−ip.y/~]ψ(x +
y

2
)ψ∗(x− y

2
)dy (217)

and defining the quantity AW (x, p) by

AW (x, p) =

∫
exp[−ip.y/~]KA(x+

y

2
, x− y

2
)dy (218)

(note that Wψ is nothing but the quantity PW where P is the projection operator |ψ >< ψ|
corresponding to ψ) we have

(ψ,Aψ) =

∫ ∫
AW (x, p)Wψ(x, p)dxdp. (219)

Whereas the kernels KA are distributions, the objects AW are well defined functions. For

example,

A = I : KA(y, y′) = δ(y − y′) AW (x, p) = 1

A = Xj : KA(y, y′) = yjδ(y − y′) AW (x, p) = xj

A = Pj : KA(y, y′) = −i~ ∂

∂yj
δ(y − y′) AW (x, p) = pj .

The Wigner functions Wψ are generally well-behaved functions. We shall use Eq.(219)

to characterize the class of functions AW and call them Wigner-Schwartz integrable (WSI)

functions [i.e. functions integrable with respect to the Wigner functions corresponding to the

Schwartz functions in the sense of Eq.(217)]. For the relation of this class to an appropriate class

of symbols in the theory of pseudodifferential operators, we refer to Wong [123] and references

therein.

The operator A can be reconstructed (as an element of A) from the function AW :

(φ,Aψ) =

(2π~)−3

∫ ∫ ∫
exp[ip.(x− y)/~]φ∗(x)AW (

x+ y

2
, p)ψ(y)dpdxdy.

(220)

71



Replacing, on the right hand side of Eq.(217), the quantity ψ(x+ y
2 )ψ∗(x− y

2 ) by Kρ(x+
y
2 , x− y

2 ) where Kρ(., .) is the kernel of the density operator ρ, we obtain the Wigner function

ρW (x, p) corresponding to ρ. Eq.(219) then goes over to the more general equation

Tr(Aρ) =

∫ ∫
AW (x, p)ρW (x, p)dxdp. (221)

The Wigner function ρW is real but generally not non-negative.

Introducing, in R6, the notations ξ = (x,p), dξ = dxdp and σ(ξ, ξ
′
) = p.x

′ − x.p
′

(the

symplectic form in R6 ), we have, for A,B ∈ A

(AB)W (ξ) = (2π)−6

∫ ∫
exp[−iσ(ξ − η, τ)]AW (η +

~τ

4
).

.BW (η − ~τ

4
)dηdτ

≡ (AW ⋆ BW )(ξ). (222)

The product ⋆ of Eq.(222) is the twisted product of Liu [119] and the ⋆- product of Bayen

et al [124]. The associativity condition A(BC) = (AB)C implies the corresponding condition

AW ⋆ (BW ⋆ CW ) = (AW ⋆ BW ) ⋆ CW in the space AW of WSI functions which is a complex

associative non-commutative, unital *-algebra (with the star-product as product and complex

conjugation as involution). There is an isomorphism between the two star-algebras A and AW

as can be verified from equations (220) and (218).

Recalling that, in the quantum Hamiltonian system (A, ωQ,H) the form ωQ is fixed by the

algebraic structure of A and noting that, for the Hamiltonian H of Eq.(111)[with V = V(X)],

HW (x, p) =
p2

2m
+ V (x), (223)

we have an isomorphism between the supmech Hamiltonian systems (A, ωQ,H) and (AW , ωW ,HW )

where ωW = −i~ωc. Under this isomorphism, the quantum mechanical PB (160) is mapped to

the Moyal bracket [119]

{AW , BW}M ≡ (−i~)−1(AW ⋆ BW −BW ⋆ AW ). (224)

For functions f,g in AW which are smooth and such that f(ξ) and g(ξ) have no ~−dependence,

we have, from Eq.(222),

f ⋆ g = fg − (i~/2){f, g}cl +O(~2). (225)

The functions AW (ξ) will have, in general, some ~ dependence and the ~ → 0 limit may be

singular for some of them [125]. We denote by (AW )reg the subclass of functions in AW whose

~ → 0 limits exist and are smooth (i. e. C∞ ) functions; moreover, we demand that the

Moyal bracket of every pair of functions in this subclass also have smooth limits. This class is

easily seen to be a subalgebra of AW closed under Moyal brackets. Now, given two functions

AW and BW in this class, if AW → Acl and BW → Bcl as ~ → 0 then AW ⋆ BW → AclBcl;
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the subalgebra (AW )reg, therefore, goes over, in the ~ → 0 limit , to a subalgebra Acl of the

commutative algebra C∞(R6) (with pointwise product as multiplication). The Moyal bracket

of Eq.(224) goes over to the classical PB {Acl, Bcl}cl; the subalgebra Acl, therefore, is closed

under the classical Poisson brackets. The classical PB {, }cl determines the nondegenerate

classical symplectic form ωcl. When HW ∈ (AW )reg[which is the case for the HW of Eq.(223)],

the subsystem (AW , ωW ,HW )reg goes over to the supmech Hamiltonian system (Acl, ωcl,Hcl).

When the ~ → 0 limits of AW and ρW on the right hand side of Eq.(221) exist (call them

Acl and ρcl), we have

Tr(Aρ) →
∫ ∫

Acl(x, p)ρcl(x, p)dxdp. (226)

The quantity ρcl must be non-negative (and, therefore, a genuine density function). To see

this, note that the ~ → 0 limit preserves products and conjugation and, therefore, maps non-

negative operators to non-negative functions. Now if, in Eq.(226), A is a non-negative operator,

the left hand side is non-negative for an arbitrarily small value of ~ and, therefore, the limiting

value on the right hand side must also be non-negative. This will prove the non-negativity of

ρcl if the objects Acl in Eq.(226) realizable as classical limits constitute a dense set of non-

negative functions in C∞(M). This class is easily seen to include non-negative polynomials;

good enough.

In situations where the ~ → 0 limit of the time derivative equals the time derivative of

the classical limit [i.e. we have A(t) → Acl(t) and dA(t)
dt → dAcl(t)

dt ], the Heisenberg equation

of motion for A(t) goes over to the classical Hamilton’s equation for Acl(t). With a similar

proviso, one obtains the classical Liouville equation for ρcl as the classical limit of the von

Neumann equation.

Before closing this section, we briefly discuss an interesting point :

For commutative algebras, the inner derivations vanish and one can have only outer deriva-

tions. Classical mechanics employs a subclass of such algebras (those of functions on manifolds).

It is an interesting contrast to note that, while the standard quantum systems have system al-

gebras with only inner derivations, classical system algebras have only outer derivations. The

deeper significance of this is related to the fact that the noncommutativity of standard quantum

algebras is tied to the nonvanishing of the Planck constant ~. [This is seen most transparently

in the star product of Eq.(222) above.] In the limit ~ → 0, the algebra becomes commutative

(the star product of functions reduces to ordinary product)and the inner derivations become

outer derivations (commutators go over to classical Poisson brackets implying that an inner

derivation DA goes over to the Hamiltonian vector field XAcl
).

VIII. MEASUREMENTS IN QUANTUM MECHANICS

In this section we shall employ the formalism of section VI B to the treatment of measure-

ments in QM taking both the measured system and the apparatus to be quantum systems. We

shall, however, not adopt the von Neumann procedure [42,19] of introducing vector states for
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the pointer positions (which is the basic cause of all problems in the quantum measurement

theory). Instead we shall assign density operators to the pointer states and exploit the fact

that the apparatus admits a classical description to a very good approximation. We shall do

this by using the phase space description of the QM of the apparatus (the Weyl-Wigner-Moyal

formalism) and then go to the classical approximation (exploiting the fact that supmech ac-

commodates both classical and quantum mechanics as special subdisciplines). The undesirable

macroscopic superpositions (of system + apparatus pure states), whose presence in the von

Neumann type treatments constitutes the measurement problem, are shown to be suppressed

when observations on the apparatus are restricted to macroscopically distinguishable pointer

readings.

We shall start by putting the measurement problem in proper perspective.

A. The measurement problem in quantum mchanics

A measurement is an activity in which a system [about which some information is desired —

to be called the ‘measured system’ (denoted here as S); it may be microscopic or macroscopic],

prepared in a specified state, is made to interact with a (generally macroscopic) system called

the ‘apparatus’ (denoted here as A) so as to eventually produce a phenomenon accessible

through sensory perception (typically a pointer reading) or a permanent record (which may

be noted at convenience). The pointer reading or record (the ‘measurement outcome’) is a

numerical value which is interpreted (by employing an underlying theory and some common

sense logic formalizable in terms of classical physics) as the value of some physical quantity

(an observable). Thus one can talk about measurement of an observable of a system (when the

system is in a given state).

In quantum theoretic treatments, a value of an observable (a self-adjoint operator) is un-

derstood to be a real number in its spectrum [24, p.115]. Supmech events of the type ν(E) of

section IV A can be associated with domains in the spectrum of an observable A by employing

the resolution of identity (172) corresponding to A [so that Ω = σ(A)] :

ν(∆) =

∫

∆
dµ(λ)|λ >< λ| (227)

where ∆ is a measurable subset of Ω = σ(A). These ν(∆)s should, more appropriately, be

called quantum events. We have already used objects of the form (227) [see Eq.(184)]. Given

a state φ in which the system S is prepared, we have, recalling Eq.(56),

pφ(∆) = φ(ν(∆)) (228)

as the probability that, on measurement of the observable A, its value will be found in the

domain ∆. These probabilities are the predictions of the underlying theory. Verification of

the theory consists in comparing these probabilities with the appropriate relative frequencies

in repeated measurements.

We consider, for simplicity, the measurement of an observable (of a quantum system S)

represented by a self-adjoint operator F (acting in an appropriate domain in the Hilbert space
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HS of S) having a nondegenerate spectrum with the eigenvalue equations F |ψj >= λj|ψj >
(j = 1,2,...). The apparatus A is chosen such that, to each of the eigenvalues λj corresponds

a pointer position Mj . If the system is initially in an eigenstate |ψj >, the apparatus is

supposedly designed to give, after the measurement interaction, the pointer reading Mj ; the

outcome of the measurement is then understood as λj. A question immediately arises : ‘What

is the measurement outcome when the initial state of the system S is a superposition state

|ψ >=
∑

j cj |ψj > ?’ The theory is expected to provide a clear answer. To find the answer, we

must consider the dynamics of the coupled system (S + A) with an appropriate measurement

interaction.

The standard treatment of measurements in QM [42,19,46,24,126] is due to von Neumann

who emphasized that quantum mechanics being, supposedly, a universally applicable theory,

every system is basically quantum mechanical; to have a consistent theory of measurement, we

must, therefore, treat the apparatus A also quantum mechanically. Accordingly, one introduces

a Hilbert space HA for the apparatus A; the pointer positions Mj are assumed to be represented

by the state vectors |µj > in this space. The Hilbert space for the coupled system (S + A) is

taken to be H = HS ⊗HA.

The measurement interaction is elegantly described [24,126] by a unitary operator U on

H which, acting on the initial state of (S+A) (with the system S in the initial state in which

it is prepared for the experiment and the apparatus in the ‘ready’ state which we denote

as |µ0 >) gives an appropriate final state. We shall assume the measurement to be ideal

which is supposedly such that [127] ‘when the measured system is initially in an eigenstate

of the measured observable, the measurement leaves it in the same state.’ In this case, the

measurement outcome must be the corresponding eigenvalue which must be indicated by the

final pointer position. This implies

U(|ψj > ⊗|µ0 >) = |ψj > ⊗|µj > . (229)

For S in the initial state |ψ >=
∑
cj |ψj >, the final (S + A)- state must be, by linearity of U,

|Ψf >≡ U [(
∑

j

cj |ψj >) ⊗ |µ0 >] =
∑

j

cj [|ψj > ⊗|µj >]. (230)

Note that the right hand side of Eq.(218) is a superposition of the quantum states of the

(generally macroscopic) system (S + A).

Experimentally, however, one does not observe such superpositions. Instead, one obtains, in

each measurement, a definite outcome λj corresponding to the final (S + A)-state |ψj > ⊗|µj >.

To account for this, von Neumann postulated that, after the operation of the measurement

interaction as above, a discontinuous, noncausal and instantaneous process takes place which

changes the state |Ψf > to the state represented by the density operator

ρf =
∑

i

P̃i|Ψf >< Ψf |P̃i (231)

=
∑

j

|cj |2[|ψj >< ψj| ⊗ |µj >< µj|] (232)
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with P̃i = |ψi >< ψi| ⊗ IA where IA is the identity operator on HA. This is referred to as von

Neumann’s projection postulate and the phenomenon with the above process as the underlying

process the state vector reduction or wave function collapse. Eq.(232) represents, in the von

Neumann scheme, the (S +A)-state on the completion of the measurement. It represents an

ensemble of (S + A)-systems in which a fraction pj = |cj |2 appears in the j the product state

in the summand. With the projection postulate incorporated, the von Neumann formalism,

therefore, predicts that, in a measurement with the system S initially in the superposition state

as above,

(i) the measured values of the observable F are the random numbers λj with respective prob-

abilities |cj |2;
(ii) when the measurement outcome is λj , the final state of the system is |ψj >.

Both the predictions are in complete accord with experiment.

The main problem with the treatment of a quantum measurement given above is the ad-

hoc nature of the reduction postulate. Moreover, having to invoke a discontinuous, acausal

and instantaneous process is a very unpleasant feature of the formalism. The so-called mea-

surement problem in QM is essentially the problem of explaining the final state (232) without

introducing anything ad-hoc in the theoretical treatment. This means that one should either

give a convincing dynamical explanation of the reduction process or else circumvent it.

A serious attempt to solve this problem within the framework of traditional QM invokes the

interaction of the system (S + A) with the environment which results in a rapid suppression of

the interference terms in the quantity ζ ≡ |Ψf >< Ψf |− ρf (environment-induced decoherence

[25]). A critical evaluation of this approach, however, shows [128,129,126] that it does not

really solve the problem. In the decoherence formalism, the reduced density opertor of (S + A)

is obtained by taking trace (over the environment E) of the density operator of the system(S

+ A + E). Zurek [130] interprets this as ignoring the uncontrolled and unmeasured degrees of

freedom. This is supposed to be taken as similar to the procedure of deriving the probability

1/2 for ‘heads’ as well as ‘tails’ in the experiment of tossing a fair coin by averaging over the

uncontrolled and unmeasured degrees of freedom of the environment of the coin.

The two procedures are, however, substantially different [128]. In the coin toss experiment,

when, ignoring the environment, we claim that the probability of getting ‘heads’ in a particular

toss of the coin is 1/2, we can also claim that we do, in fact, get either ‘heads’ or ‘tails’

on each particular toss. A definite outcome can be predicted if we take into consideration

appropriate environmental parameters and details of initial conditions of the throw. In the

case of a quantum measurement (as treated in the decoherence formalism), however, we cannot

claim that, taking the environment into consideration, a definite outcome of the experiment

will be predicted. In fact, taking the environment into account will give us back a troublesome

equation of the form of Eq.(230) [with ‘A’ replaced by ‘A + E ’] which is obtained in a von

Neumann type treatment of the system (S + A + E).

In the (relative state)/(many worlds) interpretation [131] of QM, one takes the view that

Eq.(230) is the final outcome of the measurement. In this view, this equation is to be interpreted
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as a splitting of the state vector of (S + A) into various branches (often called the Everett

branches) only one of which we observe. This approach is very uneconomical and intuitively

unappealing. Moreover, the so-called preferred basis problem [25,126] which arises in the

von Neumann treatment remains unsolved in this approach. For a discussion of some recent

attempts to justify this approach, see [132] and references therein.

An approach which offers an appealing solution of the measurement problem is Bohmian

mechanics [133,22,134,135]. In this approach, the complete specification of state of a sys-

tem involves, besides the wave function ψ(q, t) (which is promoted to the status of a physical

field associated with the system), the functions qα(t) describing the configuration space tra-

jectory of the system. The wave function ψ(q, t) serves as a guidance field for the (highly

non-Newtonian) motion of the system point in the configuration space [essentially analogous to

the way the Hamilton - Jacobi function S(q,t) serves, in classical mechanics, as a guidance field

for the motion of the system point in configuration space]. The functions qα(t) serve as ‘hidden

variables’. They serve to pick up unique outcomes in measurement situations. [At any time t,

q(t) has a definite value. At the end of a measurement, the system trajectory is expected to be

in only one of the various configuration space domains corresponding to the different outcomes

in the superposition (230).] Born rule probabilities emerge for the observer who cannot access

the additional information contained in q(t).

This approach, however, has problems of its own. It has serious problems in the relativistic

domain and quantum field theory. Moreover, the physics of the ψ field has some unappeal-

ing/unconvincing aspects (which relate to its supposedly being a physical field; for example, it

influences particle motion, but is not influenced by it).

Besides the above mentioned attempts, there are others, notably, the dynamical collapse

models [136-142] which involve significant modifications of quantum mechanics. The unitary

evolution of traditional QM is replaced by a stochastic unitary one :

dψ(t) = (Adt +BdWt)ψ(t)

whereWt is a Wiener process and A and B are suitably chosen operators. Heuristically, the idea

is that, quantum mechanics may be modified by a low level universal noise, akin to Brownian

motion (possibly arising from physics at the Planck scale) which, in certain situations, causes

reduction of the state vector. This approach has some successes but cannot be claimed to have

successfully replaced the traditional QM.

The problem really lies with the assignment of pure states to the pointer positions in the

quantum theoretic treatment of the apparatus in the von Neumann approach. An apparatus is

a quantum system admitting a classical description to a very good approximation. A straight-

forward quantum theoretic treatment should employ density operators corresponding to the

various pointer positions which, in the phase space description (in the Weyl-Wigner-Moyal

formalism), are approximated well by appropriate classical phase space densities. Pure states

correspond to a special subclass of density operators (those of the form |ψ >< ψ|) and one

should give justification for employing them; no such justification is given in the traditional
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von Neumann treatment.

We shall see below that a straightforward treatment along the above-mentioned lines is

adequate. The von Neumann reduction will be seen as the prescription for taking into con-

sideration the fact that observations relating to the apparatus are restricted to observing the

macroscopically distinguishable pointer positions; the collapsed final (S+A)-state will be seen

to emerge as the effective final state of an observationally constrained system.

B. Supmech treatment of a quantum measurement

We shall now treat the (S +A) system in the supmech framework of section VI B treating

both, the system S and the apparatus A, as quantum Hamiltonian systems. Given the two

quantum triples (HS ,DS ,AS) and (HA,DA,AA) corresponding to S and A, the quantum triple

corresponding to (S+A) is (HS ⊗HA,DS ⊗DA,AS ⊗AA).

Two important points about the apparatus are :

(i) the observations relating to it are restricted to the pointer positions Mj;

(ii) different pointer positions are macroscopically distinguishable.

These points will play a crucial role in our treatment below.

A general pointer observable for A is of the form

J =
∑

j

bjPj (233)

where Pj is the projection operator onto the space of states in HA corresponding to the pointer

position Mj (considered as an apparatus property; for a detailed treatment of the relationship

between classical properties and quantum mechanical projectors, see Omnes[24,128] and refer-

ences therein) and bjs are real numbers such that bj 6= bk for j 6= k. The phase space function

PWj corresponding to the projector Pj is supposedly approximated well by a function P clj on

the phase space Γ of the apparatus A (the ~ → 0 limit of PWj ). Now, in Γ, there must be

non-overlapping domains Dj corresponding to the pointer positions Mj. In view of the point

(i) above, different points in a single domain Dj are not distinguished by the experiment. We

can, therefore, take P clj to be proportional to the characteristic function χDj
of the domain

Dj ; it follows that the phase space function JW corresponding to the operator J above is

approximated well by the classical pointer observable

Jcl =
∑

j

b′jχDj
(234)

where b′js have properties similar to the bjs above.

The pointer states φ
(A)
j corresponding to the pointer positions Mj are density operators of

the form (constant)Pj ; the phase space functions corresponding to these states are approxi-

mated well by the classical phase space density functions ρclj = V (Dj)
−1χDj

where V(D) is the

phase space volume of the domain D. [Note. If V (Dj) is infinite, one can treat ρclj as a function

on Γ which vanishes outside Dj and varies very slowly in Dj .]

78



We shall take Hint = F⊗K (absorbing the coupling constant in K) where F is the measured

quantum observable and K is a suitably chosen apparatus variable J. We shall make the usual

assumption that, during the measurement interaction, Hint is the dominant part of the total

Hamiltonian (H ≃ Hint). The unitary operator U of subsection A describing the measurement

interaction in the von Neumann scheme must now be replaced by the measurement operator

in supmech [which implements the appropriate canonical transformation on the states of the

(S +A) system] given by M ≡ exp[τ ∂̃H ] where τ = tf − ti is the time interval of measurement

interaction and ∂̃H is the evolution generator in the supmech Liouville equation (65) [it is the

transpose of the operator ∂H , the evolution generator in Eq.(64)].

Assuming, again, that the measurement is ideal and denoting the ‘ready state’ of the ap-

paratus by φ
(A)
0 , we have the following analogue of Eq.(229):

M(|ψj >< ψj| × φ
(A)
0 ) = |ψj >< ψj | × φ

(A)
j . (235)

When the system is initially in the superposition state |ψ > as above, the initial and final

(S+A)- states are

Φin = |ψ >< ψ| × φ
(A)
0 ; Φf = M(Φin). (236)

Note that the ‘ready’ state may or may not correspond to one of the pointer readings. (In a

voltage type measurement,it does; in the Stern-Gerlach experiment with spin half particles, it

does not.) For the assignment of the Γ-domain to the ‘ready’ state, the proper interpretation

(which covers both the situations above) of the ready state is ‘not being in any of the (other)

pointer states’. Accordingly, we assign, to this state, the domain

D̃0 ≡ Γ − ∪j 6=0Dj (237)

where the condition j 6= 0 on the right is to be ignored when the ‘ready’ state is not a pointer

state.

The final state expected on applying the von Neumann reduction is [the analogue of the

state (232) above]

Φ′
f =

∑

j

|cj |2[|ψj >< ψj | × φ
(A)
j ]

= M




∑

j

|cj |2[|ψj >< ψj | × φ
(A)
0 ]


 (238)

where we have used the fact that, in supmech, a canonical transformation on states preserves

convex combinations.

Recalling the apparatus feature (i) above, we shall now show Eq.(238) to be the effective

final states of observationally constrained system (S+A). We shall show that, for a general

system observable A and a pointer observable J, the expectation values of the observable A⊗J
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in the states Φf and Φ′
f are equal (to a very good approximation). We, therefore, look for the

vanishing of the quantity

W ≡ (Φf − Φ′
f )(A⊗ J) = M(R)(A⊗ J)

where

R = [
∑

j 6=k

c∗kcj|ψj >< ψk|] × φ
(A)
0 .

[Note that R is not an (S +A)-state; here M has been implicitly extended by linearity to the

dual space of the algebra AS ⊗AA.] Transposing the M operation to the observables, we have

W = R[exp(τ∂H)(A⊗ J)]

=

∫

Γ
dΓρ

(A)W
0

∑

j 6=k

c∗kcj < ψk|exp(τ∂H′)(A⊗ JW )|ψj > (239)

where we have adopted the phase space description of the QM of the apparatus, dΓ is the

phase space volume element, ρ
(A)W
0 is the Wigner function corresponding to the state φ

(A)
0 and

H ′ = F ⊗KW . (The subscript W of section VII H has been replaced by a superscript here.)

Using equations (154) and (224), we have

∂H′(A⊗ JW ) = {F ⊗KW , A⊗ JW }

= (−i~)−1

(
[F,A] ⊗ KW ∗ JW + JW ∗KW

2

+
FA+AF

2
⊗ (KW ∗ JW − JW ∗KW )

)
. (240)

Given the fact that the apparatus is well described classically, we have KW ≃ Kcl and JW ≃ Jcl

to a very good approximation. This gives

∂H′(A⊗ JW ) ≃ (−i~)KclJcl[F,A]

which, in turn, implies

< ψk|exp(τ∂H ′)(A⊗ JW )|ψj >≃ exp[
i

~
(λk − λj)K

clτ ]Jcl < ψk|A|ψj >

We now have, replacing ρ
(A)W
0 by its classical approximation ρ

(A)cl
0 ,

W ≃
∫

D̃0

dΓρ
(A)cl
0

∑

j 6=k

c∗kcjexp[
i

~
(λk − λj)K

clτ ]Jcl < ψk|A|ψj > . (241)

Let

< Kcl >0≡
∫

D̃0

Kclρ(A)cldΓ (242)
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(the mean value of Kcl in the domain D̃0) Putting Kcl =< Kcl >0 s, taking s to be one of the

integration variables and writing dΓ = dsdΓ′, we have

W ≃
∫

D̃0

dsdΓ′ρ
(A)cl
0

∑

j 6=k

c∗kcjexp[
i

~
ηjks]J

cl < ψk|A|ψj > (243)

where

ηjk = (λk − λj) < Kcl >0 τ. (244)

Note that s is a real dimensionless variable with domain of integration of order unit length.

We shall now argue that, for j 6= k,

|ηjk| >> ~. (245)

(This is not obvious; when F is a component of spin, for example, the λs are scalar multiples

of ~.) To this end, we invoke the apparatus feature (ii) above. A fairly straightforward way of

formulating a criterion for macroscopic distinguishability of different pointer positions would

be to identify a quantity of the dimension of action which could be taken to characterize the

physical separation between two different pointer positions and show that its magnitude is much

larger than ~. The objects ηjk (for j 6= k)are quantities of this type. The inequality (244) then

follows from the assumed macroscopic distinguishability of different pointer positions. Another,

essentially equivalent, way of seeing this is to treat Eq.(244) as the time-energy uncertainty

inequality |∆E∆t| >> ~ where ∆t = τ and ∆E is the difference between the energy values

corresponding to the apparatus locations in two different domains Dj and Dk in Γ. Recalling

that H ≃ Hint during the relevant time interval, we have ∆E ≃ (λk − λj) < Kcl >0.

The large fluctuations implied by Eq.(244) wipe out the integral above giving W ≃ 0 as

desired. This completes the derivation of the von Neumann reduction rule. The derivation

makes it clear as to the sense this reduction rule should be understood : it is a prescription for

obtaining the effective final state of the observationally constrained (S + A) system.

Eq.(243), followed by the reasoning above, represents, in a live form, the operation of

environment-induced decoherence. To see this, note that, the domain D̃0 may be taken to

represent the internal environment [127] of the apparatus. With this understanding, the mech-

anism wiping out the unwanted quantum interference terms is, indeed, the environment-induced

decoherence. In the treatment presented here (in which the apparatus is ‘respectfully’ treated as

a system), this mechanism becomes automatically operative. (Even the external environment

can be trivially included by merely saying that the system A above represents ‘the apparatus

and its environment’.)

In the next subsection, we shall illustrate the operation of the formalism developed above

in a concrete situation.

C. Example : the Stern-Gerlach experiment
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As an illustration, we consider the Stern-Gerlach experiment [21,24,143] with, say, silver

atoms (which means spin s = 1
2 ). A collimated beam of (unpolarized) silver atoms is made

to pass through inhomogeneous magnetic field after which the beam splits into two beams

corresponding to atoms with Sz = ±~

2 . The spin and magnetic moment operators of an atom

are S = ~

2σ and µ = gS (where g is the magnetogyric ratio). Let the magnetic field be

B(r) = B(z)e3 (in obvious notation). (Refinements [144] introduced to ensure the condition

▽.B = 0 do not affect the essential results obtained below.) We have

Hint = −µ.B = −gB(z)S3. (246)

The force on an atom, according to Ehrenfest’s theorem, is

F = −▽ < −µ.B >= g
dB(z)

dz
< S3 > e3 (247)

where the average is taken in the quantum state of the atom. During the experiment, the

internal state of the atom remains unchanged (to a very good approximation); only its center

of mass r and spin S have significant dynamics. In this experiment, S3 is the measured quantum

observable and r acts as the operative apparatus variable.

Let us assume that the beam initially moves in the positive x-direction, the pole pieces are

located in the region x1 ≤ x ≤ x2 and the detectors located in the plane x = x3 > x2 (one

each in the regions z > 0 and z < 0; these regions contain the emergent beams of silver atoms

corresponding, respectively, to S3 = +~

2 and S3 = −~

2 ). We have, in the notation used above,

F = S3 and K = - g B(z). Assuming the experiment to start when the beam reaches at x = x1,

the phase space of the apparatus is

Γ = {(x, y, z, px, py, pz) ∈ R6;x ≥ x1, ∗} (248)

where * indicates the restriction that, for x1 ≤ x ≤ x2, the space available for the movement

of atoms is the one between the two pole pieces. For the order of magnitude calculation below,

we shall ignore the shape of the pole pieces and take * to imply z1 ≤ z ≤ z2.

The domains D1 and D2 corresponding to the two pointer positions are

D1 = {(x, y, z, px, py, pz) ∈ Γ;x > x2, pz > 0}
D2 = {(x, y, z, px, py, pz) ∈ Γ;x > x2, pz < 0};

the domain D̃0 = Γ − (D1 ∪D2). For simplicity, let us take B(z) = b0 + b1z where b0 and b1

are constants. For j 6= k, we have λj − λk = ±~. The relevant integral is [see Eq.(243) above]

I =

∫ z2

z1

dz(...)exp[± i

~
µb1zτ ] (249)

where µ = g~. Putting z = (z2−z1)u, the new integration variable u is a dimensionless variable

taking values in a domain of length of order one. The quantity of interest is

|η| = µ|b1|(z2 − z1)τ. (250)
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According to the data in Ref.[143] and Ref.[145, problem 4.6], we have (vx is the x- component

of velocity of the silver atom)

|b1| ∼ |dB
dz

| ∼ 105 gauss/cm

z2 − z1 ≃ 1mm, vx ∼ 500 m/sec

x2 − x1 = 3cm, x3 − x2 = 20 cm

This gives

τ ∼ x3 − x1

vx
∼ 5 × 10−4sec.

Denoting the Bohr magneton by µb and putting µ ∼ µb ≃ 0.9 × 10−20 erg/gauss, we have

|η| ∼ 10−19erg-sec. With ~ ≃ 1.1× 10−27 erg-sec, we have, finally (|η|/~) ∼ 108, confirming the

strong suppression of the undesirable quantum interferences.

IX. AXIOMS

We shall now write down a set of axioms covering the work presented in the preceding

sections. Before the statement of axioms, a few points are in order :

(i) These axioms are meant to be provisional; the ‘final’ axioms will, hopefully, be formulated

(not necessarily by the present author) after a reasonably satisfactory treatment of quantum

theory of fields and space-time geometry in the spirit of the present work has been given.

(ii) The terms ‘system’, ‘observation’, ‘experiment’ and a few other ‘commonly used’ terms will

be assumed to be understood. The term ‘relativity scheme’ employed below will be understood

to have its meaning as explained in section V A.

(iii) The ‘universe’ will be understood as the largest possible observable system containing

every other observable system as a subsystem.

(iv) By an experimentally accessible system we shall mean one whose ‘identical’ (for all practical

purposes) copies are reasonably freely available for repeated trials of an experiment. Note that

the universe and its ‘large’ subsystems are not included in this class.

(v) The term ‘system’ will, henceforth will normally mean an experimentally accessible one.

Whenever it is intended to cover the universe and/or its large subsystems (this will be the case

in the first two axioms only), the term system∗ will be used.

The axioms will be labelled as A1,..., A8.

A1.(Probabilistic framework; System algebra and states)

(a) System algebra; Observables. A system∗ S has associated with it a supmech-admissible

(as defined in section IV A) superalgebra A = A(S). (Its elements will be denoted as A,B,...).

Observables of S are elements of the subset O(A) of even Hermitian elements of A.

(b) States. States of the system∗, also referred to as the states of the system algebra A(denoted

by the letters φ,ψ, ..), are defined as (continuous) positive linear functionals on A which are
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normalized [i.e. φ(I) = 1 where I is the unit element of A]. The set of states of A will be

denoted as S(A) and the subset of pure states by S1(A). For any A ∈ O(A) and φ ∈ S(A),

the quantity φ(A) is to be interpreted as the expectation value of A when the system is in the

state φ.

(c) Expectation value of odd elements of A vanishes in every pure state (hence in every state).

(d) Compatible completeness of observables and pure states. The pair (O(A),S1(A)) satisfies

the CC condition described in section IV A.

(e) Experimental situations and probabilities. An experimental situation has associated with it

a positive observable-valued measure (PObVM) as defined in section IV A; it associates, with

measurable subset of a measurable space, objects called supmech events which have measure-

like properties. Given the system prepared in a state φ, the probability of realization of a

supmech event ν(E) is φ(ν(E)).

A2. Differential calculus; Symplectic structure. The system algebra A of a system∗ S is such as

to permit the development of derivation-based differential calculus based on it; moreover, it is

equipped with a real symplectic form ω thus constituting a symplectic superalgebra (A, ω) [more

generally, a generalized symplectic superalgebra (A,X , ω) when the derivations are restricted

to a distinguished Lie sub-superalgera X of SDer(A)].

A3. Dynamics. The dynamics of a system S is described by a one-parameter family of canonical

transformations generated by an even Hermitian element H (the Hamiltonian) of A.

The mechanics described by the above-stated axioms will be referred to as supmech. The

triple (A, ω,H) [or the quadruple (A,S1(A), ω,H)] will be said to constitute a supmech Hamil-

tonian system.

A4. Relativity scheme. (a) For systems admitting space-time description, the ‘principle of

relativity’ as described in section V A,will be operative.

(b)The admissible relativity schemes will be restricted to (i) Galilean relativity, (ii) special

relativity.

A5. Elementary systems; Material particles. (a) In each of the admitted relativity schemes,

material particles will be understood to be localizable elementary systems (as defined in sections

IV G and V A) with positive mass.

(b) The system algebra for a material particle will be (the topological completion of) the one

generated by its fundamental observables (as defined in section V A) and the identity element.

A6. Coupled systems. Given two systems S1 and S2 described as supmech Hamiltonian systems

(A(i),S(i)
1 , ω(i),H(i)) (i=1,2), the coupled system (S1 + S2) will be described as a supmech

Hamiltonian system (A,S1, ω,H) with

A = A(1) ⊗A(2), S1 = S1(A) ω = ω̃(1) + ω̃(2)

[see Eq.(134)] and H as in Eq.(156).
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A7. Quantum systems. All (experimentally accessible) systems in nature have noncommutative

system algebras (and hence are quantum systems); they have a quantum symplectic structure

(as defined in section III I) with the universal parameter b = −i~.

A8. Measurements. In a measurement involving a ‘measured system’ S and apparatus A

(a) both S and A are standard quantum systems;

(b) the Hamiltonian system (A(A),S(A)
1 , ω(A),H(A)) corresponding to the apparatus admits an

equivalent (in the sense of section IV C) phase space realization (in the Weyl-Wigner-Moyal

scheme) (A(A)
W ,S(A)

1W , ω
(A)
W ,H

(A)
W );

(c) elements of A(A)
W and S(A)

1 W appearing in the description of dynamics of the coupled system

(S+A) admit ~ → 0 limits and are approximated well by these limits;

(d) the various pointer positions of the apparatus are macroscopically distinguishable [the

macroscopic distinguishability can be interpreted, for example, in terms of an energy-time

uncertainty product inequality (∆E∆t >> ~) relevant to the experimental situation];

(e) observations on the apparatus are restricted to readings of the output devices (pointers).

Note. Part (b) in this axiom is expected to be redundant and is included ‘to be on the safe

side’. (A redundancy is excusable if it serves to bring some extra clarity without introducing

any inconsistency.)

X. CONCLUDING REMARKS

1. Sometimes the question is raised : ‘Why algebras ?’ The answer emerging from the present

work is : ‘Because they provide the right framework for noncommutative symplectic geometry

as well as for noncommutative probability and, therefore, are natural objects to employ in

the construction of a formalism integrating the two [in the spirit of unification of physics and

probability theory envisaged in the formulation of (augmented) Hilbert’s sixth problem].

Indeed, as we have seen, for an autonomous development of quantum mechanics, the fun-

damental objects are algebras and not Hilbert spaces.

2. A contribution of the present work expected to be of some significance to the algebraic

schemes in theoretical physics and probability theory is the introduction of the condition of

compatible completeness for observables and pure states [axiom A1(d)] which plays an im-

portant role in ensuring that the so-called ‘standard quantum systems’ defined algebraically

in section VII A, have faithful Hilbert space-based realizations. It is desirable to formulate

necessary and/or sufficient conditions on the superalgebra A alone (i.e. without reference to

states) so that the CC condition is automatically satisfied.

An interesting result, obtained in section VII G, is that the superclassical systems with a

finite number of fermionic generators generally do not satisfy the CC condition. This probably

explains their non-occurence in nature. It is worth investigating whether the CC condition is

related to some stability property of dynamics.
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3. Some features of the development of QM in the present work (apart from the fact that it

is autonomous) should please theoreticians : there is a fairly broad-based algebraic formalism

connected smoothly to the Hilbert space QM; there is a natural place for commutative superse-

lection rules and for the Dirac’s bra-ket formalism; the Planck constant is introduced ‘by hand’

at only one place (at just the right place : the quantum symplectic form) and it appears at

all conventional places automatically. Moreover, once the concepts of localization, elementary

system and standard quantum system are introduced at appropriate places, it is adequate to

define a material particle as a localizable elementary quantum system ; ‘everything else’ —

including the interpretation of the Schrödinger wave function and the Schrödinger equation —

is automatic.

4. The treatment of quantum-classical correspondence in section VII H, illustrated with the

example of a nonrelativistic spinless particle, makes clear as to how the subject should be treated

in the general case : go from the traditional Hilbert space -based description of the quantum

system to an equivalent (in the sense of a supmech hamiltonian system) phase space description

in the Weyl-Wigner-Moyal formalism, pick up the appropriate subsets in the observables and

states having smooth ~ → 0 limits and verify that the limit gives a commutative supmech

Hamiltonian system (which is generally a traditional classical hamiltonian system).

5. The treatment of measurements in QM in section VIII provides a justification for the collapse

postulate through straightforward physics : it is the prescription for obtaining the effective final

state of an observationally constrained coupled system. The use of pure states for the pointer

positions in the von Neumann treatment did not bring out the physics of the system-apparatus

correctly. Once that is replaced by the right objects and the other essential ingredient —

that observations on the apparatus are restricted to macroscopically distinguishable pointer

readings — is appropriately incorporated, things work out quite satisfactorily. The sight of

Eq.(243) where one can see the operation of the decohering effect of ‘internal environment’ of

the apparatus in live action, should please theoreticians. The incorporation of the external

environment has been reduced to a matter of two lines : just saying that that the symbol ‘A’

now stands for ‘the apparatus and its environment’. It is left to the reader to compare this

treatment with that in the scores of papers in literature on ‘environment induced decoherence’.

6. The author hopes that the treatment of the supmech formalism in section IV and its

successful applications in subsequent sections present it as an object deserving further detailed

study (along the lines essentially parallel to the classical symplectic mechanics which is a rich

and well developed subject).

7. The title of the present paper was originally intended to be, as announced in Ref.[60,63],

‘Supmech: a unified symplectic view of physics’; while preparing the final version of it, however,

the author felt that the present title would represent the contents better.
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