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Abstract

In this paper we propose a computationally efficient algorithm to estimate the parame-

ters of a 2-D sinusoidal model in presence of stationary noise. The estimators obtained by

the proposed algorithm are consistent and asymptotically equivalent to the least squares

estimators. Monte Carlo simulations are performed for different sample sizes and it is ob-

served that the performances of the proposed method are quite satisfactory and they are

equivalent to the least squares estimators. The main advantage of the proposed method

is that the estimators can be obtained using only finite number of iterations. In fact it is

shown that starting from the average of periodogram estimators, the proposed algorithm

converges in three steps only. One synthesized texture data and one original texture data

have been analyzed using the proposed algorithm for illustrative purpose.
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1 Introduction

In this paper we consider the problem of estimating the parameters of the following two di-

mensional (2-D) sinusoidal signal;

y(m,n) = [A0 cos(λ0m + µ0n) + B0 sin(λ0m + µ0n)] + X(m,n). (1)

Here A0 and B0 are unknown real numbers, known as amplitudes, λ0 and µ0 are unknown

frequencies. It is assumed that A02

+B02

> 0, and λ0, µ0 ∈ (0, π). The additive error {X(m,n)}

is from a stationary random field. The explicit assumptions on {X(m,n)} and also on the

model parameters are provided in section 2. The main problem is to estimate the unknown

parameters, namely A0, B0, λ0 and µ0, given a sample {y(m,n);m = 1, . . . ,M, n = 1, . . . ,N}.

The first term on the right hand side of (1) is known as the signal component and the second

term as the noise or error component. The detection and estimation of the signal component in

presence of additive noise is an important and classical problem in Statistical Signal Process-

ing. Particularly, the 2-D sinusoidal model has received a considerable attention in the signal

processing literature because of its widespread applicability in texture synthesis. Francos et

al. [2] first observed that the 2-D sinusoidal model can be used quite effectively to analyze

symmetric texture images. For some of the theoretical developments of the 2-D sinusoidal or

related models, the readers are referred to Rao et al. [8], Zhang and Mandrekar [10] and Kundu

and Nandi [4].

The 2-D frequency estimation is well known to be a numerically difficult problem. The problem

becomes more severe particularly if p is quite large. The most efficient estimators, as expected

are the least squares estimators. The order of convergence of the least squares estimators

of λ’s and µ’s are Op(M
− 3

2 N− 1

2 ) and Op(M
− 1

2 N− 3

2 ) respectively. Here U = Op(M
−δ1N−δ2)

means M δ1N δ2 |U | is bounded in probability. Finding the least squares estimator tends to be

computationally intensive as the functions to be optimized are highly non-linear in parameters.

Even in one dimension, it is known that the least squares surface has several local minima, see
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Rice and Rosenblatt [9]. Recently Prasad et al. [6] proposed a sequential procedure to estimate

the unknown parameters of one dimensional sinusoidal model and which can be easily extended

for model (1). It has reduced the computational time considerably. At each stage the standard

Newton-Raphson or Gauss-Newton method may be used, for optimization purposes, but the

proof of convergence of the Newton-Raphson or Gauss-Newton method is not known and it is

not very easy to establish also in this case.

In this paper we propose a new algorithm to estimate the unknown parameters of 2-D sinusoidal

model when the number of components is known. This is motivated by the one dimensional

algorithms proposed by Bai et al. [1], Nandi and Kundu [5] and the one dimensional sequential

procedure proposed by Prasad et al. [6]. The method uses correction terms based on the data

vector and the available frequency estimators, similarly as the Newton-Raphson or Gauss-

Newton method. But naturally the correction term is different.

It is possible to choose the initial guesses in such a manner that within fixed number of steps,

the iterative procedure produces efficient estimators, which have the same rate of convergence

as the least squares estimators. In the proposed algorithm, we do not use the fixed sample size

available at each step. At first step we use a fraction of it and at the last step we use the whole

data set, by gradually increasing the effective sample sizes. The method can be easily extended

for the model (8), when more than one component is present, using the sequential estimation

procedure, similarly as in Prasad et al. [6].

It is shown that if we start the algorithm with the average of periodogram estimators (the

details will be explained later) as initial guesses, then after three steps, it produces estimators,

which have the same order of convergence as the least squares estimators. We perform some

simulation studies to examine the behavior of the proposed algorithm for different sample

sizes, and also to compare their performances with the least squares estimators. It is observed

that the performances of the proposed estimators and the least squares estimators are very

similar, in terms of biases and mean squared errors. But the main advantage of the proposed
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estimators is that they can be obtained in three steps only and the computational time is

much less compared to the least squares computation. Moreover, the proof of convergence of

the least squares method is not available in the literature, but our method produces efficient

estimators almost surely from the above mentioned starting values in three steps only. For

illustrative purposes, we have also analyzed one real texture data and one synthesized data.

It is observed that the performances of the estimators obtained by the proposed method, are

quite satisfactory.

The rest of the paper is organized as follows. In section 2, we provide the model assumptions

and the algorithm. Numerical results are provided in section 3. The data analysis results are

provided in section 4 and the conclusions appear in section 5. All the necessary theoretical

results are provided in the appendix.

2 Model Assumptions and Proposed Algorithm

2.1 Assumptions

In this subsection we provide the necessary assumptions on the model parameters and particu-

larly on the errors. It is assumed that the observed data {y(m,n);m = 1, . . . ,M, n = 1, . . . ,N}

is of the form (1). The additive error {X(m,n)} is from a stationary random field and it satisfies

the following Assumption 1;

Assumption 1: Let us denote the set of positive integers by Z. It is assumed that {X(m,n);m,n ∈

Z} can be represented as follows;

X(m,n) =

∞∑

j=−∞

∞∑

k=−∞

a(j, k)e(m − j, n − k),

where a(j, k)s are real constants such that

∞∑

j=−∞

∞∑

k=−∞

|a(j, k)| < ∞,
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and {e(m,n);m,n ∈ Z} is a double array sequence of i.i.d. random variables with mean zero

and finite variance σ2.

2.2 Proposed Algorithm

The proposed algorithm requires initial estimators of the frequencies, which are consistent but

their order of convergence may be low. The method to obtain initial estimators will be discussed

later in this section. The algorithm gradually improves upon the initial estimators in a finite

number of steps. The final estimators, which are obtained at the last step, have the same

asymptotic distribution as the least squares estimators. We provide the necessary theoretical

results in the following theorem.

Theorem 1. Suppose (λ̃, µ̃) are consistent estimators of (λ0, µ0) and (λ̂, µ̂) are obtained from

(λ̃, µ̃) using the following equations,

λ̂ = λ̃ +
12

M2
Im

[
P

(λ)
MN

QMN

]
, µ̂ = µ̃ +

12

N2
Im

[
P

(µ)
MN

QMN

]
, (2)

where,

P
(λ)
MN =

M∑

t=1

N∑

s=1

(
t −

M

2

)
y(t, s)e−i(eλt+eµs), (3)

P
(µ)
MN =

M∑

t=1

N∑

s=1

(
s −

N

2

)
y(t, s)e−i(eλt+eµs), (4)

QMN =

M∑

t=1

N∑

s=1

y(t, s)e−i(eλt+eµs), (5)

and Im[.] denotes the imaginary part of a complex number.

If λ̃−λ0 = Op(M
−1−δ1N−δ2) and µ̃−µ0 = Op(M

−δ2N−1−δ1), where δi ∈
(
0, 1

2

]
, i = 1, 2, then,

(i) λ̂ − λ0 = Op(M
−1−2δ1N−δ2), if δ1 ≤ 1

4 and δ2 > 1
4 ,

µ̂ − µ0 = Op(M
−δ2N−1−2δ1), if δ1 ≤ 1

4 and δ2 > 1
4 ,

(ii)




λ̂ − λ0

µ̂ − µ0




T

D−1 −→ N2

(
0, 24σ2Σ

)
, if δ1 > 1

4 , δ2 > 1
4 ,
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where

Σ =




c
ρ2 0

0 c
ρ2


 , D =




M− 3

2 N− 1

2 0

0 M− 1

2 N− 3

2


 ,

ρ2 = A02
+ B02

and c =

∣∣∣∣∣∣

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)e
−i(λ0j1+µ0j2)

∣∣∣∣∣∣

2

.

Proof. See the Appendix.

Based on the above result, we provide the algorithm to find efficient estimators of λ0’s and µ0’s.

The main idea in the algorithm is to use Theorem 1 step by step to improve the estimates.

Moreover, we will not use the whole sample size at each step, rather a fraction of it judiciously,

similarly as in Bai et al. [1] or Nandi and Kundu [5]. Therefore, at the rth step if we use the

sample size (Mr, Nr), then the rth step estimators λ̂(r) and µ̂(r) are computed from the (r−1)th

step estimators λ̂(r−1) and µ̂(r−1) by;

λ̂(r) = λ̂(r−1) +
12

M2
r

Im

[
P

(λ)
MrNr

QMrNr

]
, (6)

µ̂(r) = µ̂(r−1) +
12

N2
r

Im

[
P

(µ)
MrNr

QMrNr

]
, (7)

where P
(λ)
MrNr

, P
(µ)
MrNr

and QMrNr
can be obtained from (3), (4) and (5), by replacing M , N , λ̃

and µ̃ with Mr, Nr, λ̂(r−1) and µ̂(r−1), respectively.

For better understanding, let us look at the algorithm when the initial estimators of λ0 and µ0

are of the order Op(M
−1N− 1

2 ) and Op(M
− 1

2 N−1) respectively, i.e. (λ̂(0)−λ0) = Op(M
−1N− 1

2 )

and (µ̂(0) − µ0) = Op(M
− 1

2 N−1). Although a similar algorithm can easily be developed when

the initial estimators are of the order Op(M
−1−δ1N−δ2) and Op(M

−δ2N−1−δ1) respectively for

any δi ∈ (0, 1
2 ]; i = 1, 2.

Observe that, it is possible to obtain initial estimators λ̃, µ̃ of λ0 and µ0 respectively, from the

data {y(m,n);m = 1, . . . ,M, n = 1, . . . ,N}. Let us consider the data vector {y(1, n), . . . , y(M,n)}
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for any fixed n ∈ {1, . . . , N}, and model it using the 1-D sinusoidal model. Suppose the peri-

odogram estimate of λ0, over Fourier frequencies, obtained from this data stream is denoted

by λ̃n, which is Op(M
−1), see Rice and Rosenblatt [9]. We find λ̃n for n = 1, . . . ,N separately,

and take their average to arrive at the initial estimate λ̃ of λ0, i.e.

λ̃ =
1

N

N∑

n=1

λ̃n,

which is Op(M
−1N− 1

2 ). Similarly, considering the data {y(m, 1), . . . , y(m,N)} for m ∈ {1, . . . ,M}

it is possible to obtain the initial estimate µ̃ of µ0, which is of the order Op(M
− 1

2 N−1).

Thus, we have initial estimators of λ0 and µ0 for which, (λ̃ − λ0) = Op(M
−1N− 1

2 ) and

(µ̃ − µ0) = Op(M
− 1

2 N−1). We start our algorithm with these initial guesses. It may be

mentioned that the choice of M1 and M2 are not fixed. Now we provide the exact algorithm

for λ, and for µ it can be obtained similarly.

Algorithm for estimating λ0:

• Step 1: When r = 1, choosing M1 = M0.8, N1 = N , and λ̂(0) = λ̃, where λ̃ is an initial

estimator such that (λ̃ − λ0) = Op(M
−1N− 1

2 ) = Op(M
−1− 1

4

1 N
− 1

2

1 ). Applying part (a) of

Theorem 1, we obtain;

λ̂(1) − λ0 = Op(M
−1− 1

2

1 N
− 1

2

1 ) = Op(M
−1− 1

5 N− 1

2 ).

• Step 2: When r = 2, let M2 = M0.9, N2 = N .

λ̂(1) − λ0 = Op(M
−1− 1

5 N− 1

2 ) = Op(M
−1− 1

3

2 N
− 1

2

2 ).

Now, by part (b) of Theorem 1,

λ̂(2) − λ0 = Op(M
− 3

2

2 N
− 1

2

2 ) = Op(M
−1− 7

20 N− 1

2 ).

• Step 3: When r = 3, let M3 = M , N3 = N .

λ̂
(2)
k − λ0

k = Op(M
−1− 7

20 N− 1

2 ) = Op(M
−1− 7

20

3 N
− 1

2

3 ).
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Again, by part (b) of Theorem 1,

M
3

2 N
1

2 (λ̂(3) − λ0)
d

−→ N

(
0, 24σ2 c

ρ2

)
.

Therefore, it is observed that from the initial estimate λ̃, of the order of convergence Op(M
−1N− 1

2 ),

we obtain after Step 1, an improved estimator of the order of convergence Op(M
− 6

5 N− 1

2 ). At

Step 1, we have not used the full sample. At Step 2, the improved estimator has the order of

convergence Op(M
−1− 7

20 N− 1

2 ). Finally at Step 3, when we use the complete sample, and ob-

tain the efficient estimator of λ0, which has the same order of convergence as the least squares

estimators, i.e. Op(M
− 3

2 N− 1

2 ). As we had mentioned before that the choice of M1 and M2 are

not fixed. For example another choice can be M1 = M0.83 and M2 = M0.92. Several other

choices are also available, which will produce efficient estimator of λ0, which has the same order

of convergence as above. It is observed in our simulation experiment that the performance does

not depend much on different choices of M1 and M2.

Similarly, we can obtain an efficient estimator of µ0, which has the same order of conver-

gence as the least squares estimator. Now we describe how to extend our method for multiple

components signal.

2.3 More than one Components

When there are more than one component present in the signal, the model can be written as

y(m,n) =

p∑

k=1

[
A0

k cos(λ0
km + µ0

kn) + B0
k sin(λ0

km + µ0
kn)
]
+ X(m,n). (8)

Here the number of components p is assumed to be known and X(m,n) is same as before. We

have the following additional assumptions for this model.

Assumption 1. The frequency sets {λ0
i , µ

0
i } are distinct i.e. for i 6= j, (λ0

i , µ
0
i ) 6= (λ0

j , µ
0
j) and

(λ0
i , µ

0
i ) ∈ (0, π) × (0, π) for i = 1, . . . , p.
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Assumption 2. The amplitudes satisfy the following restriction,

0 < A02

p + B02

p < . . . < A02

1 + B02

1 < K2 < ∞, for some K > 0.

Using the sequential procedure similarly as suggested in Prasad et al. [6], we can obtain

estimators of the parameters of the model in (8). Initial estimators are obtained at each step

and improved upon using the proposed algorithm. Proceeding in this way, we can obtain

estimators of all the parameters.

It may be mentioned that since (λ̂i, µ̂i) and (λ̂j , µ̂j) are asymptotically independent for i 6= j,

the sequential procedure works as the one dimensional method.

3 Numerical Results

In this section, we present some numerical results to see the performance of the proposed algo-

rithm for different sample sizes. All the computations were performed at the Indian Institute

of Technology Kanpur, using the random number generator RAN2 of Press et al. [7]. All the

programs are written in FORTRAN-77. We consider the following model;

Model: y(m,n) =
2∑

k=1

[Ak cos(mλk + nµk) + Bk sin(mλk + nµk)] + X(m,n).

Here A1 = 1.5, B1 = 1.5, λ1 = 2.0, µ1 = 2.0, A2 = 1.0, B2 = 1.0, λ2 = 1.0, µ2 = 1.0 and

X(m,n) = e(m,n) + e(m − 1, n) + e(m,n − 1), (9)

where e(m,n)’s are i.i.d. normal random variables with mean 0 and variance σ2. We have con-

sidered different sample sizes, M = N = 50, 75, 100, and the error variance, σ2 = 1.25. In each

case we have obtained initial guess of frequencies by computing the average of the periodogram

estimates. We then apply the proposed algorithm to improve upon the estimates. In each case

we have repeated the procedure for 1000 times and reported the average estimates and the

corresponding mean squared errors of the proposed estimates. We have reported the average
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and the corresponding mean squared errors, of the usual least squares estimates obtained using

sequential procedure as proposed in Prasad et al. [6]. To compute the least squares estimates

we have used the optimization routine available in Press et al. [7]. For comparison purposes,

we have also reported the asymptotic variance of the least squares estimators. The results are

reported in Tables 1 - 4.

Some of the points are easily noticed from the tables. As the sample size increases, biases

and MSEs decrease as expected for both least squares estimators and the estimators obtained

using the proposed algorithm. This verifies the consistency property of the estimators. Biases

of the linear parameters are more than the non-linear parameters. In both the cases the

mean squared errors are quite close to the corresponding asymptotic variances. Although the

proposed estimators can be obtained after three steps, but the performance of the proposed

estimators are almost same with the least squares estimators and the required computational

time also is much less. Moreover, the proposed algorithm does not require any stopping criterion

like any other standard optimization method and it is going to converge almost surely.

4 Data Analysis

In this section we present two data analysis for illustrative purpose. One is an original texture

data analysis and the other is a synthesized texture analysis when the two adjacent frequency-

sets are close to each other.

Real Texture Data

We obtained the texture in Figure 3 from http://local.wasp.uwa.edu.au/∼pbourke. The usual

procedure to get an idea of initial guess of frequencies is to plot the periodogram function

of the data, see Figure 1, and look at the peaks on the surface of periodogram. From an

observation of the periodogram we see that there are many adjacent peaks on the surface. It is

not easy to guess the correct number of components from the periodogram. Here the number
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of components is chosen by minimizing the Bayesian Information Criterion (BIC) give as;

BIC(k) = MN ln σ2
k +

1

2
(4k + 1) ln(MN) (10)

where k is the number of components, σ2
k is the corresponding innovations variance. We plot

BIC(k) as a function of k. It is observed that BIC takes its minimum value at k = 6, see

Figure 2 therefore we take the estimate of the number of components p as p̂ = 6. We have fitted

the model in (1) with p = 6 to the the texture data in Figure 3. The original and estimated

textures are plotted in Figure 3. It matches with the original texture quite well.
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0.002
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0.008
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Figure 1: Periodogram of the Original Texture

Synthesized Texture Data

Now we analyze a texture signal generated from the following model for m = 1, . . . , 100 and

n = 1, . . . , 100;

y(m,n) = 5.0 cos(1.5m + 1.0n) + 5.0 sin(1.5m + 1.0n)

+ 2.0 cos(1.4m + 0.9n) + 2.0 sin(1.4m + 0.9n) + X(m,n). (11)

The noise structure X(m,n) follows (9) and e(m,n)s have mean 0 and variance 20.0. The noisy

texture is plotted in Figure 4 and the original texture (without the noise component X(m,n))

11



0 5 10 15 20 25 30
−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2
x 10

5

k

BIC(k) 

Figure 2: BIC as a function of number of components

Figure 3: The Original and Estimated Texture
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is plotted in Figure 5. The problem is to extract the original texture given only the noisy

texture. Note that here the two frequency-sets, viz. (1.5, 1.0) and (1.4, 1.0) are very close to

each other. When we plot the periodogram of the above data, see Figure 6, we observe a single

peak. This obscures the fact that originally there were two frequency components and thus

makes it difficult to provide correct initial guess of frequencies. But by using our algorithm we

obtain the following estimates of the unknown parameters;

Â1 = 4.7371, B̂1 = 4.9991, λ̂1 = 1.5005, µ̂1 = 1.0003

Â2 = 2.0790, B̂2 = 1.9186, λ̂2 = 1.3995, µ̂2 = 0.9001.

We have plotted the actual and estimated texture in Figure 7. They match quite well. We

would like to mention here that the usual least square method may not work well if the two

frequency sets are close and error variance is large. But sequential least squares method, similar

to Prasad et al. [6] is able to distinguish the two frequencies (plots are not shown) and provides

reasonably good estimates.

Figure 4: Synthesized Noisy Texture

Figure 5: Synthesized Actual Texture
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Figure 6: Periodogram of the Synthesized Texture

Figure 7: Synthesized Actual and Estimated textures
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5 Conclusions

In this paper we have given an efficient and fast algorithm towards estimating the unknown

parameters of a 2-D sinusoidal model. The iterative methods for multi-dimensional optimiza-

tion take long to converge to an optimal solution. The periodogram estimates have larger

bias and mean squared error. The proposed algorithm takes the periodogram estimates as the

initial estimates about the frequencies and improves upon it in a finite number of iterative

steps. We have done extensive simulations for different sample sizes and increasing error vari-

ances, though not reported here, and found that as the sample size becomes large, the method

performs increasingly well and the performance is quite satisfactory even for fairly large error

variances.

We have derived the asymptotic distribution of the proposed estimators; it coincides with

the least squares estimators. Since only a finite number of steps are required to reach the final

estimators, the algorithm produces very fast results and it can be used for online implementation

purpose. The algorithm can be extended even for colored texture also. The work is in progress

and it will reported later.

Appendix

In this Appendix we provide the proof of Theorem 1. The following two lemmas are required

to prove Theorem 1.

Lemma 1. If

QMN =
MN

2
(A0 − iB0)

[
1 + Op(M

−δ1N−δ2) + Op(M
−δ2N−δ1)

]
, (12)

P
(λ)
MN =

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
M∑

m=1

N∑

n=1

e(m − j1, n − j2)

(
m −

M

2

)
e−i(λ0m+µ0n)

− i
M3N

12

(
A0

2
+

B0

2i

)[
1 + Op(M

−δ2N−δ1) + Op(M
−δ1N−δ2)

]
(λ̃ − λ0) (13)
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and λ̂ is obtained from λ̃, which is Op(M
−1−δ1N−δ2), using the following equation,

λ̂ = λ̃ +
12

M2
Im

[
P

(λ)
MN

QMN

]
,

then,

(i) λ̂ − λ0 = Op(M
−1−2δ1N−δ2), if δ1 ≤ 1

4 and δ2 > 1
4 ,

(ii) M
3

2 N
1

2 (λ̂ − λ0)
d

−→ N
(
0, 24σ2 c

ρ2

)
, if δ1 > 1

4 and δ2 > 1
4 ,

where c and ρ are same as defined in Theorem 1.

Proof.

λ̂ = λ̃ +
12

M2
Im

[
P

(λ)
MN

QMN

]

= λ̃ +
12

M2
Im

[
∞∑

j1=−∞

∞∑
j2=−∞

a(j1, j2)
M∑

m=1

N∑
n=1

e(m − j1, n − j2)
(
m − M

2

)
e−i(λ0m+µ0n)

MN
2 (A0 − iB0)[1 + Op(M−δ1N−δ2) + Op(M−δ2N−δ1)]

−
i(A0 − iB0)M3N

24 [1 + Op(M
−δ1N−δ2) + Op(M

−δ2N−δ1)](λ̃ − λ0)
MN

2 (A0 − iB0)[1 + Op(M−δ1N−δ2) + Op(M−δ2N−δ1)]

]

= λ̃ − [1 + Op(M
−δ1N−δ2) + Op(M

−δ2N−δ1)](λ̃ − λ0)

+
12

M2
Im

[
∞∑

j1=−∞

∞∑
j2=−∞

a(j1, j2)
M∑

m=1

N∑
n=1

e(m − j1, n − j2)
(
m − M

2

)
e−i(λ0m+µ0n)

MN
2 (A0 − iB0)

]

= λ0 − [Op(M
−δ1N−δ2) + Op(M

−δ2N−δ1)](λ̃ − λ0)

+
24

M3N
Im

[
1

(A0 − iB0)

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)×

×
M∑

m=1

N∑

n=1

e(m − j1, n − j2)

(
m −

M

2

)
e−i(λ0m+µ0n)

]
. (14)

If δ1 ≤
1

4
and δ2 >

1

4
, then

[
Op(M

−δ1N−δ2) + Op(M
−δ2N−δ1)

]
(λ̃ − λ0) = Op(M

−1−2δ1N−2δ2) + Op(M
−1−δ1−δ2N−δ1−δ2)

= Op(M
−1−2δ1N−δ2).

Note that the last equality follows because δ1 ≤ δ2, and due to the same reason, ignoring the

last term in (14), we have,

λ̂ − λ0 = Op(M
−1−2δ1N−2δ2).
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If δ1 >
1

4
and δ2 >

1

4
, then the second term in (14) is ignored and we get,

λ̂ − λ0 =
24

M3N
V,

where,

V = Im

[
1

(A0 − iB0)

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
M∑

m=1

N∑

n=1

e(m − j1, n − j2)

(
m −

M

2

)
e−i(λ0m+µ0n)

]

=
1

A02 + B02

[
− A0

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

M∑

m=1

N∑

n=1

e(m − j1, n − j2)

(
m −

M

2

)
sin(λ0m + µ0n)

+ B0
∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
M∑

m=1

N∑

n=1

e(m − j1, n − j2)

(
m −

M

2

)
cos(λ0m + µ0n)

]
. (15)

It can be proved that,

lim
M,N→∞

Var

(
24

M
3

2 N
1

2

V

)
=

24σ2

(A02 + B02)

∣∣∣∣∣∣

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)e
−i(λ0j1+µ0j2)

∣∣∣∣∣∣

2

. (16)

Now, using the Central Limit Theorem of the stochastic processes, (see Fuller [3]), we have the

following,

M
3

2 N
1

2 (λ̂ − λ0)
d

−→ N

(
0, 24σ2 c

ρ2

)
.

Lemma 2. If QMN is same as in (12) and

P
(µ)
MN =

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

M∑

m=1

N∑

n=1

e(m − j1, n − j2)

(
n −

N

2

)
e−i(λ0m+µ0n)

− i
MN3

12

(
A0

2
+

B0

2i

)[
1 + Op(M

−δ1N−δ2) + Op(M
−δ2N−δ1)

]
(µ̃ − µ0) (17)

and µ̂ is obtained from µ̃, which is Op(M
−δ2N−1−δ1), using the following equation,

µ̂ = µ̃ +
12

N2
Im

[
P

(µ)
MN

QMN

]
,

then,

(i) µ̂ − µ0 = Op(M
−δ2N−1−2δ1), if δ1 ≤ 1

4 and δ2 > 1
4

(ii) M
1

2 N
3

2 (µ̂ − µ0)
d

−→ N
(
0, 24σ2 c

ρ2

)
, if δ1 > 1

4 and δ2 > 1
4

where c and ρ are same as before.
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Proof. The Proof is similar.

Along the same line as before, if δ1 >
1

4
and δ2 >

1

4
it can be shown in this case also that

µ̂ − µ0 =
24

MN3
W,

where,

W = Im

[
1

(A0 − iB0)

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

M∑

m=1

N∑

n=1

e(m − j1, n − j2)

(
n −

N

2

)
e−i(λ0m+µ0n)

]

=
1

A02 + B02

[
− A0

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
M∑

m=1

N∑

n=1

e(m − j1, n − j2)

(
n −

N

2

)
sin(λ0m + µ0n)

+ B0
∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

M∑

m=1

N∑

n=1

e(m − j1, n − j2)

(
n −

N

2

)
cos(λ0m + µ0n)

]
. (18)

Moreover, it also can be shown that,

lim
M,N→∞

Var

(
24

M
1

2 N
3

2

W

)
=

24σ2

(A02 + B02)

∣∣∣∣∣∣

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)e
−i(λ0j1+µ0j2)

∣∣∣∣∣∣

2

, (19)

and

lim
M,N→∞

Cov

(
24

M
3

2 N
1

2

V,
24

M
1

2 N
3

2

W

)
= 0. (20)

Now, using Lemma 1, Lemma 2 and (20), Theorem 1 follows immediately, provided we show

that QMN , P
(λ)
MN and P

(µ)
MN as defined in Theorem 1, can be written as (12), (13) and (17)

respectively. We will use the following results in the subsequent proofs.

• Taylor’s Theorem: Suppose f(t) is a real valued function on [a, b], n is a positive integer,

f (n−1)(t) is continuous on [a, b], f (n)(t) exists for every t ∈ (a, b). Let α, β be distinct

points of [a, b], then we can write,

f(β) =

n−1∑

k=0

f (k)(α)

k!
(β − α)k +

f (n)(x)

n!
(β − α)n, (21)

where x is a point on the line joining α and β.

•
M∑

m=1

N∑

n=1

e(m,n) = Op(M
1

2 N
1

2 ).

18



•
M∑

m=1

N∑

n=1

te(m,n) = Op(M
3

2 N
1

2 ) and
M∑

m=1

N∑

n=1

se(m,n) = Op(M
1

2 N
3

2 ).

• In general,
M∑

m=1

N∑

n=1

mke(m,n) = Op(M
k+ 1

2 N
1

2 ) and
M∑

m=1

N∑

n=1

mke(m,n) = Op(M
1

2 Nk+ 1

2 ).

•
M∑

m=1

N∑

n=1

(
m −

M

2

)
e(m,n) = Op(M

3

2 N
1

2 ) and

M∑

m=1

N∑

n=1

(
n −

N

2

)
e(m,n) = Op(M

1

2 N
3

2 ).

•
M∑

m=1

N∑

n=1

|e(m,n)| = Op(MN).

Now we will prove (12), (13) and (17).

Proof of (12). From the definition of QMN in (5),

QMN =
M∑

m=1

N∑

n=1

[
A0 cos(λ0m + µ0n) + B0 sin(λ0m + µ0n) + X(m,n)

]
e−i(eλm+eµn)

=

(
A0

2
+

B0

2i

)
R1 +

(
A0

2
−

B0

2i

)
R2 + R3 (say). (22)

Here,

R1 =

M∑

m=1

N∑

n=1

ei{(λ0−eλ)m+(µ0−eµ)n} =

M∑

m=1

ei(λ0−eλ)m ·
N∑

n=1

ei(µ0−eµ)n

=

[
M + i(λ0 − λ̃)

M∑

m=1

mei(λ0−λ∗)m

][
N + i(µ0 − µ̃)

N∑

n=1

nei(µ0−µ∗)n

]

=
[
M + Op(M

−1−δ1N−δ2)Op(M
2)
] [

N + Op(M
−δ2N−1−δ1)Op(N

2)
]

=
[
M + Op(M

1−δ1N−δ2)
] [

N + Op(M
−δ2N1−δ1)

]

= MN
[
1 + Op(M

−δ1N−δ2) + Op(M
−δ2N−δ1)

]
, (23)

λ∗ is a point on the line joining λ0 and λ̃ and µ∗ is a point on the line joining µ0 and µ̃. Further,

R2 =

M∑

m=1

N∑

n=1

e−i{(λ0+eλ)m+(µ0+eµ)n} = Op(1), (24)

and

R3 =

M∑

m=1

N∑

n=1

X(m,n)e−i(eλm+eµn). (25)
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Now we will evaluate the order of R3. Choose L large enough, such that L.min{δ1, δ2} > 1.

We obtain the following of R3, using the Taylor series approximation similarly as in Bai et al.

[1] or Nandi and Kundu [5], up to Lth order terms. Here λ∗ is a point on the line joining λ̃ and

λ0.

R3 =

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

M∑

m=1

N∑

n=1

e(m − j1, n − j2)e
−i(eλm+eµn)

=
∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
N∑

n=1

e−ieµn
M∑

m=1

e(m − j1, n − j2)e
−ieλm

=

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

N∑

n=1

e−ieµn
M∑

m=1

e(m − j1, n − j2)×

×

[
e−i(λ0m) +

L−1∑

k=1

(−i(λ̃ − λ0))k

k!
mke−i(λ0m) +

(−i(λ̃ − λ0))L

L!
mLe−i(λ∗m)

]
,

=

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

N∑

n=1

e−ieµn
M∑

m=1

e(m − j1, n − j2)e
−i(λ0m)

+
∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
L−1∑

k=1

(−i(λ̃ − λ0))k

k!

N∑

n=1

e−ieµn
M∑

m=1

e(m − j1, n − j2)m
ke−i(λ0m)

+

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
(−i(λ̃ − λ0))L

L!

N∑

n=1

e−ieµn
M∑

m=1

e(m − j1, n − j2)m
Le−i(λ∗m).

Note that,

∣∣∣∣∣

M∑

m=1

e(m − j1, n − j2)m
Le−i(λ∗m)

∣∣∣∣∣ ≤ ML
M∑

m=1

|e(m − j1, n − j2)|,

since |e−i(λ∗t)| = 1. Hence, we can write,

M∑

m=1

e(m − j1, n − j2)m
Le−i(λ∗m) = θ1M

L
M∑

m=1

|e(m − j1, n − j2)|,

for |θ1| ≤ 1. Now re-arranging the terms, R3 becomes

R3 =
∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
M∑

m=1

N∑

n=1

e(m − j1, n − j2)e
−i(λ0m+eµn)

+

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

L−1∑

k=1

(−i(λ̃ − λ0))k

k!

M∑

m=1

N∑

n=1

e(m − j1, n − j2)m
ke−i(λ0m+eµn)

+
∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
θ1(M(λ̃ − λ0))L

L!

M∑

m=1

N∑

n=1

|e(m − j1, n − j2)|e
−ieµm,
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= T1 + T2 + T3 (say). (26)

We will consider T1, T2 and T3 one by one, and find out their order. First,

T1 =
∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
M∑

m=1

N∑

n=1

e(m − j1, n − j2)e
−i(λ0m+eµn).

Expanding using Taylor’s theorem, we get,

T1 =

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

M∑

m=1

N∑

n=1

e(m − j1, n − j2)e
−i(λ0m+µ0n)

+

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

L−1∑

k=1

(
−i(µ̃ − µ0)

)k

k!

M∑

m=1

N∑

n=1

e(m − j1, n − j2)n
ke−i(λ0m+µ0n)

+
∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
θ2(N(µ̃ − µ0))L

L!

M∑

m=1

N∑

n=1

|e(m − j1, n − j2)|e
−iλ0m

= Op(M
1

2 N
1

2 ) +

L−1∑

k=1

Op(M
−δ2kN−k−kδ1)

k!
Op(M

1

2 Nk+ 1

2 ) + Op(N
L · M−Lδ2 · N−L−Lδ1 · MN)

= Op(M
1

2 N
1

2 ). (27)

Expanding using Taylor’s theorem, we get,

T2 =
∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
L−1∑

k=1

(−i(λ̃ − λ0))k

k!

M∑

m=1

N∑

n=1

e(m − j1, n − j2)m
ke−i(λ0m+µ0n)

+

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

L−1∑

k=1

(−i(λ̃ − λ0))k

k!

L−1∑

s=1

(−i(µ̃ − µ0))s

s!

M∑

m=1

N∑

n=1

mknse−i(λ0m+µ0n)

+

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)

L−1∑

k=1

(−i(λ̃ − λ0))k

k!
×

θ3(N(µ̃ − µ0))L

L!
×

×
M∑

m=1

N∑

n=1

|e(m − j1, n − j2)|m
ke−iλ0m

=

L−1∑

k=1

Op(M
−(1+δ1)kN−δ2k)Op(M

k+ 1

2 N
1

2 )

+

L−1∑

k=1

L−1∑

s=1

Op(M
−(1+δ1)kN−δ2k)Op(M

−δ2sN−(1+δ1)s) · Op(M
k+ 1

2 N s+ 1

2 )

+
L−1∑

k=1

Op(M
−(1+δ1)kN−δ2k) · Op(N

LM−Lδ2N−L−Lδ1) · Op(M
k+1N)

=

L−1∑

k=1

Op(M
1

2
−kδ1N

1

2
−kδ2) +

L−1∑

k=1

L−1∑

s=1

Op(M
1

2
−kδ1−sδ2N

1

2
−kδ2−sδ1)
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+
L−1∑

k=1

Op(M
1−kδ1−Lδ2N1−kδ2−Lδ1)

= Op(M
1

2
−δ1N

1

2
−δ2) + Op(M

1

2
−δ1−δ3N

1

2
−δ2−δ4) + Op(M

1−δ1−Lδ2N1−δ2−Lδ1)

= Op(M
1

2
−δ1N

1

2
−δ2). (28)

Expanding using Taylor’s theorem for |θi| ≤ 1 for i = 1, . . . , 4, we get,

T3 =
∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
θ1(M(λ̃ − λ0))L

L!

M∑

m=1

N∑

n=1

|e(m − j1, n − j2)|e
−iµ0s

+

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
θ1(M(λ̃ − λ0))L

L!

L−1∑

s=1

(−i(µ̃ − µ0))s

s!
×

×
M∑

m=1

N∑

n=1

|e(m − j1, n − j2)|n
se−iµ0n

+

∞∑

j1=−∞

∞∑

j2=−∞

a(j1, j2)
θ1(M(λ̃ − λ0))L

L!
×

×
θ4(N(µ̃ − µ0))L

L!

M∑

m=1

N∑

n=1

|e(m − j1, n − j2)|

= Op(M
−Lδ1N−Lδ2) · Op(MN)

+ Op(M
−Lδ1N−Lδ2)

L−1∑

s=1

Op(M
−δ2sN−(1+δ1)s) · Op(MN s+1)

+ Op(M
−Lδ1N−Lδ2) · Op(M

−Lδ2N−Lδ1) · Op(MN)

= Op(M
1−Lδ1N1−Lδ2) +

L−1∑

n=1

Op(M
1−nδ2−Lδ1N1−nδ1−Lδ2) + Op(M

1−Lδ1−Lδ2N1−Lδ2−Lδ1)

= Op(M
1−Lδ1N1−Lδ2). (29)

Hence, from (26), using (27), (28) and (29), we have,

R3 = T1 + T2 + T3

= Op(M
1

2 N
1

2 ) + Op(M
1

2
−δ1N

1

2
−δ2) + Op(M

1−Lδ1N1−Lδ2) = Op(M
1

2 N
1

2 ), (30)

since Lδi > 1 for i = 1, 2. Therefore, from (22), using (23), (24) and (30) we have,

QMN =

(
A0

2
+

B0

2i

)
R1 +

(
A0

2
−

B0

2i

)
R2 + R3

=

(
A0

2
+

B0

2i

)
MN

[
1 + Op(M

−δ1N−δ2) + Op(M
−δ2N−δ1)

]
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+

(
A0

2
−

B0

2i

)
Op(1) + Op(M

1

2 N
1

2 )

=
MN

2
(A0 − iB0)

[
1 + Op(M

−δ1N−δ2) + Op(M
−δ2N−δ1)

]
. (31)

The expressions for P
(λ)
MN and P

(µ)
MN as given in (13) and (17) respectively can be obtained

similarly.
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Table 1: First Component: Algorithm Estimates.

A1 = 1.5 B1 = 1.5 λ1 = 2.0 µ1 =2.0 Time

AE 1.5031 1.4986 2.0000 2.0000

M= 50 MSE ( 0.346E-02) ( 0.352E-02) ( 0.915E-06) ( 0.896E-06) 1:53.810

N= 50 ASYV ( 0.334E-02) ( 0.334E-02) ( 0.889E-06) ( 0.889E-06)

AE 1.5008 1.4981 2.0000 2.0000

M= 75 MSE ( 0.0015) ( 0.0015) ( 0.183E-06) ( 0.173E-06) 7:31.960

N= 75 ASYV ( 0.0015) ( 0.0015) ( 0.176E-06) ( 0.176E-06)

AE 1.5006 1.4990 2.0000 2.0000

M=100 MSE ( 0.862E-03) ( 0.811E-03) ( 0.560E-07) ( 0.559E-07) 19:37.82

N=100 ASY V ( 0.834E-03) ( 0.834E-03) ( 0.556E-07) ( 0.556E-07)

24



Table 2: Second Component: Algorithm Estimates.

A2 = 1.0 B2 = 1.0 λ2 = 1.0 µ2 =1.0 Time

AE 0.9998 0.9971 1.0000 0.9999

M= 50 MSE ( 0.701E-02) ( 0.751E-02) ( 0.432E-05) ( 0.408E-05) 1:53.810

N= 50 ASYV ( 0.716E-02) ( 0.716E-02) ( 0.430E-06) ( 0.430E-06)

AE 0.9979 1.0005 1.0000 1.0000

M= 75 MSE ( 0.0033) ( 0.0033) ( 0.816E-06) ( 0.902E-06) 7:31.960

N= 75 ASYV ( 0.0032) ( 0.0032) ( 0.849E-06) ( 0.849E-06)

AE 1.0025 0.9983 1.0000 1.0000

M=100 MSE (0.189E-02) ( 0.186E-02) ( 0.272E-06) ( 0.259E-06) 19:37.82

N=100 ASYV ( 0.179E-02) ( 0.179E-02) ( 0.269E-06) ( 0.269E-06)

Table 3: First Component: Least Squares Estimates.

A1 = 1.5 B1 = 1.5 λ1 = 2.0 µ1 =2.0 Time

AE 1.5027 1.4989 1.9999 2.0000

M= 50 MSE ( 0.349E-02) ( 0.356E-02) ( 0.922E-06) ( 0.907E-06) 5:53.810

N= 50 ASYV ( 0.334E-02) ( 0.334E-02) ( 0.889E-06) ( 0.889E-06)

AE 1.5000 1.4989 2.0000 2.0000

M= 75 MSE ( 0.0015) ( 0.0015) ( 0.188E-06) ( 0.178E-06) 17:31.960

N= 75 ASYV ( 0.0015) ( 0.0015) ( 0.176E-06) ( 0.176E-06)

AE 1.4999 1.4996 2.0000 2.0000

M= 100 MSE ( 0.0009) ( 0.0009) ( 0.608E-07) ( 0.613E-07) 45:23.120

N= 100 ASYV ( 0.0008) ( 0.0008) ( 0.556E-07) ( 0.556E-07)
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Table 4: Second Component: Least Squares Estimates.

A2 = 1.0 B2 = 1.0 λ2 = 1.0 µ2 =1.0 Time

AE 0.9995 0.9974 1.0000 1.0000

M= 50 MSE ( 0.695E-02) ( 0.744E-02) ( 0.433-05) ( 0.407E-05) 5:53.810

N= 50 ASYV ( 0.716E-02) ( 0.716E-02) ( 0.430E-06) ( 0.430E-06)

AE 0.9975 1.0009 1.0000 1.0000

M= 75 MSE ( 0.0033) ( 0.0036) ( 0.824E-06) ( 0.908E-06) 17:31.960

N= 75 ASYV ( 0.0032) ( 0.0032) ( 0.849E-06) ( 0.849E-06)

AE 1.0022 0.9985 1.0000 1.0000

M= 100 MSE ( 0.0019) ( 0.0019) ( 0.273E-06) ( 0.263E-06) 45:23.120

N= 100 ASYV ( 0.0017) ( 0.0017) ( 0.269E-07) ( 0.269E-07)

∗ The average estimates and the MSEs are reported for each parameter. The first row represents the true

parameter values. In each box corresponding to each sample size, the first row represents the average

estimates, the corresponding MSEs and the asymptotic variances (ASYV) are reported below within

brackets.
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