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Abstract

The solution of the linear operator equation:

An−1X + An−2XB + · · ·+ AXBn−2 + XBn−1 = Y is given by X = sinπ/n
π

∫
∞

0 (t +

An)−1Y (t + Bn)−1t1/ndt if the specta of A and B are in the sector {z : z 6=

0,−π/n < arg z < π/n}.
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The object of this note is the equation

An−1X + An−2XB + · · ·+ AXBn−2 +XBn−1 = Y, (1)

where A,B, Y are m×m complex matrices, or linear operators in a Banach space, and

an X satisfying (1) is to be found. The special case

AX −XB = Y (2)

is the much studied Sylvester equation, of great interest in operator theory, numerical

analysis, and engineering.

There is a long tradition of finding different expressions for the solution of (2) in

the form of operator integrals, some prominent examples of which occur in the works of

E. Heinz, M. G. Krein, M. Rosenblum, and R. Bhatia, C. Davis and A. McIntosh. A

comprehensive summary of these is contained in the survey article [2]. Our main results

continue this tradition.
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Consider first the special case A = B. Then our equation is

An−1X + An−2XA+ · · ·+ AXAn−2 +XAn−1 = Y. (3)

Assume that the spectrum of A is in the sector

{z : z 6= 0,−π/n < arg z < π/n}.

The simplest situation arises when A is a diagonal matrix with distinct diagonal entries

λ1, · · · , λm. The equation (3) then can be written as

(λn−1
i + λn−2

i λj + · · ·+ λn−1
j )xij = yij (1 ≦ i, j ≦ m),

or,
λn

i
−λn

j

λi−λj
xij = yij (1 ≦ i, j ≦ m). (4)

When i = j the quotient on the left hand side is interpreted to mean nλn−1
i . The solution

of this equation is

xij =
λi − λj

λn
i − λn

j

yij.

With the substitution αi = λn
i this becomes

xij =
α

1/n
i − α

1/n
j

αi − αj

yij. (5)

The hypothesis on the location of λi ensures that αi does not lie on the negative real

axis and has a well-defined n-th root. There is a well-known formula (p.116 of [1]) from

complex analysis that says

αr =
sin rπ

π

∫
∞

0

α

t+ α
tr−1dt (6)

for 0 < r < 1. Using this we see that

αr − βr

α− β
=

1

α− β

sin rπ

π

∫
∞

0

(
α

t+ α
−

β

t+ β
)tr−1dt

=
sin rπ

π

∫
∞

0

tr

(t+ α)(t+ β)
dt. (7)

Thus the solution (5) can be expressed as

xij =
sin π/n

π

∫
∞

0

yij

(t+ λn
i )(t+ λn

j )
t1/ndt.

This looks more complicated than (5) but there is an advantage. We can get rid of the

coordinates and write this in the matrix form

X =
sin π/n

π

∫
∞

0

(t+ An)−1Y (t+ An)−1t1/ndt. (8)
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If A is not diagonal but is similar to a diagonal matrix, then we can easily see that

the same formula gives a solution of (3). Matrices similar to diagonal are dense in the

space of all matrices. So this formula gives the solution in the general case as well. See

Sec.VII.2 of [1] where this sort of argument is used. Instead of giving the details of this

we extract from the discussion above a connection with Fréchet derivatives which makes

the argument work equally well for operators in a Banach space, and even for an abstract

Banach algebra. For simplicity we continue to talk only of matrices.

Let f be a differentiable map on the space of matrices and let Df(A) be its deivative

at A. We refer the reader to Chapter X of [1] for basic facts that we use here. Let

ϕ(A) = An. If no point of the spectrum of A is on the negative real axis, then ϕ has

a well defined inverse map ψ(A) = A1/n. The derivative of ϕ at A is a linear map on

matrices whose action is given as

Dϕ(A)(X) =
d

dt

∣∣∣
t=0
ϕ(A+ tX)

= An−1X + An−2XA+ · · ·+ AXAn−2 +XAn−1.

This is of interest to us because the equation (3) can be written as

Dϕ(A)(X) = Y.

Its solution is found by inverting the map Dϕ(A). It is a standard fact that Dϕ(A)−1 =

Dψ(ϕ(A)). So the problem is reduced to finding a good expression for the derivative

Dψ. One such expression can be derived using the operator version of the formula (6)

which says

ψ(A) =
sin π/n

π

∫
∞

0

A(t+ A)−1t1/n−1dt. (9)

The advantage is that the integrand is more amenable to calculations involving deriva-

tives. The derivative of the function h(A) = A−1 is given by Dh(A)(Y ) = −A−1Y A−1.

Hence that of f(A) := A(t+ A)−1 = I − t(t+ A)−1 is

Df(A)(Y ) = t(t+ A)−1Y (t+ A)−1.

So from (9) we obtain

Dψ(A)(Y ) =
sin π/n

π

∫
∞

0

(t+ A)−1Y (t+ A)−1t1/ndt.

The differentiation under the integral sign can be justified with the usual arguments

involving the dominated convergence theorem. Replacing A by ϕ(A) = An we get

X = Dψ(ϕ(A))(Y ) =
sin π/n

π

∫
∞

0

(t+ An)−1Y (t+ An)−1t1/ndt. (10)
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As explained above this represents the solution of the equation (3).

The passage to (1) is affected by the much used Berberian trick. Given m × m

matrices A,B and Y , let

Ã =

(
A 0

0 B

)
, Ỹ =

(
0 Y

0 0

)
.

Consider the equation (3) in 2m× 2m matrices with Ã and Ỹ in place of A and Y . The

solution is

X̃ =
sin π/n

π

∫
∞

0

(t+ Ãn)−1Ỹ (t+ Ãn)−1t1/ndt.

It is easy to see, by reading off the (1, 2) entries of the block matrices involved that the

solution of (1) is

X =
sin π/n

π

∫
∞

0

(t+ An)−1Y (t+Bn)−1t1/ndt. (11)

Specialising to the case n = 2 we obtain yet another formula for the solution of the

Sylvester equation not included among the ones given in [2]: If the spectrum of A is

contained in the open right half plane and that of B in the open left half plane, then the

solution of (2) can be represented as

X =
1

π

∫
∞

0

(t+ A2)−1Y (t+B2)−1t1/2dt. (12)

Besides the representation (6) there is another that can be exploited in this context. We

have

αr =
r

Γ(1 − r)

∫
∞

0

(1 − e−tα)t−(r+1)dt (13)

for 0 < r < 1. Formulas for derivatives of the exponential of a matrix, under the names of

Duhamel, Feynman, Karpus, Schwinger, are used extensively by physicists and numerical

analysts. We refer the reader to [5] and [6] for excellent surveys. If g(A) = eA, then

Dg(A)(X) =

∫ 1

0

etAXe(1−t)Adt. (14)

We leave it to the reader to fill in the details of the following calculation. (If help is

needed go to [3] or [6].)

Let f(A) = Ar, 0 < r < 1. Using the formulas (13) and (14) we can obtain

Df(A)(Y ) =
r

Γ(1 − r)

∫
∞

0

[

∫ t

0

e−sAY e−(t−s)Ads]t−(r+1)dt. (15)
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So the solution of the equation (3) can be represented also as

X =
1/n

Γ(1 − 1/n)

∫
∞

0

[

∫ t

0

e−sAn

Y e−(t−s)An

ds]t−(1/n+1)dt. (16)

From this one can get another form of the solution of the equations (1) and (2).

Some other equations can be solved using this technique. We need a pair of functions

ϕ and ψ where ψ = ϕ−1, and a good formula for the Fréchet derivative of ψ. The

exponential function, the Zhukovsky function and their inverses are examples of such

pairs, as are some cubic polynomials with solutions given by the Cardano formula.

This method of solving equation has been used by others. For example, it occurs in

a paper of F. Hiai and H. Kosaki [4] where they obtain the formula (11). Their analysis

is restricted to positive definite matrices. Incidentally, the formula (10) shows that if A

and Y are positive semidefinite matices, then so is X. This is an analogue of one of the

important facts for the Lyapunov equation.
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