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Abstract

Consider a sequence of stationary non-negative associated random variables

with common marginal density f(x). Here we use the empirical survival function

as studied in Bagai and Prakasa Rao (1991) and apply the smoothing technique

proposed by Chaubey et al. (2007). The resulting smooth estimators of the density

function f and that of the corresponding distribution function are shown to inherit

the asymptotic properties similar to those obtained in Bagai and Prakasa Rao

(1995) for the kernel-type density estimators.
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1 Introduction

Let {Xn, n ≥ 1} be a strictly stationary sequence of associated random variables defined

on a probability space (Ω,F ,P). A set of random variables {X1, . . . , Xn} is said to be

associated (cf. Esary, Proschan and Walkup (1967)) if for every pair of functions h(x)

and g(x) from Rn to R, which are nondecreasing componentwise,

Cov(h(X), g(X)) ≥ 0,
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whenever it is finite, where X = (X1, X2, ..., Xn). An infinite sequence {Xn} of random

variables is said to be associated if every finite subset is associated.

Let f, F and F̄ , respectively, denote the density function, the distribution function

and the survival function of X1. When the observations are i.i.d., several authors have

suggested density estimators based on kernels, histogram methods, orthogonal functions,

etc, (see, e.g. Prakasa Rao (1983), Devroye (1989) and Wand and Jones (1995)).

The most commonly used estimator of the density function is the kernel estimator

(Rosenblatt(1956), Parzen (1962)) given by

fn(x) =
1

nhn

n∑

i=1

k((x−Xi)/hn), (1.1)

where k is the kernel function, which is generally a symmetric density function with mean

zero and variance 1 and hn is the bandwidth. Silverman (1986) noticed that in case of

positive valued random variables this estimator assigns positive mass for x in the interval

(−∞, 0). Besides at times there is difficulty in estimating discontinuity at the boundary.

In order to avoid the first problem, Bagai and Prakasa Rao (1995) suggested the use of a

kernel k which is defined only on the positive part of the real line. However, this approach

makes use of only the first r order statistics for the value of x in [Xr:n, X(r+1):n) where

Xi:n denotes the ith order statistic from the random sample {X1, . . . , Xn}. Chaubey and

Sen (1996) suggested a density estimator based on Hille’s smoothing lemma (see Feller

(1965), pp. 229) which is the derivative of a smooth version of the empirical distribution

function that uses the whole data. This has been extended to the case of associated

data (see Chaubey and Dewan (2009)). However, it may not be quite appropriate at the

lower most boundary for removing the bias. Chaubey, Sen and Sen (2007) proposed an

estimator based on a generalization of Hille’s lemma along with a perturbation idea, that

is appropriate to take care of the boundary bias. This type of estimator was proposed

earlier in Gawronski and Stadmüller (1981) [see also Stadmüller (1983)] for the iid case,

but the perturbation idea to take care of boundary bias and the representation given in

(3.2) seems new.

Bagai and Prakasa Rao (1995) studied the kernel type density estimators for as-

sociated sequences and showed that the kernel type estimator is strongly consistent,

pointwise as well as uniformly, over certain sets. Roussas (1991) studied strong uniform

consistency of kernel estimates of r − th order derivative of f under some regularity

conditions on the kernel and the bandwidth.

Here we study the estimator proposed by Chaubey et al. (2007) when the underlying
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random variables are stationary associated. Some prelimnary results are stated in section

2. In section 3 we propose a smooth estimator of the distribution function and study

its strong consistency and asymptotic normality. Properties of a smooth estimator of

the density function when underlying random variables are nonnegative are studied in

section 4.

2 Preliminaries

Here we put together results for associated random variables which are useful to study

the properties of the proposed density estimators.

Bagai and Prakasa Rao (1991) studied the strong consistency, pointwise and uniform,

of the empirical distribution function based on stationary associated random variables.

They proved the following result.

Theorem 2.1 Let {Xn, n ≥ 1} be a stationary sequence of associated random variables

with bounded continuous density for X1. Assume that, for some r > 1,

∞∑

j=n+1

{Cov(X1, Xj)}1/3 = O(n−(r−1)). (2.1)

Then, for any compact subset J ∈ R,

sup[|Fn(x) − F (x)| : x ∈ J ] → 0 a.s. as n→ ∞. (2.2)

We will also need the following theorems in the proofs.

Theorem 2.2 (Bullinski (1996)) Let X1, X2, . . . , Xn be associated random variables

. Let h(x) be a continuous function from Rn to R such that for any x ∈ Rn and any

k = 1, . . . , n, there exist finite derivatives (∂+h(x)/∂xk) and (∂−h(x)/∂xk). Further sup-

pose hat for each k = 1, . . . , n, there are at most a finite number of points at which

(∂+h(x)/∂xk) 6= (∂−h(x)/∂xk). Let

Lk(h) = max

{∥∥∥∥
∂+h(x)

∂xk

∥∥∥∥
∞

,

∥∥∥∥
∂−h(x)

∂xk

∥∥∥∥
∞

}
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where ‖.‖ stands for L∞ norm. Further suppose that similar assumptions hold for another

function g. Then, for any two disjoint subsets, I and J of {1, . . . , n}, we have

|Cov(h(Xi, i ∈ I), g(Xj, j ∈ J)| ≤
∑

i∈I

∑

j∈J

Li(h)Lj(g)Cov(Xi, Xj). (2.3)

Theorem 2.3 (Newman (1980)) Let {Xn, n ≥ 1} be a stationary sequence of associ-

ated random variables with E[X2
1 ] < ∞ and 0 < σ2 = Var(X1) + 2

∑∞
j=2 Cov(X1, Xj) <

∞. Then

n−1/2

∑n
j=1(Xj − E(Xj))

σ

L→ N(0, 1) as n→ ∞.

Theorem 2.4 (Bagai and Prakasa Rao (1995)) For every α ∈ J , an index set, let

{Xj(α), j ≥ 1} be an associated sequence. Let fn, n ≥ 1 be functions of bounded

variation which are differentiable and suppose that supn≥1supx|f ′
n(x)| ≤ c < ∞. Let

E(fn(Xj(α))) = 0 for every n ≥ 1, j ≥ 1 and α ∈ J . Suppose there exist r > 2 and

δ > 0 ( independent of α, j, n) such that

supn≥1supα∈Jsupj≥1E|fn(Xj(α))|r+δ ≤ ∞. (2.4)

Let

u(n, α) = supk≥1

∑

j:|j−k|≥n

Cov(Xj(α), Xk(α)). (2.5)

Suppose there exists c > 0 independent of α ∈ J such that

u(n, α) ≤ cn−(r−2)(r+δ)/2δ.

Then, there exists a constant B not depending on n,m and α, such that

supm≥1supα∈Jsupk≥0E|Sn+k,m(α) − Sk,m(α)|r ≤ Bnr/2, (2.6)

where

Smn,α =
mn∑

j=1

fn(Xj(α)).
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3 A smooth estimator of the distribution function

3.1 General Support

Chaubey et al. (2007) proposed the following smooth estimator of the distribution

function, the motivation for which came from the generalization of Hille’s Lemma (see

Feller (1965), §6).

F̃n(x) =

∫ ∞

−∞

Fn(t)dGx,n(t), (3.1)

where Fn(t) is the empirical distribution function based onX1, X2, . . . , Xn, andGx,n, n =

1, 2, . . . is a family of distribution functions with mean µn(x) → x and variance v2
n(x) → 0

as n→ ∞. Normally Gx,n is chosen in such a way that it has the same support as that of

the random variable under consideration. This will ensure that the estimator does not

assign positive mass to undesired regions. One can write F̃n(x) as

F̃n(x) = 1 − 1

n

n∑

i=1

Gx,n(Xi). (3.2)

From the above equation, it is clear that Gx,n(t) must be a decreasing function of x,

so that F̃n(x) is a proper distribution function. It may be remarked that the above

estimator reduces to the smooth estimator FnK(x) of F (x) based on the kernel estimator

in (1.1) given as

FnK(x) =
1

n

n∑

i=1

K

(
x−Xi

hn

)
, (3.3)

when Gx,n(t) = K((t−x)/hn), and K(x) =
∫ x

−∞
k(u)du. This estimator has been investi-

gated by Azzalini (1981) for the iid case. Its strong consistency in the case of associated

random variables is proved in the following theorem.

Theorem 3.1 Let {Xn, n ≥ 1} be a stationary sequence of associated random variables

with bounded continuous density for X1. Assume that, for some r > 1,

∞∑

j=n+1

{Cov(X1, Xj)}1/3 = O(n−(r−1)). (3.4)

Then, for any compact subset J ∈ R,

sup[|F̃n(x) − F (x)| : x ∈ J ] → 0 a.s. as n→ ∞. (3.5)
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Proof : Notice that

|F̃n(x) − F (x)| ≤ |F̃n(x) − F ∗
n(x)| + |F ∗

n(x) − F (x)|,

where

F ∗
n(x) =

∫ ∞

−∞

F (t)dGx,n(t) → F (x) as n→ ∞.

Further, for every x,

|F̃n(x) − F ∗
n(x)| ≤ max

t
|Fn(t) − F (t)|

∫ ∞

−∞

dGx,n(t)

The result now follows using Theorem 2.1.

3.2 Non-negative Support

Next, we consider the following estimator proposed by Chaubey et al. (2007) when the

support is [0,∞) where the the family Gx,n is obtained from distribution function Qvn(x)

on [0,∞) that has mean 1 and variance v2
n, namely,

F+
n (x) = 1 − 1

n

n∑

i=1

Qvn

(
Xi

x

)
, (3.6)

where νn → 0 as n→ ∞. Here Gx,n(t) = Qvn( t
x
).

Theorem 3.2 Let {Xn, n ≥ 1} be a stationary sequence of associated random variables

with bounded continuous density for X1. Assume that, for some r > 1,

∞∑

j=n+1

{Cov(X1, Xj)}1/3 = O(n−(r−1)). (3.7)

Let

L(x, t) = max

[
d+Qv(t/x)

dt
,
d−Qv(t/x)

dt

]

supxsuptL(x, t)) < A, (3.8)

where A is a positive constant. Then, there exists a constant C > 0 such that, for every

ǫ > 0,

supxP [|F+
n (x) − F ∗

n(x)| > ǫ] ≤ Cǫ−2rn−r, for every n ≥ 1, (3.9)

where

F ∗
n(x) =

∫ ∞

0

F (t)dQvn(t).
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Proof: Let Yj(x) = 1 −Qvn(Xi

x
).

supxsupj |Yj(x) − EYj(x)| ≤ 2.

Since Y1(x), Y2(x), . . . , Yn(x) are increasing functions of associated random variables,

they are associated. Furthermore,

∞∑

j=n+1

Cov(Y1(x), Yj(x)) ≤ L(x, t)

∞∑

j=n+1

Cov(X1, Xj) ≤ A

∞∑

j=n+1

Cov(X1, Xj). (3.10)

Also, the condition (3.7) implies that Cov(X1, Xn) → 0 as n→ ∞. Thus supnCov(X1, Xn) <

∞ and it follows that

∞∑

j=n+1

Cov(X1, Xj) ≤ supn{Cov(X1, Xn)}2/3
∞∑

j=n+1

{Cov(X1, Xj)}1/3. (3.11)

Then from Eqs. (3.7), (3.10) and Theorem 2.4, it follows that, for every n ≥ 1,

supxE|
n∑

j=1

(Yj(x) −E(Yj(x))|2r ≤ Cnr,

where C is independent of n and x. Then using Markov Inequality, we get that for every

ǫ > 0,

supxP [|F+
n (x) − F ∗

n(x)| > ǫ] ≤ Cǫ−2rn−r. (3.12)

Using Borel-Cantelli Lemma, from the above theorem we have for every x <∞, that

|F+
n (x) − F ∗

n(x)| → 0 a.s. as n→ ∞.

However, since |F ∗
n(x)− F (x)| → 0 as n→ ∞, we have strong pointwise consistency of

F+
n (x).

Corollary 3.1 Under the conditions of above theorem, for every x,

F+
n (x) → F (x) a.s. as n→ ∞.
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The following theorem shows that the proposed estimator is asymptotically normal.

Theorem 3.3 Let {Xn, n ≥ 1} be a stationary sequence of associated random variables

with
∑∞

j=2 Cov(X1, Xj) <∞. Then ,

√
n(F+

n (x) − F (x))
L→N(0, σ2(F )), as n→ ∞, (3.13)

where σ2
F = Var(Q(X1

x
)) + 2

∑∞
j=2 Cov((Q(X1

x
), Q(

Xj

x
)).

Proof: Recollect that Y1(x), Y2(x), . . . , Yn(x) are stationary associated random vari-

ables. Also
∑∞

j=2 Cov((Q(X1

x
), Q(

Xj

x
)) <∞.

The result then follows from Theorem 2.3.

4 A smooth estimator of density function for non-

negative associated sequence

The distribution function estimator given in (3.6) leads to the following estimator of the

density function.
d

dx
(F+

n (x)) =
1

nx2

n∑

i=1

Xiqvn

(
Xi

x

)
, (4.1)

where qv(.) denotes the density corresponding to the distribution function Qv(.).

This estimator, however, may not be defined at x = 0, except in cases limx→0
d
dx

(F+
n (x))

exists. Besides, this limit could be zero. Hence the following modified version of the es-

timator is proposed as in Chaubey et al. (2007),

f+
n (x) =

1

n(x+ ǫn)2

n∑

i=1

Xiqvn

(
Xi

x+ ǫn

)
, x ≥ 0, (4.2)

with ǫn decreasing to 0 at a sufficiently slow rate as n→ ∞. Chaubey et al. (2007) have

used the Gamma (α = 1/v2, β = v2)) distribution function for Qvn(.).

The formula given above helps in computing the density estimator f+
n (x). However,

we use the following integral representation to study the properties of the estimators,

f+
n (x) =

∫ ∞

0

Fn(t)
d

dx
[gx+ǫn(t)] dt,

where gx,n(t) = d
dt
Gx,n(t). Bias of f+

n (x): Following Chaubey et al. (2007)
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Bias
[
f+

n (x)
]

= E
[
f+

n (x)
]
− f(x)

=
1

(x+ ǫn)2
E

[
Xiqvn

(
Xi

x+ ǫn

)]
− f(x)

= xf ′(x)

∫ ∞

0

y(y − 1)qvn(y)dy + ǫnf
′(x)

∫ ∞

0

y2qvn(y)dy

+o

(∫ ∞

0

[
xy(y − 1)qvn(y) + ǫny

2qvn(y)
]
dy

)
. (4.3)

Using the fact that

v2
n = VarQvn

(X) = EQvn
[X1(X1 − 1)] ,

and v2
n, ǫn → 0 as n→ ∞, we get

Bias
[
f+

n (x)
]

=
(
xv2

n + ǫn
)
f ′(x) + o

(
v2

n + ǫ2n
)
. (4.4)

Variance of f+
n (x): Assume the following conditions as in Chaubey et al. (2007),

(A1)
∫ ∞

0
(qvn(t))m dt = 0

(
v
−(m−1)
n

)
as vn → 0 for 1 ≤ m ≤ 3,

(A2) I2(q) = lim
vn→0

vn

∫ ∞

0
(qvn(t))2 dt exists,

(A3) with q∗m,vn
(t) = (qvn(t))m

R

∞

0
(qvn(u))mdu,

1 ≤ m ≤ 3, and as vn → 0

(i) µm,vn =
∫ ∞

0
tq∗m,vn

(t)dt = 1 +O(vn)

(ii) σ2
m,vn

=
∫ ∞

0
(t− µm,vn)2 q∗m,vn

(t)dt = O(v2
n)

(iii) sup
0<vn<ǫn

∫ ∞

0
t4+δq∗m,vn

(t)dt <∞ for some δ > 0, ǫ > 0.

(A4) Let ψn(x, y) = yqvn

(
y

x+ǫn

)

∂
∂y
ψn(x, y) = qvn

(
y

x+ǫn

)
+ y

x+ǫn
q′vn

(
y

x+ǫn

)

Suppose sup
x,y

∣∣∣ ∂
∂y
ψn(x, y)

∣∣∣ ≤ C, where C is a positive constant.

(A5) For all ℓ and r ≥ 0,
∑

j:|ℓ−j|≥r

Cov(Xj , Xℓ) ≤ u(ℓ) where u(r) = e−αr for some α > 0
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We now have

Var
(
f+

n (x)
)

=
1

n (x+ ǫn)4 Var

(
X1qvn

(
X1

x+ ǫn

))

+
1

n2(x+ ǫn)4

∑ ∑

1≤i≤j≤n

Cov

(
Xiqvn

(
Xi

x+ ǫ

)
, Xjqvn

(
Xj

x+ ǫn

))
(4.5)

Using Taylor’s expansion of qvn and assumptions (A1) to to (A3) it follows from

Chaubey et al. (2007),

1

n
Var

(
X1

(x+ ǫn)2
qvn

(
X1

x+ ǫn

))

≃ I2(q)f(x)

nvn(x+ ǫn)
+ o

(
(nvn)−1

)
as vn → 0, ǫn → 0, nvn → ∞ (4.6)

and

2

n2(x+ ǫn)4

∑ ∑

1≤i≤j≤n

Cov

(
Xiqvn

(
Xi

x+ ǫn

)
, Xjqvn

(
Xj

x+ ǫn

))

≤ 2C

n2(x+ ǫn)4

∑∑

1≤i≤j≤n

Cov(Xi, Xj) (by (A4))

≤ C

n(x+ ǫn)4
. (By (A5) and stationarity ) (4.7)

From (4.5), (4.6) and (4.7), we therefore get

Var f+
n (x) =

I2(q)f(x)

nvn(x+ ǫn)
+O

(
1

n(x+ ǫn)4

)

+o
(
(nvn)−1

)
as vn → 0, ǫn → 0, nvn → ∞. (4.8)

Mean Integrated Squared Error of f+
n (x): Using above results

MSE(f+
n (x)) = Var (f+

n (x)) + Bias2
[
f+

n (x)
]

=
I2(q)f(x)

nvn(x+ ǫn)
+

[
(xv2

n + ǫn)f 1(x)
]2

+O

(
1

n(x+ ǫn)4

)
+ o

(
v2

n + ǫn
)

+O
(
(nv−1

n )
)
.

Thus f+
n (x) is asymptotically unbiased and weakly consistent for f(x).

10



It also therefore follows that the mean integrated squared error is

MISE
(
f+

n (x)
)

=

∫ ∞

0

MSE(f+
n (x))dx

≃ I2(q)

nvn

∫ ∞

0

f(x)

(x+ ǫn)
dx+

∫ ∞

0

[
(xv2

n + ǫn)f ′(x)
]2
dx

+

∫ ∞

0

1

n(x+ ǫn)4
dx+ o

(
v2

n + ǫn
)

+ o
(
(nvn)−1

)
.

The leading team of integrated mean square error is the asymptotic MISE,

AMISE
[
f+

n

]
=
I2(q)

nvn

∫ ∞

0

f(x)

(x+ ǫn)
dx+

∫ ∞

0

[
(xv2

n + ǫn)f ′(x)
]2
dx+

∫ ∞

0

1

n(x+ ǫn)4
dx.

In the next theorem, we show that the proposed density estimator is pointwise con-

sistent.

Theorem 4.1 Let {Xn, n ≥ 1} be a stationary sequence of associated random variables

with bounded continuous density for X1. Assume that, for some r > 1

(B1)
∞∑

j=n+1

{Cov(X1, Xj)}1/3 = O
(
n−(r−1)

)

(B2) vn → 0, ǫn → 0 as n→ ∞

(B3) sup
x≥0

∫ ∞

0

∣∣ ∂
dx

[
gx+ǫn,n(t)

]
= O

((
log log n

n1/2

))

(B4) sup
u>0,vn>0

uqvn(u) <∞

(B5) f(·) is Lipschitz continous on [0,∞).

Then, for any compact set J ⊂ R,

sup [|fn(x) − f(x) |x ∈ J | → 0 a.s. as n→ ∞.

Proof: By Fubini’s theorem

f+
n (x) =

d

dx

∫ ∞

0

Fn(t)gx+ǫn,n(t)dt.

=

∫ ∞

0

Fn(t)

[
d

dx
gx+ǫn,n(t)

]
dt.
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Therefore,

f+
n (x) − f(x) =

∫ ∞

0

(Fn(t) − F (t))

[
d

dx
gx+ǫn,n(t)

]
dt

+

∫ ∞

0

F (t)

[
d

dx
gx+ǫn,n(t)

]
dt− f(x).

Since Gx,n(t) = Qvn( t
x
), gx,n(t) = 1

x
qvn(t/x), by Fubini’s theorem, we get

∞∫

0

F (t)

(
d

dx
gx+ǫn,n(t)

)
dt

=

∫ ∞

0

F (t)
d

dx

(
d

dt
Qvn

(
t

x+ ǫn

))
dt.

=

∫ ∞

0

(
d

dx
Qvn

(
t

x+ ǫn

))
dF (t)

=

∫ ∞

0

t

(x+ ǫn)2
qvn

(
t

x+ ǫn

)
f(t)dt.

= E(f+
n (x)).

Hence

∣∣f+
n (x) − f(x)

∣∣ ≤ sup
t

|Fn(t) − F (t)|
∫ ∞

0

∣∣∣∣
d

dx
gx+ǫn,n(t)

∣∣∣∣ dt+
∫ ∞

0

|f(t(x+ ǫn)) − f(x)| tqvn(t)dt.

From B1 and B3, it follows that the first term on the right in the above inequality

converges to zero almost surely. As in Chaubey et al. (2007) from (B2), (B4), (B5), it

follows that the second term also converges to zero. Hence the result follows.
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