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Abstract: Supmech, which is noncommutative Hamiltonian mechanics (NHM) (developed in
paper I) with two extra ingredients : positive observable valued measures (PObVMs) [which
serve to connect state-induced expectation values and classical probabilities] and the ‘CC con-
dition’ [which stipulates that the sets of observables and pure states be mutually separating]
is proposed as a universal mechanics aimed at covering all physical phenomena. Quantum sys-
tems, defined algebraically as supmech hamiltonian systems with non-supercommutative system
algebras, are shown to inevitably have Hilbert space based realizations (so as to accommodate
rigged Hilbet space based Dirac bra-ket formalism), generally admitting commutative super-
selection rules. Traditional features of quantum mechanics of finite particle systems appear
naturally in an autonomous development. Treating massive particles as localizable elementary
quantum systems, the Schrödinger wave functions with traditional Born interpretation appear
as natural objects for their description and the Schrödinger equation for them is obtained
without ever using a classical Hamiltonian or Lagrangian.
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I. Introduction

This is the second of a series of papers aimed at obtaining a solution of Hilbert’s sixth
problem in the framework of a noncommutative geometry (NCG) based ‘all-embracing’ scheme
of mechanics. In the first paper (Dass [14]; henceforth referred to as I), the ‘bare skeleton’ of that
mechanics was presented in the form of noncommutative Hamiltonian mechanics (NHM) which
combines elements of noncommutative symplectic geometry and noncommutative probability in
an algebraic setting. Consideration of interaction between two systems in the NHM framework
led to the division of physical systems into two ‘worlds’ — the ‘commutative world’ and the
‘noncommutative world’ [corresponding, respectively, to systems with (super-)commutative
and non-(super-)commutative system algebras] — with no consistent description of interaction
allowed between two systems belonging to different ‘worlds’; in the ‘noncommutative world’,
the system algebras are constrained by the formalism to have a ‘quantum symplectic structure’
characterized by a universal Planck type constant.

The formalism of NHM presented in paper I is deficient in that it does not connect smoothly
to classical probability and, in the noncommutative case, to Hilbert space. A refined version
of it, called Supmech, is presented in section 2 which has two extra ingredients aimed at
overcoming these deficiencies.

The first ingredient is the introduction of classical probabilities as expectation values of
‘supmech events’ constituting ‘positive observable-valued measures’ (PObVMs) [a generaliza-
tion of positive operator-valued measures]. All probabilities in the formalism — the transition
probabilities between states as well as probabilities of outcomes in experimental situations —
are stipulated to be of this type.

The second ingredient is the condition of ‘compatible completeness’ between observables and
pure states (referred to as the ‘CC condition’) – the condition that the two sets be mutually
separating. This condition is satisfied in classical Hamiltonian mechanics and in traditional
Hilbert space quantum mechanics (QM). (It is, however, not generally satisfied in superclassical
Hamiltonian systems with a finite number of fermionic generators; see section 2.3). It will be
seen to play an important role in the whole development; in particular, it serves to smoothly
connect — without making any extra assumptions — the algebraically defined quantum systems
with the Hilbert space-based ones.

A general treatment of localizable systems (more general and simpler than that in the tra-
ditional approaches), which makes use of PObVMs, is given in section 2.4. In section 2.5,
elementary systems are defined in supmech and the special case of nonrelativistic elementary
systems is treated. The role of relativity groups in the identification of fundamental observ-
ables of elementary systems is emphasized. Particles are proposed to be treated as localizable
elementary systems.

2



In section 3, quantum systems are treated as supmech Hamiltonian systems with non-
(super-)commutative system algebras. As mentioned above, the CC condition ensures the
existence of their Hilbert space based realizations. In the case of systems with finitely gener-
ated system algebras, one has an irreducible faithful representation of the system algebra; in
the general case, one has a direct sum of such representations corresponding to situations with
commutative superselection rules. Treating material particles as localizable elementary quan-
tum systems, the Schrödinger wave functions are shown to appear naturally in the description
of pure states; their traditional Born interpretation is obvious and the Schrödinger equation
appears as a matter of course — without ever using the classical Hamiltonian or Lagrangian
in the process of obtaining it. The Planck constant is introduced at the place dictated by the
formalism (i.e. in the quantum symplectic form); its appearance everywhere else — canonical
commutation relations, Heisenberg and Schrödinger equations, etc. — is automatic. In section
4, a transparent treatment of quantum - classical correspondence emphasizing some formal
aspects is presented.

In section 5, a provisional set of axioms underlying the treatment of systems in the supmech
framework is given. The last section contains some concluding remarks.

2. Augmented Noncommutative Hamiltonian Mechanics : Supmech

In this section we shall introduce two extra ingredients in NHM — the positive observable
valued measures (PObVMs) and the CC condition — which serve to connect it smoothly to
classical probability and to Hilbert space respectively; the resulting augmented NHM will be
called ‘Supmech’. The PObVMs will be used in section 2.4 in the treatment of localizable
systems. The CC condition will be used in section 2.5 to allow the Hamiltonian action of a
relativity group on the system algebra to be extended to a Poisson action which is an important
simplification. Noncommutative Noether invariants of the Galilean group for a free massive
spinless particle will be obtained in section 2.6.

We shall freely use the terminology and notation of I. We quickly recall here that, in NHM,
a physical system is assumed to have associated with it a (topological) superalgebra A (with
unit element I), the even hermitian elements of which are identified as the system observables.
Observables of the form of finite sums

∑
A∗iAi (Ai ∈ A) are called positive. A state φ of A is

defined as a (continuous) positive linear functional on A satisfying the normalization condition
φ(I) = 1; the quantity φ(A) is to be interpreted as the expectation value of the observable
A when the system is in the state φ. Sets of observables, states and pure states (those not
expressible as nontrivial convex combinations of other states) of A are denoted as O(A),S(A)
and S1(A) respectively.

Note. In (I, section 2.1), the following convention about the *-operation in a superalgebra A
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[following (Dubois-Violette [20]; section 2)] was adopted :

(AB)∗ = (−1)εAεBB∗A∗

where εA is the parity of A ∈ A. This convention, however, does not suit the needs of the
work reported in this series (it was not used anywhere in I). We shall henceforth use the
convention (AB)∗ = B∗A∗. [Given two fermionic annihilation operators a, b, for example,
we have (ab)∗ = b∗a∗ and not (ab)∗ = −b∗a∗. One can also check the appropriateness of
the latter convention by taking A to be the superalgebra of linear operators on a superspace
V = V (0) ⊕ V (1).]

2.1. Positive observable valued measures

We shall introduce classical probabilities in the formalism through a straightforward for-
malization of a measurement situation. To this end, we consider a measurable space (Ω,F)
and associate, with every measurable set E ∈ F , a positive observable ν(E) such that

(i) ν(∅) = 0, (ii) ν(Ω) = I,

(iii) ν(∪iEi) =
∑

i ν(Ei) (for disjoint unions).

[The last equation means that, in the relevant topological algebra, the possibly infinite sum on
the right hand side is well defined and equals the left hand side.] Then, given a state φ, we
have a probability measure pφ on (Ω,F) given by

pφ(E) = φ(ν(E)) ∀E ∈ F . (1)

The family {ν(E), E ∈ F} will be called a positive observable-valued measure (PObVM) on
(Ω,F). It is the abstract counterpart of the ‘positive operator-valued measure’ (POVM) em-
ployed in Hilbert space QM (Davies [16]; Holevo [25]; Busch, Grabowski, Lahti [11]). The
objects ν(E) may be called supmech events (representing possible outcomes in a measure-
ment situation); these are algebraic generalizations of the objects (projetion operators) called
‘quantum events’ (Parthasarathy [37]). A state assigns probabilities to these events. Eq.(1)
represents the desired relationship between the supmech expectation values and classical prob-
abilities.

In concrete applications, the space Ω represents the ‘value space’ (spectral space) of one or
more observable quantities. The measurable subsets of Ω (elements of F) represent idealised
domains supposed to be experimentally accesible. In a classical probability space (Ω,F , P cl),
they are the ‘events’ to which probabilities are assigned by the probability measure P cl; the
classical probability of an event E ∈ F is

P cl(E) =
∫

Ω
χEdP

cl ≡ φP cl(χE) (2)
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where χE is the characteristic/indicator function of the subset E (the random variable which
represents the classical observable distinguishing between the occurrence and non-occurrence of
the event E. [These random variables are easily seen to constitute a PObVM on the commutative
unital *-algebra Ãcl of complex measurable functions on (Ω,F); the objects ν(E) described
above are noncommutative generalizations of these.] The right hand side of (2) expresses the
classical probability of occurrence of the event E as expectation value of the observable χE in
the state φP cl [represented by the probability measure P cl on the measurable space (Ω,F)] of
the commutative algebra Ãcl.

We have here a more sophisticated scheme of probability theory which incorporates classical
probability theory as a special case and is well equipped to take into consideration the influence
of one measurement on probabilities of outcomes of other measurements. Moreover, this scheme
appears embedded in an ‘all-embracing’ scheme of mechanics — in the true spirit of Hilbert’s
sixth problem.

Concrete examples of the objects ν(E) will appear in sections 2.4 and 3.4 (where observables
related to localization are treated) and in section 4 on measurements on quantum systems.

2.2. The condition of compatible completeness on observables and pure states

In a sensible physical theory, the collection of pure states must be rich enough to distinguish
between two different observables. (Mixed states represent averaging over ignorances over and
above those implied by the irreducible probabilistic aspect of the theory; they, therefore, are
not the proper objects for a statement of the above sort.) Similarly, there should be enough
observables to distinguish between different pure states. These requirements are taken care of
in supmech by stipulating that the pair (O(A), S1(A)) be compatibly complete in the sense
that

(i) given A,B ∈ O(A), A 6= B, there should be a state φ ∈ S1(A) such that φ(A) 6= φ(B);

(ii) given two different states φ1 and φ2 in S1(A), there should be an A ∈ O(A) such that
φ1(A) 6= φ2(A).

We shall refer to this condition as the ‘CC condition’ for the pair (O(A),S1(A)).

Proposition 2.1 The CC condition holds for (i) a classical Hamiltonian system (M,ωcl, Hcl)
[where (M,ωcl) is a finite dimensional symplectic manifold and the Hamiltonian Hcl is a smooth
real valued function on M] and (ii) a traditional quantum system represented by a quantum triple
(H,D,A) where H is a complex separable Hilbert space, D a dense linear subset of H and A is
an Op*-algebra based on the pair (H,D) acting irreducibly [i.e. such that there does not exist a
smaller quantum triple (H′,D′,A) with D′ ⊂ D,AD′ ⊂ D′ and H′ is a proper subspace of H].
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[Note. Op∗- algebras (Horuzhy [27]) and quantum triples were defined in section 3.4 of I.]

Proof. (i) For a classical hamiltonian system (M,ωcl, Hcl), observables are smooth real valued
functions on M and pure states are Dirac measures (or, equivalently, points of M) µξ0(ξ0 ∈M);
the expectation value of the observable f in the pure state φξ0 corresponding to the Dirac
measure µξ0 is given by φξ0(f) =

∫
fdµξ0 = f(ξ0). Given two different real-valued smooth

functions on M, there is a point of M at which they take different values; conversely, given
two different points ξ1 and ξ2 of M, there is a real-valued smooth function on M which takes
different values at those points. [To show the existence of such a function, let U be an open
neighborhood of ξ1 not containing ξ2; now appeal to lemma (2) on page 92 of (Matsushima
[34]) which guarantees the existence of a smooth function non-vanishing at ξ1 and vanishing
outside U.]
(ii) The observables are the Hermitian elements of A and pure states are unit rays represented
by normalized elements of D.
(a) Given A,B ∈ O(A), and (ψ,Aψ) = (ψ,Bψ) for all normalized ψ in D (hence for all ψ in
D), we have (χ,Aψ) = (χ,Bψ) for all χ, ψ ∈ D, implying A = B. [Hint : Consider the given
equality with the state vectors (χ+ ψ)/

√
2 and (χ+ iψ)/

√
2.]

(b) Given normalized vectors ψ1, ψ2 in D and (ψ1, Aψ1) = (ψ2, Aψ2) for all A ∈ O(A), we
must prove that ψ1 = ψ2 (up to a multiplicative phase factor). Considering the 2-dimensional
subspace V of H spanned by ψ1 and ψ2 and choosing an appropriate orthonormal basis in V,
we can write

ψ1 =

(
1
0

)
, ψ2 =

(
a

b

)
with |a|2 + |b|2 = 1.

It is easily seen that ψ2 = Uψ1 where (writing a = |a|eiα, b = |b|eiβ) U is the unitary matrix

U =

(
a bei(α−β)

b −aei(β−α)

)
.

Extending U trivially to a unitary operator on H (and denoting the extended operator by U)
we again have ψ2 = Uψ1 (in H). The given equality and denseness of D then give U∗AU = A

(for all A ∈ O(A), hence all A ∈ A). The irreducibility of A-action now implies U = I up to a
multiplicative phase factor. �

Note. The irreducibility of A-action assumed above implies that all elements of D represent
pure states. This excludes the situations when H is a direct sum of more than one coherent
subspaces in the presence of superselection rules.

The noncommutative Hamiltonian mechanics (NHM) described in I augmented by the two
inclusions — PObVMs and the CC condition — is being hereby projected as the ‘all-embracing’
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mechanics covering (in the sense of providing a common framework for the description of) all
motion in nature; we shall henceforth refer to it as Supmech.

We have seen in section 3.4 of I that both — classical Hamiltonian mechanics and traditional
Hilbert space quantum mechanics — are subdisciplines of NHM. Since the two new ingredients
— PObVMs and the CC condition — are present in both of them, both are subdisciplines of
supmech as well.

2.3. Superclassical systems; Violation of the CC condition

Superclassical mechanics is an extension of classical mechanics which employs, besides the
traditional phase space variables, Grassmann variables θα (α = 1, ..n, say) satisfying the rela-
tions

θαθβ + θβθα = 0 for all α, β;

[in particular (θα)2 = 0 for all α]. These objects generate the so -called Grassmann algebra
(with n generators) Gn whose elements are functions of the form

f(θ) = a0 + aαθ
α + aαβθ

βθα + ...

where the coefficients a.. are complex numbers; the right hand side is obviously a finite sum. If
the coefficients a.. are taken to be smooth functions on, say, Rm, the resulting functions f(x, θ)
are referred to as smooth functions on the superspace Rm|n; the algebra of these functions is
denoted as C∞(Rm|n). With parity zero assigned to the variables xa (a = 1,..,m) and one to
the θα, C∞(Rm|n) is a supercommutative superalgebra. Restricting the variables xa to an open
subset U of Rm, one obtains the superdomain Um|n and the superalgebra C∞(Um|n) in the
above-mentioned sense. Gluing such superdomains appropriately, one obtains the objects called
supermanifolds. These are the objects serving as phase spaces in superclassical mechanics. We
shall, for simplicity, restrict ourselves to the simplest supermanifolds Rm|n and take, as system
algebra, A = C∞(Rm|n). A *-operation is assumed to be defined on A with respect to which
the ‘coordinate variables’ xa and θα are assumed to be hermitian.

States in superclassical mechanics are normalized positive linear functionals onA = C∞(Rm|n);
they are generalizations of the states in classical statistical mechanics given by

φ(f) =
∫
Rm|n

f(x, θ)dµ(x, θ)

where the measure µ satisfies the normalization and positivity conditions

1 = φ(1) =
∫
dµ(x, θ); (3)

0 ≤
∫
ff∗dµ for all f ∈ A. (4)
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For states admitting a density function, we have

dµ(x, θ) = ρ(x, θ)dθ1...dθndmx.

To ensure real expectation values for observables, ρ(., .) must be even (odd) for n even (odd).
The condition (3) implies that

ρ(x, θ) = ρ0(x)θn...θ1 + terms of lower order in θ (5)

where ρ0 is a probability density on Rm. The inequality (4) implies inequalities involving the
coefficient functions on the right in Eq.(5). They eventually determine a convex domain D in
a real vector space. Pure states correspond to points on the boundary of D (which is generally
not a manifold).

The CC condition is generally not satisfied by the pair (O(A),S1(A)) in super-classical me-
chanics. To show this, it is adequate to give an example (Berezin [7]). Taking A = C∞(R0|3) ≡
G3, we have a general state represented by a density function of the form

ρ(θ) = θ3θ2θ1 + cαθ
α.

The inequality (4) with f = aθ1 +bθ2 (with a and b arbitrary complex numbers) implies c3 = 0;
similarly, c1 = c2 = 0, giving, finally

ρ(θ) = θ3θ2θ1.

There is only one possible state which must be pure. This state does not distinguish, for
example, observables f = a + bθ1θ2 with the same ‘a’ but different ‘b’, thus verifying the
assertion made above.

Note. It would not do to stipulate exclusion of θ-dependence in observables. Treatments in
superclassical mechanics, of particles with spin, for example, employ θ-dependent observables
(Berezin [7], Dass [13]).

The fermionic extension of classical mechanics, therefore, appears to have a fundamental
inadequacy; no wonder, therefore, that it does not appear to be realized by systems in nature.

The argument presented above, however, does not apply to the n =∞ case.

2.4. Systems with configuration space; lacalizability

We shall now consider the class of systems each of which has a configuration space (say, M)
associated with it and it is meaningful to ask questions about the localization of the system in
subsets of M. To start with, we shall take M to be a topological space and take the permitted
domains of localization to belong to B(M), the family of Borel subsets of M.
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Some good references containing detailed treatment of localization in conventional ap-
proaches are (Newton and Wigner [36], Wightman [45], Varadarajan [43], Bacry [3]). We
shall follow a relatively more economical path exploiting some of the constructions described
above and in I.

We shall say that a system S [with associated symplectic superalgebra (A, ω)] is localizable
in M if we have a positive observable-valued measure (as defined in section 2.1 above) on the
measurable space (M,B(M)), which means that, corresponding to every subset D ∈ B(M),
there is a positive observable P(D) in A satisfying the three conditions
(i) P (∅) = 0; (ii) P(M) = I;
(iii) for any countable family of mutually disjoint sets Di ∈ B(M),

P (∪iDi) =
∑
i

P (Di). (6)

For such a system, we can associate, with any state φ, a probability measure µφ on the mea-
surable space (M,B(M)) defined by [see Eq.(1)]

µφ(D) = φ(P (D)), (7)

making the triple (M,B(M), µφ) a probability space. The quantity µφ(D) is to be interpreted as
the probability of the system, given in the state φ, being found (on observation/measurement)
in the domain D.

Generally it is of interest to consider localizations having suitable invariance properties
under a transformation group G. Typically G is a topological group with continuous action on
M assigning, to each g ∈ G, a bijection Tg : M →M such that, in obvious notation, TgTg′ = Tgg′

and Te = idM ; it also has a symplectic action on A and S(A) given by the mappings Φ1(g)
and Φ2(g) introduced in section 3.5 of I [Φ1(g), for every g ∈ G, is a canonical transformation
of A and Φ2(g) = ([Φ1(g)]−1)T acts on states].

. The localization in M described above will be called G-covariant (or, loosely, G-invariant)
if

Φ1(g)(P (D)) = P (Tg(D)) ∀g ∈ G and D ∈ B(M). (8)

Proposition 2.2 In a G-covariant localization as described above, the localization probabilities
(7) satisfy the covariance condition

µΦ2(g)(φ)(D) = µφ(Tg−1(D))for all φ ∈ S(A) and D ∈ B(M). (9)

Proof. We have

µΦ2(g)(φ)(D) = < Φ2(g)(φ), P (D) >=< φ,Φ1(g−1)(P (D)) >

= < φ,P (Tg−1(D)) >= µφ(Tg−1(D)). �
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In most practical applications, M is a manifold and G a Lie group with smooth action on
M and a Poisson action on the symplectic superalgebra (A, ω). In this case, the ‘hamiltonian’
hξ corresponding to an element ξ of the Lie algebra G of G is an observables which serves,
through Poisson brackets, as the infinitesimal generator of the one-parameter group of canonical
transformations induced by the action of the one-parameter group generated by ξ on the system
algebra A (I, section 3.5). The Poisson brackets between these hamiltonins correspond to the
commutation relations in G [se Eq.(59) in I and Eq.(13) below].

In Hilbert space QM, the problem of G-covariant localization is traditionally formulated
in terms of the so-called ‘systems of imprimitivity’ (Mackey [33], Varadarajan [43], Wightman
[45]). We are operating in the more general algebraic setting trying to exploit the machinery
of noncommutative symplectics developed in I. Clearly, there is considerable scope for mathe-
matical developments in this context parallel to those relating to systems of imprimitivity. We
shall, however, restrict ourselves to some essential developments relevant to the treatment of
localizable elementary systems (massive particles) later.

We shall be mostly concerned with M = Rn (equipped with the Euclidean metric). In this
case, one can consider averages of the form (denoting the natural coordinates on Rn by xj)∫

Rn
xjdµφ(x), j = 1, ..., n. (10)

It is natural to introduce position/configuration observables Xj such that the quantity (10) is
φ(Xj). Let En denote the (identity component of) Euclidean group in n dimensions and let
pj ,mjk(= −mkj) be its generators satisfying the commutation relations

[pj , pk] = 0, [mjk, pl] = δjlpk − δklpj
[mjk,mpq] = δjpmkq − δkpmjq − δjqmkp + δkqmjp. (11)

We shall say that a system S with configuration space Rn has concrete Euclidean-covariant
localization if it is localizable as above in Rn and
(i) it has position observables Xj ∈ A such that, in any state φ,

φ(Xj) =
∫
Rn
xjdµφ(x); (12)

(The term ‘concrete’ is understood to imply this condition.)
(ii) the group En has a Poisson action on A so that we have the hamiltonians Pj ,Mjk associated
with the generators pj ,mjk such that

{Pj , Pk} = 0, {Mjk, Pl} = δjlPk − δklPj
{Mjk,Mpq} = δjpMkq − δkpMjq − δjqMkp + δkqMjp; (13)
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(iii) the covariance condition (9) holds with the Euclidean group action on Rn given by

T(R,a)x = Rx+ a, R ∈ SO(n), a ∈ Rn. (14)

Proposition 2.3 For supmech systems with concrete Euclidean - covariant localization, the
infinitesimal Euclidean transformations of the localization observables Xj are given by the PB
relations

{Pj , Xk} = δjkI, {Mjk, Xl} = δjlXk − δklXj . (15)

Proof. Using Eq.(12) with φ replaced by φ′ = Φ2(g)(φ), we have

φ′(Xj) =
∫
xjdµφ′(x) =

∫
xjdµφ(x′) =

∫
(x′j − δxj)dµφ(x′)

where x′ ≡ Tg−1(x) ≡ x+ δx and we have used Eq.(9) to write dµφ′(x) = dµφ(x′). [Application
of the transformation rule for integration over a measure (DeWitt-Morette and Elworthy [18];
p.130) gives the same result.] Writing φ′ = φ+ δφ and taking Tg to be a general infinitesimal
transformation generated by εξ = εaξa, we have [recalling Eq.(53) of I]

−(δφ)(Xj) = εφ({hξ, Xj}) =
∫
Rn
δxjdµφ(x). (16)

For translations, with ξ = pk, hpk = Pk, δxj = εδjk, Eq.(16) gives

φ({Pk, Xj}) = δjk = δjkφ(I).

Since this holds for all φ ∈ S(A), we have the first of the equations (15). The second equation
is similarly obtained by taking, in obvious notation, εξ = 1

2εjkmjk and

δxl = εlkxk = εjkδjlxk =
1
2
εjk(δjlxk − δklxj). �

The hamiltonians Pj and Mjk will be referred to as the momentum and angular momentum
observables of the system S. It should be noted that the PBs obtained above do not include the
expected relations {Xj , Xk} = 0; these relations, as we shall see in the following subsection,
come from the relativity group. [Recall that, in the treatments of localalization based on
systems of imprimitivity, the commutators [Xj , Xk] = 0 appear because there the analogues of
the objects P(D) are assumed to be projection operators satisfying the relation P (D)P (D′) =
P (D ∩D′)(= P (D′)P (D)). In our more general approach, we do not have such a relation.]

2.5. Elementary systems; Particles

11



We shall now obtain, in the framework of supmech, the fundamental observables relating
to the characterization/labelling and kinematics of a particle. Relativity group will be seen to
play an important role in this context.

Particles are irreducible entities localized in ‘space’ and their dynamics involves ‘time’.
Their description, therefore, belongs to the subdomain of supmech admitting space-time de-
scriptions of systems. The space-time M will be assumed here to be a (3+1)- dimensional differ-
entiable manifold equipped with a suitable metric to define spatial distances and time-intervals.
A reference frame is an atlas on M providing a coordinatization of its points. Observers are
supposedly intelligent beings employing reference frames for doing concrete physics; they will
be understood to be in one-to-one correspondence with reference frames.

To take into consideration observer-dependence of observables, we adopt the principle of
relativity formalized as follows :

(i) There is a preferred class of reference frames whose space-time coordinatisations are related
through the action of a connected Lie group G0 (the relativity group).
(ii) The relativity group G0 has a hamiltonian action on the symplectic superalgebra (A, ω) [or
the generalized symplectic superalgebra (A,X , ω) (se section 3.7 of I) in appropriate situations]
associated with a system.
(iii) All reference frames in the chosen class are physically equivalent in the sense that the
fundamental equations of the theory are covariant with respect to the G0-transformations of
the relevant variables.

We shall call such a scheme G0-relativity and systems covered by it G0-relativistic. In the
present work, G0 will be assumed to have the one-parameter group T of time translations as
a subgroup. This allows us to relate the Heisenberg and Schrödinger pictures of dynamics
corresponding to two observers O and O′ through the symplectic action of G0 by following the
strategy adopted in (Sudarshan and Mukunda [42]; referred to as SM below). Showing the
observer dependence of the algebra elements explicitly, the two Heisenberg picture descriptions
A(O,t) and A(O′,t′) of an element A of A can be related through the sequence (assuming a
common zero of time for the two observers)

A(O, t) −→ A(O, 0) −→ A(O′, 0) −→ A(O′, t′)

where the first and the last steps involve the operations of time translations in the two frames.
We shall be concerned only with the symplectic action of G0 on A involved in the middle step.

To formalize the notion of a (relativistic, quantum) particle as an irreducible entity, Wigner
[47] introduced the concept of an ‘elementary system’ as a quantum system whose Hilbert space
carries a projective unitary irreducible representation of the Poincaré group. The basic idea
is that the state space of an elementary system should not admit a decomposition into more
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than one invariant (under the action of the relevant relativity group) subspaces. Following this
idea, elementary systems in classical mechanics (SM; Alonso [1]) have been defined in terms of
a transitive action of the relativity group on the phase space of the system. Our treatment of
elementary systems in supmech will cover classical and quantum elementary systems as special
cases.

A system S having associated with it the symplectic triple (A,S1, ω) will be called an
elementary system in G0-relativity if it is a G0-relativistic system such that the action of G0 on
the space S1 of its pure states is transitive. Formally, an elementary system may be represented
as a collection E = (G0,A,S1, ω,Φ) where Φ = (Φ1,Φ2) are mappings as in section 3.5 of I
implementing the G0-actions — Φ1 describing a hamiltonian action on (A, ω) and Φ2[= (Φ̃−1)]
a transitive action on S1.

Proposition 2.4 In the G0-relativity scheme, a G0-invariant observable must be a multiple of
the unit element.

Proof. Let Q be such an observable and φ1, φ2 two pure states. The transitive action of G0 on
S1 implies that φ2 = Φ2(g)(φ1) for some g ∈ G0. We have

< φ2, Q > = < Φ2(g)(φ1), Q > = < φ1,Φ1(g−1)(Q) >=< φ1, Q >

showing that the expectation value of Q is the same in every pure state. Denoting this common
expectation value of Q by q (we shall call it the value of Q for the system), we have, by the
CC condition, Q = qI. �

This has the important implication that, for an elementary system, a Poisson action [of G0

or of its projective group Ĝ0 (see section 3.5 of I)] is always available; this is because, if G0

does not admit Poisson action, the values α(ξ, η) of the cocycle α of section 3.5 of I (where ξ, η
are elements of the Lie algebra G0 of G0), since they have vanishing Poisson brackets (PBs)
with all elements of A (hence with the hamiltonians corresponding to G0), are multiples of the
unit element and the hamiltonian action of G0 can be extended to a Poisson action of Ĝ0. [See
the discussion following Eq.(62) of I.] In the remainder of this subsection, Ĝ0 will stand for the
effective relativity group which will be G0 or its projective group depending on whether or not
G0 admits Poisson action on A.

Let ξa (a = 1,..,r) be a basis in the Lie algebra Ĝ0 of Ĝ0 satisfying the commutation relations
[ξa, ξb] = Ccabξc. Corresponding to the generators ξa, we have the hamiltonians ha ≡ hξa in A
satisfying the PB relations

{ha, hb} = Ccab hc. (17)

These relations are the same for all elementary systems in G0-relativity.
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In classical mechanics, one has an isomorphism between the symplectic structure on the
symplectic manifold of an elementary system and that on a coadjoint orbit in Ĝ∗0 (the con-
jugate space of the Lie algebra Ĝ0). In our case, the state spaces of elementary systems and
coadjoint orbits of relativity groups are generally spaces of different types and the question
of an isomorphism does not arise. The appropriate relation in supmech corresponding to the
above mentioned relation in classical Hamiltonian mechanics is given by proposition 2.5 below.
Adopting/(adapting from) the notation of section 3.6 of I, we have the mapping h : Ĝ0 → A
given by h(ξ) = hξ; the noncommutative momentum map is the restriction to S1 of the trans-
posed map h̃ : A∗ → Ĝ∗0 :

< h̃(φ), ξ > = < φ, h(ξ) > = < φ, hξ > for all φ ∈ S1. (18)

The equivariance condition for the noncommutative momentum map h̃ [(68) of I] is

h̃(Φ2(g)φ) = Cadg(h̃(φ)) (19)

where Cad stands for the co-adjoint action of Ĝ0 on Ĝ∗0 .

Proposition 2.5 Adopting the notations introduced above in the context of elementary systems
in G0-relativity, we have
(a) the h̃-images of pure states of an elementary system in supmech are co-adjoint orbits;
(b) the coordinates ua(g) of a general point of the co-adjoint orbit corresponding to the pure
state φ [defined by Cadg[h̃(φ)] = ua(g)λa where {λa} is the dual basis in Ĝ∗0 corresponding to
the basis {ξa} in Ĝ0] are given by

ua(g) =< φ,Φ1(g−1)ha > . (20)

Proof. Part (a) follows immediately from Eq.(19) and the transitivity of the Ĝ0-action on the
pure states.
Part(b). We have

ua(g) = < Cadg[h̃(φ)], ξa > = < h̃[Φ2(g)(φ)], ξa > = < φ,Φ1(g−1)ha > . �

Eq.(20) shows that the transformation properties of the hamiltonians ha are directly related to
those of the corresponding coordinates (with respect to the dual basis) of points on the relevant
co-adjoint orbit. This is adequate to enable us to to use the descriptions of the relevant co-
adjoint actions in (Alonso [1]) and draw parallel conclusions.

For the treatment of elementary systems in a given relativity scheme, we shall adopt the
following strategy :

(i) Obtain the PBs (17).
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(ii) Use these PBs to identify some fundamental observables [i.e. those which cannot be obtained
from other observables (through algebraic relations or PBs)]. These include observables (like
mass) that Poisson-commute with all has and the momentum observables (if the group of space
translations is a subgroup of the relativity group considered).

(iii) Determine the transformation laws of has under finite transformations of G0 following
the relevant developments in (SM; Alonso [1]). Use these transformation laws to identify the
G0-invariants and some other fundamental observables (the latter are configuration and spin
observables in the schemes of Galilean and special relativity). The values of the invariant
observables serve to characterize/label an elementary system.

(iv) The system algebra A for an elementary system is to be taken as the one generated by the
fundamental observables and the identity element.

(v) Obtain (to the extent possible) the general form of the Hamiltonian as a function of the
fundamental observables as dictated by the PB relations (17).

For illustration, we consider the scheme of Galilean relativity.

Nonrelativistic elementary systems

In the nonrel;ativistic domain, the relativity group G0 is the Galilean group of transforma-
tions of the Newtonian space-time R3 × R given by

g = (b, a, v, R) : (x, t) 7→ (Rx+ tv + a, t+ b) (21)

where R ∈ SO(3), v ∈ R3, a ∈ R3 and b ∈ R. Choosing a basis of the 10-dimensional Lie
algebra G0 of G0 in accordance with the representation

g = exp(bH) exp(a.P) exp(v.K) exp(w.J )

the commutators [Jj ,Jk], [[Jj ,Kj ] are standard; the nontrivial commutators are

[Kj ,H] = Pj , [Kj ,Pk] = 0. (22)

[The last one should be obvious from Eq.(21).]
Recalling the discussion relating to Poisson action of Lie groups on symplectic superal-

gebras in section 3.5 of I, the cohomology group H2
0 (G0,R) does not vanish (implying non-

implementability of a Poisson action of G0 ) and has dimension one (Cariñena, Santander [12];
Alonso [1]; Guillemin, Sternberg [24]; SM). Choosing the representative cocycle in Z2

0 (G0,R) as
η(Kj ,Pk) = −δjkM, Eq. (63) of I implies the replacement of the second equation in (22) by

[Kj ,Pk] = −δjkM. (23)
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Supplementing the so modified commutation relations of G0 with the vanishing commutators
ofM with the ten generators of G0, we obtain the commutation relations of the 11-dimensional
Lie algebra Ĝ0 of the projective group Ĝ0 of the Galilean group G0.

The hamiltonians Ji,Ki, Pi, H,M corresponding to the generators Ji,Ki,
Pi(i = 1, 2, 3),H,M of Ĝ0 [so that hPi = Pi etc] satisfy the Poisson bracket relations (SM)

{Ji, Jj} = −εijkJk, {Ji,Kj} = −εijkKk, {Ji, Pj} = −εijkPk
{Ki, H} = −Pi, {Ki, Pj} = −δijM ; (24)

all other PBs vanish. By the argument presented above, we must have M= mI, m ∈ R. We shall
identify m as the mass of the elementary system. The condition m ≥ 0 will follow later from
an appropriate physical requirement. The objects Pi and Ji, being generators of the Euclidean
subgroup E3 of G0, are the momentum and angular momentum observables of subsection 2.4
above.

The transformation laws of the hamiltonians of Ĝ0 under its adjoint action (SM; Alonso
[1]) yield the following three independent invariants

M, C1 ≡ 2MH −P2, C2 ≡ (MJ−K×P)2. (25)

Of these, the first one is obvious; the vanishing of PBs of C1 with all the hamiltonians is also
easily checked. Writing C2 = BjBj where

Bj = MJj − εjklKkPl,

it is easily verified that

{Jj , Bk} = −εjklBl, {Kj , Bk} = {Pj , Bk} = {H,Bk} = 0

which finally leads to the vanishing of PBs of C2 with all the hamiltonians. The values of these
three invariants characterize a Galilean elementary system in supmech.

We henceforth restrict ourselves to elementary systems with m 6= 0. Defining Xi = m−1Ki,
we have

{Xj , Xk} = 0, {Pj , Xk} = δjkI, {Jj , Xk} = −εjklXl. (26)

Comparing the last two equations above with the equations (15)(for n=3), we identify Xj with
the position observables of section 2.4. Note that the fact that the Xjs mutually Poisson-
commute comes from the relativity group.

Writing S = J−X×P, we have C2 = m2S2. We have the PB relations

{Si, Sj} = −εijkSk, {Si, Xj} = 0 = {Si, Pj}. (27)
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We identify S with the internal angular momentum or spin of the elementary system.
The invariant quantity

U ≡ C1

2m
= H − P2

2m
(28)

is interpreted as the internal energy of the elementary system; its appearance as one of the
invariant observables of a Galilean elementary system reflects the possibility that such an ele-
mentary system may have an internal dynamics involving dynamical variables which are invari-
ant under the action of the Galilean group. It is the appearance of this quantity (which plays
no role in Newtonian mechanics) which is responsible for energy being defined in Newtonian
mechanics only up to an additive constant.

Writing S2 = σI and U = u I, we see that Galilean elementary systems with m 6= 0 can be
taken to be characterized/labelled by the parameters m, σ and u. The fundamental kinematical
observables are Xj , Pj and Sj (j=1,2,3). The system algebra A of a nonrelativistic elementary
system is assumed to be the one generated by the fundamental observables and the identity
element.

Particles are defined as the elementary systems with u = 0. Eq.(28) now gives

H =
P2

2m
(29)

which is the Hamiltonian for a free Galilean particle in supmech.

Note. (i) Full Galilean invariance (more generally, full invariance under a relativity group)
applies only to an isolated system. Interactions/(external influences) are usually described
with (explicit or implicit) reference to a fixed reference frame or a restricted class of frames.
For example, the interaction described by a central potential implicitly assumes that the center
of force is at the origin of axes of the chosen reference frame.
(ii) In the presence of external influences, invariance under space translations is lost and the
PB {H,Pi} = 0 must be dropped. For a spinless particle, the Hamiltonian, being an element of
the system algebra generated by the fundamental observables X and P, has the general form

H =
P2

2m
+ V (X,P). (30)

In most practical situations, V is a function of X only.

The Hamiltonian was assumed in section 3.4 of I to be bounded below (in the sense that its
expectation values in all states are bounded below); this rules out the case m < 0 because, by
Eq.(29), this will allow arbitrarily large negative expectation values for energy. (Expectation
values of the observable P2 are expected to have no upper bound.)
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Recalling the demonstration of the classical Hamiltonian mechanics as a subdiscipline of
NHM in section 3.4 of I, the classical Hamiltonian system for a massive spinless Galilean particle
is easily seen to be the special case of the corresponding supmech Hamiltonian system with
A = C∞(R6). The corresponding quantum system is also (recalling the example in section 3.3
of I) a special case of a supmech Hamiltonian system with the system algebra generated by
the position and momentum observables in Schrödinger theory. More detailed treatment (with
justification of the Schrödinger theory) will appear in section 3.4.

2.6. Noncommutative Noether invariants of the Galilean group for a free massive
spinless particle

In section 3.8 of I, the noncommutative analog of the symplectic version of Noether’s the-
orem was proved. Given a noncommutative Hamiltonian system (A, ω,H), one constructs a
presymplectic algebra (Ae,Ω) where

Ae = C∞(R)⊗A and Ω = 1⊗ ω + d1t⊗ d2H.

Here the real line R is the carrier space of the evolution parameter (‘time’) t and d1 and
d2 are the exterior derivatives in the differential calculi based on the algebras C∞(R) and A
respectively. Considering t and H as elements of Ae and employing the d operator for Ae

[defined in terms of d1 and d2 through Eq.(28) of I], we have [see Eq.(72) of I]

d1t⊗ d2H = dt ∧ dH = −dH ∧ dt.

When a Lie group G with Lie algebra G has a hamiltonian action on the presymplectic alge-
bra (Ae,Ω), the noncommutative Noether’s theorem predicts the constancy in ‘time’ of the
hamiltonians ĥξ corresponding to the elements ξ ∈ G defined by [see Eq.(76) of I]

iẐξΩ = −dĥξ. (31)

where Ẑξ is the superderivation of Ae serving as the infinitesimal generator of the 1-parameter
subgroup of the automorphisms of (Ae,Ω) generated by ξ.

Here we are interested in the explicit construction of the Noether invariants ĥξ when G is the
projective group Ĝ0 of the Galilean group G0 and A the algebra generated by the fundamental
observables Xj and Pj (j=1,2,3) of a free nonrelativistic spinless particle and the identity
element I and H is given by Eq.(29). Construction of these objects involves consideration of
the transformation of the time variable which was bypassed in the previous subsection. The
formalism of section 3.8 of I has obvious limitations in this regard because time was treated as an
external parameter in the Poisson brackets employed there. This, however, is no problem for the
Galilean group where the only admitted transformations of the time variable are translations.
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We shall now obtain an equation that will be useful for the identification of the objects ĥξ
. Let ξ ∈ Ĝ0 generate an infinitesimal transformation giving δt = εf(t) (and possibly some
changes in other quantities). [In view of the limitations of the formalism mentioned above,
arguments other than t for the function f have been excluded.] The relation between the
induced derivations Zξ on A and Ẑξ on Ae is given by

Ẑξ = Zξ + f(t)
∂

∂t
. (32)

We have Zξ = Yhξ where hξ is the hamiltonian corresponding to ξ in in the Poisson action of
Ĝ0 on A (see section 3.5 of I). We look for the quantity ĥξ (the prospective Noether invariant)
such that Eq.(31) holds. (Finding such a quantity will establish invariance of Ω under the
relevant group action and also determine the corresponding Noether invariant.) Equation (32)
above and the equation defining Ω above now give the desired relation (here ω̃ ≡ 1⊗ ω)

iẐξΩ = iZξ ω̃ − iZξ(dH)dt+ f(t)dH

= −dhξ − {hξ, H}dt+ f(t)dH. (33)

To obtain, for each ξ in the chosen basis of Ĝ0, a ‘hamiltonian’ ĥξ such that Eq.(31) holds,
we must show the exactness of the form on the right hand side of Eq.(33). We have

(i)for rotations (ξ = Ji, hξ = Ji) f(t) =0, {hξ, H} = 0, giving ĥξ = hξ = Ji;

(ii) for space translations ( ξ = Pi, hξ = Pi) f(t) =0, {hξ, H} = 0, giving ĥξ = hξ = Pi;

(iii) for Galilean boosts (ξ = Ki, hξ = Ki = mXi) f(t) = 0, {Ki, H} = −Pi giving
ĥξ = mXi − Pit;

(iv) for time translations (ξ = H, hξ = H) f(t)=1, {hξ, H} = 0, giving ĥξ = H;

(v) for the one-parameter group generated byM (ξ =M, hξ = M = mI), f(t) = 0, {hξ, H} =
0, giving ĥξ = M = mI.

Finally, we have

Proposition 2.6 The noncommutative Noether invariants of projective group Ĝ0 of the
Galilean group G0 for a free nonrelativistic spinless particle of mass m are

J, P, mX−Pt, H, M = mI. (34)

Note that the first four of these are (up-to signs) the supmech avatars of those in (Souriau [41];
p.162).

Note. If, instead of taking Xj = m−1Kj in a treatment bypassing the involvement of time in the
symplectic transformations as above, we had proceeded to identify observables through Noether
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invariants, we would have got the position observable as m−1 times the time-independent term
in the second entry in Eq.(34).

3. Quantum Systems

We now take up a systematic study of the ‘quantum systems’ defined as supmech Hamil-
tonian systems with non-supercommutative system algebras. Theorem (2) of I dictates these
systems to have a standard symplectic structure characterized by a universal real parameter of
the dimension of action; we shall identify it with the Planck constant ~. We first treat quan-
tum systems in the general algebraic setting. We then employ the CC condition to show that
they inevitably have Hilbert space based realizations, generally admitting commutative super-
selection rules. The autonomous development of the Hilbert space QM of ‘standard quantum
systems’ (those with finitely generated system algebras) is then presented. This is followed by
straightforward treatments of Hilbert space quantum mechanics of material particles and of
quantum - classical correspondence (the latter highlighting the transparency resulting from the
fact that both QM and classical mechanics are subdisciplines of supmech).

3.1. The general algebraic formalism for quantum systems

Formally, a quantum system is a supmech Hamiltonian system (A,S1, ω,H) in which the
system algebra A is non-supercommutative and ω is the quantum symplectic form ωQ given by
[see Eq.(44) of I]

ωQ = −i~ωc (35)

where ωc is the canonical 2-form of A defined by Eq.(39) of I. [We have, in the terminology of
section 3.3 of I, the quantum symplectic structure with parameter b = −i~. If the superalgebra
A is not ‘special’ (i.e. not restricted to have only inner superderivations), we have a generalized
symplectic structure as mentioned at the end of section 4 in I.] This is the only place where
we put the Planck constant ‘by hand’ (the most natural place to do it — such a parameter
is needed here to give the symplectic form ωQ the dimension of action); its appearance at all
conventional places (canonical commutation relations, Heisenberg and Schrödinger equations,
etc) will be automatic.

The quantum Poisson bracket implied by the quantum symplectic form (34) is [see Eq.(43)
of I]

{A,B} = (−i~)−1[A,B]. (36)

Recalling that the bracket [,] represents a supercommutator, the bracket on the right in Eq.(36)
is an anticommutator when both A and B are odd/fermionic and a commutator in all other
situations with homogeneous A,B.

20



A quantum canonical transformation is an automorphism Φ of the system algebra A such
that Φ∗ωQ = ωQ. Now, by Eq.(12) of I,

(Φ∗ωQ)(X1, X2) = Φ−1[ωQ(Φ∗X1,Φ∗X2)] (37)

where X1, X2 are inner superderivations, say, DA and DB. We have [recalling Eq.(3) of I]

(Φ∗DA)(B) = Φ[DA(Φ−1(B)] = Φ([A,Φ−1(B)]) = [Φ(A), B]

which gives

Φ∗DA = DΦ(A). (38)

Eq.(37) above and Eq.(39) of I (i.e. ωc(DA, DB) = [A,B]) now give

Φ(i[A,B]) = i[Φ(A),Φ(B)] (39)

which shows, quite plausibly, that quantum canonical transformations are (in the present alge-
braic setting — we have not yet come to the Hilbert space) the automorphisms of the system
algebra preserving the quantum PBs.

The evolution of a quantum system in time is governed, in the Heisenberg picture, by the
noncommutative Hamilton’s equation (49) of I which now becomes the familiar Heisenberg
equation of motion

dA(t)
dt

= (−i~)−1[H,A(t)]. (40)

In the Schrödinger picture, the time dependence is carried by the states and the evolution
equation (51) of I takes the form

dφ(t)
dt

(A) = (−i~)−1φ(t)([H,A]) (41)

which may be called the generalized von Neumann equation.
We shall call two quantum systems Σ = (A,S1, ω,H) and Σ′ =

(A′,S ′1, ω′, H ′) equivalent if they are equivalent as noncommutative Hamiltonian systems. (See
section 3.4 of I.)

Note. In the abstract algebraic framework, the CC condition is to be kept track of. We shall
see in the following subsection that this condition permits us to obtain Hilbert space based
realizations of quantum systems (which have the CC condition built in them as shown in
section 2.2 above).

3.2. Inevitability of the Hilbert space
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Given a quantum system Σ = (A,S1, ω,H), any other quantum system Σ′ = (A′,S ′1, ω′, H ′),
equivalent to Σ as a noncommutative Hamiltonian system, is physically equivalent to Σ and
may be called a realization of Σ. By a Hilbert space realization of Σ we mean an equivalent
quantum system Σ̂ = (Â, Ŝ1, ω̂, Ĥ) of the type treated in section 3.4 of I (with the condition of
the irreducibility of the A-action on H relaxed). This amounts to (a) constructing a quantum
triple (Ĥ, D̂, Â) in which the algebra Â is isomorphic, as a topological *-algebra, to the system
algebra A and (b) obtaining the other three ingredients of Σ̂ so as to have the desired equiv-
alent noncommutative hamiltonian system. From the above definition it is clear that, such a
realization, if it exists, is unique up to equivalence. The precise statement about the existence
of these realizations appears in theorem (1) below.

Part (a) is the problem of obtaining a faithful *-representation of the *-algebra A. Some
good references for the treatment of relevant mathematical concepts are (Powers [38], Dubin
and Hennings [19], Horuzhy [27]). By a *-representation of a *-algebra A we mean a triple
(H,D, π) where H is a (separable) Hilbert space, D a dense linear subset of H and π a *-
homomorphism of A into the operator algebra L+(D) (the largest *-algebra of operators on H
having D as an invariant domain) satisfying the relation

(χ, π(A)ψ) = (π(A∗)χ, ψ) for all A ∈ A and χ, ψ ∈ D.

The operators π(A) induce a topology on D defined by the seminorms ‖.‖S (where S is any
finite subset of A) given by

‖ψ‖S =
∑
A∈S
‖π(A)ψ‖ (42)

where ‖.‖ is the Hilbert space norm. The mappings π(A) : D → D are continuous in this
topology for all A ∈ A. The representation π is said to be closed if D is complete in the induced
topology. Given a *-representation π of A, there exists a unique minimal closed extension π̄ of
π (called the closure of π).

The representation π is said to be irreducible if its weak commutant π′w(A), defined as the
set of bounded operators C on H satisfying the condition

(C∗ψ,Aχ) = (A∗ψ,Cχ) for all A ∈ A and ψ, χ ∈ D

consists of complex multiples of the unit operator.
Once we have the triple (Ĥ, D̂, π̂) where π̂ is a faithful *-representation of A, we have the

quantum triple (Ĥ, D̂, Â) where Â = π̂(A). The construction of ω̂ and Ĥ is then immediate :

ω̂ = −i~ω̂c, Ĥ = π̂(H) (43)
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where ω̂c is the canonical form on Â. The construction of the Hilbert space-based realization of
the quantum system Σ is then completed by obtaining Ŝ1 = S1(Â) such that the pair (O(Â), Ŝ1)
satisfies the CC condition.

We shall build up our arguments such that no new assumptions will be involved in going
from the abstract algebraic setting to the Hilbert space setting; emergence of the Hilbert space
formalism will be automatic.

To this end, we shall exploit the fact that the CC condition guarantees the existence of
plenty of (pure) states of the algebra A. Given a state φ on A, a standard way to obtain a
representation of A is to employ the so-called GNS construction. Some essential points related
to this construction are recalled below :

(i) Considering the given algebra A as a complex vector space, one tries to define a scalar
product on it using the state φ : (A,B) = φ(A∗B). This, however, is not positive definite if
the set

Lφ = {A ∈ A; φ(A∗A) = 0} (44)

(which can be shown to be a left ideal of A) has nonzero elements in it. On the quotient space
D(0)
φ = A/Lφ, the object

([A], [B]) = φ(A∗B) (45)

is a well defined scalar product. Here [A] = A+ Lφ denotes the equivalence class of A in D(0)
φ .

One then completes the inner product space (D(0)
φ , (, )) to obtain the Hilbert space Hφ; it is

separable if the topological algebra A is separable.
(ii) One obtains a representation π

(0)
φ of A on the pair (Hφ,D

(0)
φ ) by putting

π
(0)
φ (A)[B] = [AB]; (46)

it can be easily checked to be a well defined *-representation. We denote by πφ the closure of
the representation π

(0)
φ ); the completion Dφ of D(0)

φ in the π(0)
φ -induced topology acts as the

common invariant domain for the operators πφ(A).
(iii) The original state φ is represented as a vector state in the representations π(0)

φ and πφ by
the vector χφ = [I] (the equivalence class of the unit element of A); indeed, we have, from
Eq.(45),

φ(A) = ([I], [A]) = ([I], π(0)
φ (A)[I])

= (χφ, π
(0)
φ (A)χφ) = (χφ, πφ(A)χφ). (47)

The triple (Hφ,Dφ, πφ) satisfying Eq.(47) is referred to as the GNS representation of A induced
by the state φ; it is determined uniquely, up to unitary equivalence, by the state φ. It is
irreducible if and only if the state φ is pure.
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This construction (on a single state), however, does not completely solve our problem
because a GNS representation is generally not faithful; for all A ∈ Lφ, we have obviously
πφ(A) = 0. It is faithful if the state φ is faithful (i.e. if Lφ = {0}). Such a state, however, is
not guaranteed to exist by our postulates.

A faithful but generally reducible representation of A can be obtained by taking the direct
sum of the representations of the above sort corresponding to all the pure states φ. [For the
construction of the direct sum of a possibly uncountable set of Hilbert spaces, see (Rudin [40]).]
Let K be the Cartesian product of the Hilbert spaces {Hφ : φ ∈ S1(A)}. A general element ψ
of K is a collection {ψφ ∈ Hφ;φ ∈ S1(A)}; here ψφ will be called the component of ψ in Hφ.
The desired Hilbert space H consists of those elements ψ in K which have an at most countable
set of nonzero components ψφ which, moreover, satisfy the condition∑

φ

‖ψφ‖2Hφ <∞.

The scalar product in H is given by

(ψ,ψ′) =
∑
φ

(ψφ, ψ′φ)Hφ .

The direct sum of the representations {(Hφ,Dφ, πφ);φ ∈ S1(A)} is the representation (H,D, π)
where H is as above, D is the subset of H consisting of vectors ψ with ψφ ∈ Dφ for all φ ∈ S1(A)
and, for any A ∈ A,

π(A)ψ = {πφ(A)ψφ;φ ∈ S1(A)}.

Now, given any two different elements A1, A2 in O(A), let φ0 be a pure state (guaranteed
to exist by the CC condition) such that φ0(A1) 6= φ0(A2). Let ψ0 ∈ H be the vector with the
single nonzero component (ψ0)φ0 = χφ0 . For any A ∈ A, we have

(ψ0, π(A)ψ0) = (χφ0 , πφ0(A)χφ0) = φ0(A).

This implies
(ψ0, π(A1)ψ0) 6= (ψ0, π(A2)ψ0), hence π(A1) 6= π(A2)

showing that the representation (H,D, π) is faithful.

The Hilbert space H obtained above may be non-separable (even if the spaces Hφ are
separable); this is because the set S1(A) is generally uncountable. To obtain a faithful repre-
sentation of A on a separable Hilbert space, we shall use the separability of A as a topological
algebra. Let A0 = {A1, A2, A3, ...} be a countable dense subset of A consisting of nonzero
elements. The CC condition guarantees the existence of pure states φj (j=1,2,...) such that

φj(A∗jAj) 6= 0, j = 1, 2, ... (48)
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Now consider the GNS representations (Hφj ,Dφj , πφj ) (j=1,2,...). Eq.(48) guarantees that

πφj (Aj) 6= 0, j = 1, 2, ... (49)

Indeed

0 6= φj(A∗jAj) = (χφj , πφj (A
∗
jAj)χφj )

= (πφj (Aj)χφj , πφj (Aj)χφj ).

Now consider the direct sum (H′,D′, π′) of these representations. To show that π′ is faithful,
we must show that, for any nonzero element A of A, π′(A) 6= 0. This is guaranteed by Eq.(49)
because, A0 being dense in A, A can be arranged to be as close as we like to some Aj in A0.

The representation π′, is, in general, reducible. To obtain a faithful irreducible representa-
tion, we should try to obtain the relations π(Aj) 6= 0 (j= 1,2,..) in a single GNS representation
πφ for some φ ∈ S1(A). To this end, let B(k) = A1A2...Ak and choose φ(k) ∈ S1(A) such that

φ(k)(B(k)∗B(k)) 6= 0.

In the GNS representation (Hφ(k) ,Dφ(k) , πφ(k)), we have

0 6= πφ(k)(B(k)) = πφ(k)(A1)...πφ(k)(Ak)

which implies

πφ(k)(Aj) 6= 0, j = 1, ..., k. (50)

This argument works for arbitrarily large but finite k. If the k → ∞ limit of the above
construction leading to a limiting GNS representation (H,D, π) exists, giving

π(Aj) 6= 0, j = 1, 2, ..., (51)

then, by an argument similar to that for π′ above, one must have π(A) 6= 0 for all non-zero A
in A showing faithfulness of π.

Note. For system algebras generated by a finite number of elements (this covers all applications
of QM in atomic physics), a limiting construction is not needed; the validity of Eq.(50) for
sufficiently large k is adequate. [Hint : Take the generators of the algebra A as some of the
elements of A0.]

Coming back to the general case, we have, finally, the faithful (but generally not irreducible)
representation (Ĥ, D̂, π̂) of A; π̂(A) ≡ Â is the object desired in part (a) above. Since π̂ is
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faithful, Â is an isomorphic copy of A. There is a bijective correspondence φ ↔ φ̂ between
S(A) and S(Â) [restricting to a bijection between S1(A) and S1(Â)] such that

< φ̂, Â > = < φ,A > for all A ∈ A (52)

where Â = π̂(A). This equation implies that, since the pair (O(A),S1) satisfies the CC condi-
tion, so will the pair (O(Â), Ŝ1). We have, finally, a Hilbert space realization Σ̂ = (Â, Ŝ1, ω̂, Ĥ)
of the quantum system Σ = (A,S1, ω,H).

Note, from Eq.(52), that

φ̂ = (π̂−1)T (φ). (53)

When π̂ is irreducible (equal to πφ0 , say, where φ0 ∈ S1(A)), pure states of Â are vector states
φ̂ψ corresponding to normalized vectors ψ ∈ D̂ :

φ̂ψ(Â) = (ψ, Âψ) = (ψ, π̂(A)ψ). (54)

These normalized vectors are of the form

ψB = N
1/2
B [B], B ∈ A, B /∈ Lφ0 (55)

[see equations (45) and (46)] where NB = [φ0(B∗B)]−1. Putting φ̂ = φ̂ψB in Eq.(52), we have

< φ,A > = < φ̂ψB , Â > = (ψB, ÂψB) = NB ([B], π̂(A)[B])

= NB φ0(B∗AB) ≡ φB(A) (56)

where we have defined the linear functional φB on A by

φB(A) = NB φ0(B∗AB) for all A ∈ A. (57)

Equations (53) and (56) now give

φ̂ψB = (π̂−1)T (φB) for all B ∈ A, B /∈ Lφ0 . (58)

It is instructive to verify directly that the objects φB(A) of Eq.(57) depend only on the
equivalence class [B] and are genuine elements of S1(A) when φ0 ∈ S1(A).

Proposition 3.1 Given the pair (A, S1) of the system algebra A and its set of pure states S1, a
state φ ∈ S1 and an element B ∈ A such that B /∈ Lφ, the linear functional φB : A → C defined
by Eq.(57) (with φ0 replaced by φ) (a) depends only on the equivalence class [B] ≡ B + Lφ of
B, and (b) is a pure state of A.

Proof. (a) We must show that, for all K ∈ Lφ and all A ∈ A,

φB(A) = φB+K(A) = NB+Kφ[(B +K)∗A(B +K)].
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This is easily seen by using the Schwarz inequaliy

|φ(C∗D)|2 ≤ φ(C∗C) φ(D∗D) for all C,D ∈ A

and the relation φ(K∗K) = 0.
(b) Positivity and normalization of the functional φB are easily proved showing that it is a
state. [Note that the positivity of φB holds only with the convention (AB)∗ = B∗A∗ and not
with (AB)∗ = (−1)εAεBB∗A∗; see the note in the beginning of section 2.] To show that it is a
pure state, we shall prove that the GNS representation (HB,DB, πB) induced by the state φB
is unitarily equivalent to the GNS representation (H,D, π) induced by the pure state φ (and
is, therefore, irreducible).

Writing, for A,B ∈ A,

[A] ≡ A+ Lφ, [A]B ≡ A+ LφB , χ = [I], χB = [I]B,

we have

(χB, πB(A)χB)HB = φB(A) = NBφ(B∗AB)

= NB(χ, π(B∗AB)χ)H. (59)

The object ψB of Eq.(55) is a normalized vector in D. Since π is irreducible, the set
{π(A)ψB;A ∈ A} (with B fixed) is dense in D. Moreover, the set {πB(A)χB;A ∈ A} is
dense in DB. We define a mapping U : D → DB by

Uπ(A)ψB = πB(A)χB for all A ∈ A. (60)

Now, with B ∈ A fixed and any A,C ∈ A, we have

(πB(A)χB, πB(C)χB)HB = (χB, πB(A∗C)χB)HB
= NB(χ, π(B∗A∗CB)χ)H

= (ψB, π(A∗C)ψB)H

= (π(A)ψB, π(C)ψB)H (61)

showing that U is an isometry; by standard arguments, it extends to a unitary mapping from H
to HB mapping D onto DB. This proves the desired unitary equivalence of π and πB implying
that φB is a pure state. �

The proof of part (b) above has yielded a useful corollary :

Corollary (3.2). The GNS representations induced by the states φ and φB of proposition (3.1)
are related through a unitary mapping as in Eq.(60).
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Having obtained the quantum triple (Ĥ, D̂, Â) with the locally convex topology on D̂ as
described above, a mathematically rigorous vrsion of Dirac’s bra-ket formalism (Roberts [39],
Antoine [2], A. Böhm [10], de la Madrid [17]) based on the Gelfand triple

D̂ ⊂ Ĥ ⊂ D̂′ (62)

where D̂′ is the dual space of D̂ with the strong topology (Kristensen, Mejlbo and Thue Poulsen
[33]) defined by the seminorms pW given by

pW (F ) = supψ∈W |F (ψ)| for all F ∈ D′

for all bounded sets W of D̂; the triple (62) constitutes the canonical rigged Hilbert space based
on (Ĥ, D̂) (Lassner [30]). The space D̂′ ( the space of continuous linear functionals on D̂) is
the space of bra vectors of Dirac. The space of kets is the space D̂× of continuous antilinear
functionals on D̂. [An element χ ∈ H defines a continuous linear functional Fχ and an antilinear
functional Kχ on Ĥ (hence on D̂) given by Fχ(ψ) = (χ, ψ) and Kχ(ψ) = (ψ, χ); both the bra
and ket spaces, therefore, have H as a subset.]

When π̂ is irreducible, the (unnormalized) vectors in D̂ representing pure states of Â have
unrestricted superpositions allowed between them; they constitute a coherent set in the sense
of (Bogolubov [9]) (which means that they, as a set, cannot be represented as a union of two
nonempty mutually orthogonal sets). We can now follow the reasoning employed in the proof of
lemma (4.2) in (Bogolubov [9]) to conclude that, in the general case (when π̂ may be reducible),
the Hilbert space Ĥ can be expressed as a direct sum of mutually orthogonal coherent subspaces
:

Ĥ =
⊕
α

Ĥα (63)

such that each of the D̂α ≡ D̂ ∩ Hα is a coherent set on which Â acts irreducibly (but not
necessarily faithfully) and D̂ = ∪αD̂α. [Introduce an equivalence relation∼ in D̂ : ψ ∼ χ if there
is a coherent subset C in D̂ to which both ψ, χ belong. This gives the equivalence classes D̂α in
D̂. Define Ĥα as the closure of D̂α in Ĥ, etc.] The breakup (63) implies the breakup π̂ = ⊕απ̂α
where each triple (Ĥα, D̂α, π̂α) is an irreducible (but not necessarily faithful) representation of
A. For every A ∈ A and ψ = {ψα ∈ D̂α} ∈ D̂, we have

π̂(A)ψ = {π̂α(A)ψα}. (64)

This situation corresponds to the existence of superselection rules; the subspaces Ĥα are re-
ferred to as coherent subspaces or superselection sectors. The projection operators Pα for the
subspaces Ĥα belong to the center of Â. [To show this, it is adequate to show that, for any
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Â ≡ π̂(A) ∈ Â and ψ = {ψα} ∈ D̂, ÂPαψ = PαÂψ. Using Eq.(64), each side is easily seen to
be equal to π̂α(A)ψα.]

Operators of the form

Q =
∑
α

aαPα, aα ∈ R (65)

serve as superselection operators. Any two such operators obviously commute. We have,
therefore, a formalism in which there is a natural place for superselection rules which are
restricted to be commutative.

We have proved the following theorem.

Theorem(1). Given a quantum system Σ = (A,S1, ω,H) (where the system algebra A is
supposedly separable as a topological algebra), the following holds true.
(a) The system algebra A admits a faithful *-representation (Ĥ, D̂, π̂) in a separable Hilbert
space Ĥ giving the quantum triple (Ĥ, D̂, Â) with Â = π̂(A).
(b) With pure states defined through Eq.(52) and the quantum symplectic form ω̂ and the
Hamiltonian operator Ĥ given by Eq.(43), this provides the Hilbert space based realization
Σ̂ = (Â, Ŝ1, ω̂, Ĥ) of the quantum system Σ. This realization supports a rigorous version of the
Dirac bra-ket formalism based on the canonical rigged Hilbert space (62).
(c) When A is generated by a finite number of elements, it is possible to have the faithful
*-repesentation π̂ of part (a) irreducible. In this case pure states of Â are the vector states
corresponding to the normalized elements of D̂.
(d) In the general case, the Hilbert space Ĥ of (a) above can be expressed as a direct sum (63)
of mutually orthogonal subspaces (superselection sectors) such that each Hα is an irreducible
invariant subspace for the opertor algebra Â, each set Dα is coherent and D̂ = ∪αDα. The
superselection operators (65) constitute a real subalgebra of the center of Â.

We shall call a quantum system with a finitely generated system algebra a standard quantum
system. According to theorem (1), such a system admits a Hilbert space based realization with
the system algebra represented faithfully and irreducibly and there are no superselection rules.
All quantum systems consisting of a finite number of particles (in particular all quantum
systems in atomic physics) obviously belong to this class.

3.3. Hilbert space quantum mechanics of standard quantum systems

We shall now consider Hilbert space based realizations of standard quantum systems and
relate the supmech treatment of their kinematics and dynamics in section 3.1 to the traditional
Hilbert space based formalism.

We first consider the implementation of symplectic mappings in such realizations. The main
result is contained in the following theorem.
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Theorem (2). Let Σ = (A,S1, ω,H) and Σ′ = (A′,S ′1, ω′, H ′) be two equivalent standard
quantum systems; the equivalence is described by the symplectic mappings Φ = (Φ1,Φ2) [which
means that Φ1 : A → A′ is an isomorphism of unital *-algebras such that Φ∗ω′ = ω and
Φ2 : S1 → S ′1 is a bijection such that < Φ2(φ),Φ1(A) > = < φ,A > for all φ ∈ S1 and
A ∈ A]. Given their Hilbert space realizations Σ̂ = (Â, Ŝ1, ω̂, Ĥ) and Σ̂′ = (Â′, Ŝ1

′
, ω̂′, Ĥ ′)

[the respective representations of system algebras being (Ĥ, D̂, π̂) and (Ĥ′, D̂′, π̂′)], there exists
a unitary mapping U : Ĥ → Ĥ′ mapping D̂ onto D̂′ implementing the given equivalence with

π̂′(Φ1(A)) = Uπ̂(A)U−1 for all A ∈ A; ψ′ = Uψ (66)

where ψ ∈ D̂ and ψ′ ∈ D̂′ are representative vectors for the states φ ∈ S1 and Φ2(φ) ∈ S ′1
respectively.

Proof. Since the quantum systems are standard, their pure states are represented by normalized
vectors in D̂ and D̂′. Let φ ∈ S1, φ

′ = Φ2(φ) and ψ ∈ D̂ and ψ′ ∈ D̂′ are normalized vectors
such that φψ = (π̂−1)T (φ) and φψ′ = ([π̂′]−1)T (φ′) are the corresponding vector states in Ŝ1

and Ŝ1
′

respectively. Writing Â = π̂(A) for A ∈ A and Â′ = π̂′(A′) for A′ = Φ1(A) ∈ A′, we
have

(ψ′, Â′ψ′)Ĥ′ = < φψ′ , π̂
′(A′) > = < φ,A >

= < φψ, π̂(A) > = (ψ, Âψ)Ĥ (67)

for all A ∈ A and all φ ∈ S1.
Let {χr} (r = 1,2,...) be an orthonormal basis in Ĥ (with all χr ∈ D̂), φr ∈ S1 the state

reprented by the vector χr, φ′r = Φ2(φr) and χ′r ∈ D̂′ a normalized vector representing the
state φ′r. Define a mapping U : Ĥ → Ĥ′ such that Uχr = χ′r (r= 1,2,...). Putting ψ = χs and
ψ′ = χ′s in Eq.(67), we have (dropping the subscripts on the scalar products)

(Uχs, Â′Uχs) = (χs, Âχs).

Writing similar equations with χs replaced by (χr + χs)/
√

2 and (χr + iχs)/
√

2 we obtain the
relation

(χr, U †Â′Uχs) = (χr, Âχs)

(for arbitrary r and s) which implies

U †Â′U = Â for all A ∈ A.

Now, for A = I, we must have A′ = I ( the mapping Φ1 being an isomorphism of the unital
algebra A onto A′); this gives U †U = I or, remembering the invertibility of the mapping Φ2,
U † = U−1. We have, therefore, Â′ = UÂU−1. The condition (39) implies

U(i[Â, B̂])U−1 = i[UÂU−1, UB̂U−1]
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which permits U to be taken as a linear and, therefore, unitary operator.
Now let ψ =

∑
arχr. We have

Uψ =
∑

arUχr =
∑

arχ
′
r ≡ ψ′′.

This gives, employing the Dirac notation for projectors,

|ψ′′ >< ψ′′| = U |ψ >< ψ|U−1 = |ψ′ >< ψ′|

where the last step follows from Eq.(67) (with Â′ = UÂU−1.) and the CC condition. It follows
that ψ′′ is an acceptable representative of the state represented by ψ′ implying that we can
consistently take ψ′ = Uψ. �

We shall say, in the context of the above theorem, that the mappings (Φ1,Φ2) are unitarily
implemented. Taking Σ′ = Σ in the theorem, we have

Corollary (3.3). Given two Hilbert space realizations of a standard quantum system, the
mappings describing their equivalence as supmech Hamiltonian systems can be implemented
unitarily.

Taking Σ̂′ = Σ̂ in corollary (3.3), we have

Corollary (3.4). In a Hilbert space realization of a standard quantum system, a quantum
canonical transformation can be implemented unitarily.

We shall henceforth drop the tildes and take Σ = (A,S1, ω,H) directly as a Hilbert space
realization of a standard quantum system; here A is now an Op∗-algebra based on the pair
(H,D) constituting a quantum triple (H,D,A). In concrete applications, there is some freedom
in the choice of D. When A is generated by a finite set of fundamental observables F1, .., Fn, a
good choice is, in the notation of Dubin and Hennings [19], D = C∞(F1, .., Fn) (i.e. intersection
of the domains of all polynomials in F1, .., Fn).

We have now A as our system algebra; its states are given by the subclass of density
operators ρ on H for which |Tr(ρ̄A)| <∞ (where the overbar indicates closure of the operator)
for all observables A in A[21]; the quantity Tr(ρ̄A) ≡ φρ(A) (where φρ is the state represented
by the density operator ρ) is the expectation value of the observable A in the state φρ. Pure
states are the subclass of these states consisting of one-dimensional projection operators |ψ ><
ψ| where ψ is any normalized element of D.

The density operators representing states, being Hermitian operators, are also observables.
A density operator ρ is the observable corresponding to the property of the system being in the
state φρ. Given two states represented by density operators ρ1 and ρ2, we have the quantity
w12 = Tr(ρ1ρ2) defined (representing the expectation value of the observable ρ1 in the state
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ρ2 and vice versa) which has the natural interpretation of transition probability from one of
the states to the other (the two are equal because w12 = w21). When ρi = |ψi >< ψi| (i = 1,2)
are pure states, we have Tr(ρ1ρ2) = |(ψ1, ψ2)|2 — the familiar text book expression for the
transition probability between two pure quantum states.

Note. Recalling the stipulation in section 2.1 about probabilities in the formalism, it is desirable
to represent the quantities w12 as bonafide probabilities in the standard form (1) employing
an appropriate PObVM [which, in the present Hilbert space setting, should be a traditional
POVM (positive operatorvalued measure)]. It is clearly adequate to have such a representation
for the case of pure states with ρj = |ψj >< ψj | (j = 1,2), say. To achieve this, let φ = φρ1 and
{χr; r = 1, 2, ...} an orthonormal basis in H having χ1 = ψ2. The desired POVM is obtained
by taking, in the notation of section 2.1,

Ω = {χr; r = 1, 2, ...}, F = {All subsets of Ω} (68)

and, for E = {χr; r ∈ J} ∈ F where J is a subset of the positive integers,

ν(E) =
∑
r∈J
|χr >< χr|. (69)

We now have w12 = |(ψ1, ψ2)|2 = pφ(E) of Eq.(1) with φ = φρ1 and E = |χ1 >< χ1| = |ψ2 ><

ψ2|.

The unitarily implemented Φ2 actions (quantum canonical transformations) on states leave
the transition probabilities invariant [in fact, they leave transition amplitudes invariant :
(ψ′, χ′) = (ψ, χ)]. Note that, in contrast with the traditional formalism of QM, invariance
of transition probabilities under the fundamental symmetry operations of the theory is not
postulated but proved in the present setting. The fundamental symmetry operations them-
selves came as a matter of course from the basic premises of the theory : noncommutative
symplectics — exactly as the classical canonical transformations arise naturally in the tradi-
tional commutative symplectics.

A symmetry implemented (in the unimodal sense, as defined in section 3.4 of I) by a unitary
operator U acts on a state vector ψ ∈ D according to ψ → ψ′ = Uψ and (when its action is
transferred to operators) on an operator A ∈ A according to A→ A′ such that, for all ψ ∈ D,

(ψ′, Aψ′) = (ψ,A′ψ) ⇒ A′ = U−1AU. (70)

For an infinitesimal unitary transformation, U ' I+iεG where G is an even, Hermitian element
of A [this follows from the condition (Uφ,Uψ) = (φ, ψ) for all φ, ψ ∈ D]. Considering the
transformation A→ A′ in Eq.(70) as a quantum canonical transformation, generated (through
PBs) by an element T ∈ A, we have

δA = −iε[G,A] = ε{T,A} (71)

32



giving T = −i(−i~)G = −~G and

U ' I − i ε
~
T. (72)

It is the appearance of ~ in Eq.(72) which is responsible for its appearance at almost all
conventional places in QM.

The quantum canonical transformation representing evolution of the system in time is
implemented on the state vectors by a one-parameter family of unitary operators [in the form
ψ(t) = U(t − s)ψ(s)] generated by the Hamiltonian operator H : U(ε) ' I − i ε~H. This gives,
in the Schrödinger picture, the Schrödinger equation for the evolution of pure states :

i~
dψ(t)
dt

= Hψ(t). (73)

In the Heisenberg picture, we have, of course, the Heisenberg equation of motion (40), which
is now an operator equation.

We had seen in the previous subsection that quantum triples provide a natural setting for
a mathematically rigorous development of the Dirac bra-ket formalism. For later use, we recall
a few points relating to this formalism which hold good when the space D̂ is nuclear (Gelfand
and Vilenkin [21]).

A self-adjoint operator A in A in a rigged Hilbert space (with nuclear rigging as mentioned
above) has complete sets of generalized eigenvectors [eigenkets {|λ >;λ ∈ σ(A), the spectrum
of A } and eigenbras {< λ|;λ ∈ σ(A)}] :

A|λ >= λ|λ >; < λ|A = λ < λ|;

∫
σ(A)

dµ(λ)|λ >< λ| = I (74)

where I is the unit operator in H and µ is a unique measure on σ(A). These equations are to
be understood in the sense that, for all χ, ψ ∈ D,

< χ|A|λ >= λ < χ|λ >; < λ|A|ψ >= λ < λ|ψ >;∫
σ(A)

dµ(λ) < χ|λ >< λ|ψ > = < χ|ψ > .

The last equation implies the expansion (in eigenkets of A)

|ψ >=
∫
σ(A)

dµ(λ) |λ >< λ|ψ > . (75)

More generally, one has complete sets of generalized eigenvectors associated with finite sets of
commuting self-adjoint operators.
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3.4. Quantum mechanics of localizable elementary systems (massive particles)

A quantum elementary system is a standard quantum system which is also an elementary
system. The concept of a quantum elementary system, therefore, combines the concept of
quantum symplectic structure with that of a relativity scheme. The basic entities relating
to an elementary system are its fundamental observables which generate the system algebra
A. For quantum elementary systems, this algebra A has the quantum symplectic structure as
described in section 3.1. All the developments in section 2.5 can now proceed with the Poisson
brackets (PBs) understood as quantum PBs of Eq.(36). Since the system algebra is finitely
generated, theorem (1) guarantees the existence of a Hilbert space-based realization of such a
system involving a quantum triple (Ĥ, D̂, Â) where Â is a faithful irreducible representation of
A based on the pair (Ĥ, D̂). We shall drop the hats and call the quantum triple (H,D,A).

The relativity group G0 (or its projective group Ĝ0) has a Poisson action on A and a
transitive action on the set S1(A) of pure states of A. We have seen above that, in the present
setting, a symmetry operation can be represented as a unitary operator on H mapping D
onto itself. A symmetry group is then realized as a unitary representation on H having D
as an invariant domain. For an elementary system the condition of transitive action on S1

implies that this representation must be irreducible. (There is no contradiction between this
requirement and that of invariance of D because D is not a closed subspace of H when H is
infinite dimensional.)

Note. We now have a formal justification for the direct route to the Hilbert space taken in the
traditional treatment of QM of elementary systems, namely, employment of projective unitary
irreducible representations of the relativity group G0. This is the simplest way to satisfy the
condition of transitive action of G0 on the space of pure states and simultaneously satisfy the
CC condition.

By a (quantum) particle we shall mean a localizable (quantum) elementary system. We
shall consider only nonrelativistic particles. The configuration space of a nonrelativistic particle
is the 3-dimensional Euclidean space R3. The fundamental observables for such a system
were identified, in section 2.5, as the mass (m) and Cartesian components of position (Xj),
momentum (Pj) and spin(Sj) (j = 1,2,3) satisfying the PB relations in equations (26,27,13).
The mass m will be treated, as before, as a positive parameter. The system algebra A of the
particle is the *-algebra generated by the fundamental observables (taken as hermitian) and
the unit element. Since it is an ordinary *-algebra (i.e. one not having any fermionic objects),
the supercommutators reduce to ordinary commutators. Recalling Eq.(36), the PBs mentioned
above now take the form of the commutation relations

[Xj , Xk] = 0 = [Pj , Pk], [Xj , Pk] = i~δjkI (A)
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[Sj , Sk] = i~εjklSl, [Sj , Xk] = 0 = [Sj , Pk]. (B) (76)

We now consider explicit construction of the quantum triple (H,D,A) for these objects.
We shall first consider the spinless particles (S = 0); for these, we need to consider only the
Heisenberg commutation relations (76A) [often referred to as the canonical commutation rela-
tions (CCR)]. Since the final construction is guaranteed to be unique upto unitary equivalence,
we can allow ourselves to be guided by considerations of simplicity and plausibility.

Eq.(12), written (with n = 3) for a pure state (represented by a normalized vector ψ ∈ D)
now takes the form (writing µψ for µφψ)

(ψ,Xjψ) =
∫

R3

xjdµψ(x)

which shows that the scalar product inH involves integration over R3 with respect to a measure.
The group of space translations is to be represented unitarily in H (being a subgroup of the
Galilean group). The simplest choice (which eventually works well as we shall see) is to take
H = L2(R3, dx) and the unitary operators U(a) representing space translations as given by

[U(a)ψ](x) = ψ(x− a) (77)

[which is a special case of of the relation [U(g)ψ](x) = ψ(T−1
g x); these operators are unitary

when the transformation Tg of R3 preserves the Lebesgue measure]. Recalling Eq.(72), we have,
for an infinitesimal translation,

δψ = − i
~

a.Pψ = −a.5ψ

giving the operators Pj representing momentum components as

(Pjψ)(x) = −i~ ∂ψ
∂xj

. (78)

Taking the position operators Xj to be the multiplication operators given by

(Xjψ)(x) = xjψ(x), (79)

the CCR of Eq.(76A) are satisfied.
We now have [21]

D = C∞(Xj , Pj , ; j = 1, 2, 3) = S(R3)

The operators U(a) clearly map the domain D = S(R3) onto itself. With this choice of D, the
operators Xj and Pj given by equations (79) and (78) are essentially self adjoint; we denote
their self adjoint extensions by the same symbols.

35



The space S(R3) is nuclear [9] and the rigged Hilbert space

S(R3) ⊂ L2(R3) ⊂ S ′(R3)

satisfies the conditions for the validity of the results stated at the end of section 3.3. We
shall make use of the complete sets of generalized eigenvectors of the operators Xj . Let x =
(x1, x2, x3), dx = dx1dx2dx3 and |x >,< x| the simultaneous eigenkets and eigenbras of the
operators Xj (j= 1,2,3):

Xj |x > = xj |x >, < x|Xj = < x|xj , xj ∈ R, j = 1, 2, 3; (80)

they form a complete set providing a resolution of identity in the form

I =
∫
R3

|x > dx < x|. (81)

Given any vector |ψ >∈ D, the corresponding wave function appearing in Eq.(79) is ψ(x) ≡ <

x|ψ >; we have, indeed,

(Xjψ)(x) = < x|Xj |ψ > = xjψ(x).

Recalling the discussion of localization in section 2.4, the localization observable P(D)
corresponding to a Borel set D in R3 is represented as the operator

P (D) =
∫
D
|x > dx < x|. (82)

[The required properties of P(D) are easily verified.] Given the particle in the state correspond-
ing to |ψ > ∈ D, the probability that it will be found in the domain D is given by

< ψ|P (D)|ψ >=
∫
D
< ψ|x > dx < x|ψ >=

∫
D
|ψ(x)|2dx (83)

giving the traditional Born interpretation of the wave function ψ.
The pair (H,D) = (L2(R3),S(R3)) with operators Xj and Pj as constructed above is known

as the Schrödinger representation of the CCR (76A).
The self adjoint operators Pj , Xj generate the unitary groups of operators U(a) = exp(−ia.P )

and V (b) = exp(−ib.X) (where a.P =
∑

j ajPj etc. and we have put ~ = 1.) which satisfy the
Weyl commutation relations

U(a)U(b) = U(b)U(a) = U(a+ b), V (a)V (b) = V (b)V (a) = V (a+ b)

U(a)V (b) = eia.bV (b)U(a). (84)

For all ψ ∈ D, we have

(U(a)ψ)(x) = ψ(x− a), (V (b)ψ)(x) = e−ib.xψ(x); (85)
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this is referred to as the Schrödinger representation of the Weyl commutation relations. Ac-
cording to the uniqueness theorem of von Neumann [50], the irreducible representation of the
Weyl commutation relations is, up to unitary equivalence, uniquely given by the Schrödinger
representation (86).

Note. (i) Not every representation of the CCR (76A) with essentially self adjoint Xj and Pj

gives a representation of the Weyl commutation relation. [For a counterexample, see Inoue [28],
example (4.3.3).] A necessary and sufficient condition for the latter to materialize is that the
harmonic oscillator Hamiltonian operator H = P 2/(2m)+kX2/2 be essentially self adjoint. In
the Schrödinger representation of the CCR obtained above, this condition is satisfied [22,19]

(ii) The von Neumann uniqueness theorem serves to confirm/verify, in the present case, the
uniqueness (up to equivalence) of the Hilbert space realization of a standard quantum system
mentioned in sections 3.2 and 3.3. Taking the opposite view, given the uniqueness (up to unitary
equivalence) of the Hilbert space realizations of the algebraic quantum system corresponding
to a nonrelativistic massive spinless particle and the remark (i) above, we have an alternative
proof of the von Neumann uniqueness theorem.

Quantum dynamics of a free nonrelativistic spinless particle is governed, in the Schrödinger
picture, by the Schrödinger equation (73) with ψ ∈ D = S(R3) and with the Hamiltonian (29)
[where P is now the operator in Eq.(78)]:

i~
∂ψ

∂t
= − ~2

2m
52 ψ. (86)

Explicit construction of the projective unitary representation of the Galilean group G0 in the
Hilbert space H = L2(R3, dx) and Galilean covariance of the free particle Schrödinger equation
(86) have been treated in the literature [4, 43, 15].

When external forces are acting, the Hamiltonian operator has the more general form (30).
Restricting V in this equation to a function of X only (as is the case in common applications),
and proceeding as above, we obtain the traditional Schrödinger equation

i~
∂ψ

∂t
= [− ~2

2m
52 +V (X)]ψ (87)

where X is now the position operator of Eq.(79).

It should be noted that, in the process of obtaining the Schrödinger equation (87) for
a nonrelativistic spinless particle with the traditional Hamiltonian operator, we did not use
the classical Hamiltonian or Lagrangian for the particle. No quantization algorithm has been
employed; the development of the quantum mechanical formalism has been autonomous, as
promised.

37



From this point on, the development of QM along the traditional lines can proceed.
For nonrelativistic particles with m > 0 and spin s ≥ 0, we have H = L2(R3, C2s+1) and

D = S(R3,C2s+1). The treatment of spin being standard, we skip the details.

4. QUANTUM-CLASSICAL CORRESPONDENCE

It will now be shown that supmech permits a transparent treatment of quantum-classical cor-
respondence. In contrast to the general practice in this domain, we shall be careful about the
domains of operators and avoid some usual pitfalls in the treatment of the ~→ 0 limit.

Our strategy will be to start with a quantum Hamiltonian system, transform it to an
isomorphic supmech Hamiltonian system involving phase space functions and ?-products [Weyl-
Wigner-Moyal formalism (Weyl [44], Wigner [46], Moyal [35])] and show that, in this latter
Hamiltonian system, the subclass of phase space functions in the system algebra which go over
to smooth functions in the ~ → 0 limit yield the corresponding classical Hamiltonian system.
For simplicity, we restrict ourselves to the case of a spinless nonrelativistic particle though the
results obtained admit trivial generalization to systems with phase space R2n.

In the existing literature, the works on quantum-classical correspondence closest to the
present treatment are those of Liu [31,32], Gracia-Bondía and Várilly [23] and Hörmander [26];
some results from these works, especially Liu [31,32], are used below [mainly in obtaining equa-
tions (93) and (96)]. The reference (Bellissard and Vitot [6]) is a comprehensive work reporting
on some detailed features of quantum-classical correspondence employing some techniques of
noncommutative geometry; its theme, however, is very different from ours.

In the case at hand, we have the quantum triple (H,D,A) where H = L2(R3),D = S(R3)
and A is the system algebra of a spinless Galilean particle treated in section 3.4 as a standard
quantum system. As in Eq.(87), we shall take the potential function V to be a function of X
only. For A ∈ A and φ, ψ normalized elements in D, we have the well defined quantity

(φ,Aψ) =
∫ ∫

φ∗(y)KA(y, y′)ψ(y′)dydy′

where the kernel KA is a (tempered) distribution. Recalling the definition of Wigner function
[46,48] corresponding to the wave function ψ :

Wψ(x, p) =
∫

R3

exp[−ip.y/~]ψ(x+
y

2
)ψ∗(x− y

2
)dy (88)

and defining the quantity AW (x, p) by

AW (x, p) =
∫
exp[−ip.y/~]KA(x+

y

2
, x− y

2
)dy (89)
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(note that Wψ is nothing but the quantity PW where P is the projection operator |ψ >< ψ|
corresponding to ψ) we have

(ψ,Aψ) =
∫ ∫

AW (x, p)Wψ(x, p)dxdp. (90)

Whereas the kernels KA are distributions, the objects AW are well defined functions. For
example,

A = I : KA(y, y′) = δ(y − y′) AW (x, p) = 1

A = Xj : KA(y, y′) = yjδ(y − y′) AW (x, p) = xj

A = Pj : KA(y, y′) = −i~ ∂

∂yj
δ(y − y′) AW (x, p) = pj .

The Wigner functions Wψ are generally well-behaved functions. We shall use Eq.(90) to
characterize the class of functions AW and call them Wigner-Schwartz integrable (WSI) func-
tions [i.e. functions integrable with respect to the Wigner functions corresponding to the
Schwartz functions in the sense of Eq.(88)]. For the relation of this class to an appropri-
ate class of symbols in the theory of pseudodifferential operators, we refer to Wong [57] and
references therein.

The operator A can be reconstructed (as an element of A) from the function AW ; for
arbitrary φ, ψ ∈ D, we have

(φ,Aψ) =

(2π~)−3

∫ ∫ ∫
exp[ip.(x− y)/~]φ∗(x)AW (

x+ y

2
, p)ψ(y)dpdxdy.

(91)

Replacing, on the right hand side of Eq.(88), the quantity ψ(x + y
2 )ψ∗(x − y

2 ) by Kρ(x +
y
2 , x−

y
2 ) where Kρ(., .) is the kernel of the density operator ρ, we obtain the Wigner function

ρW (x, p) corresponding to ρ. Eq.(90) then goes over to the more general equation

Tr(Aρ) =
∫ ∫

AW (x, p)ρW (x, p)dxdp. (92)

The Wigner function ρW is real but generally not non-negative.
Introducing, in R6, the notations ξ = (x,p), dξ = dxdp and σ(ξ, ξ

′
) = p.x

′ − x.p
′

(the
symplectic form in R6 ), we have, for A,B ∈ A

(AB)W (ξ) = (2π)−6

∫ ∫
exp[−iσ(ξ − η, τ)]AW (η +

~τ
4

).

.BW (η − ~τ
4

)dηdτ

≡ (AW ? BW )(ξ). (93)
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The product ? of Eq.(93) is the twisted product of Liu [31,32] and the ?- product of Bayen
et al [5]. The associativity condition A(BC) = (AB)C implies the corresponding condition
AW ? (BW ? CW ) = (AW ? BW ) ? CW in the space AW of WSI functions which is a complex
associative non-commutative, unital *-algebra (with the star-product as product and complex
conjugation as involution). There is an isomorphism between the two star-algebras A and AW
as can be verified from equations (93) and (91).

Recalling that, in the quantum Hamiltonian system (A, ωQ, H) the form ωQ is fixed by the
algebraic structure of A and noting that, for the Hamiltonian H of Eq.(30) [with V = V(X)],

HW (x, p) =
p2

2m
+ V (x), (94)

we have an isomorphism between the supmech Hamiltonian systems (A, ωQ, H) and (AW , ωW , HW )
where ωW = −i~ω(W )

c ; here ω(W )
c is the canonical 2-form of the algebra AW . Under this iso-

morphism, the quantum mechanical PB (36) is mapped to the Moyal bracket

{AW , BW }M ≡ (−i~)−1(AW ? BW −BW ? AW ). (95)

For functions f, g inAW which are smooth and such that f(ξ) and g(ξ) have no ~−dependence,
we have, from Eq.(93),

f ? g = fg − (i~/2){f, g}cl +O(~2). (96)

The functions AW (ξ) will have, in general, some ~ dependence and the ~ → 0 limit may be
singular for some of them (Berry [8]). We denote by (AW )reg the subclass of functions in AW
whose ~→ 0 limits exist and are smooth (i.e. C∞ ) functions; moreover, we demand that the
Moyal bracket of every pair of functions in this subclass also have smooth limits. This class is
easily seen to be a subalgebra of AW closed under Moyal brackets. Now, given two functions
AW and BW in this class, if AW → Acl and BW → Bcl as ~ → 0 then AW ? BW → AclBcl;
the subalgebra (AW )reg, therefore, goes over, in the ~ → 0 limit , to a subalgebra Acl of the
commutative algebra C∞(R6) (with pointwise product as multiplication). The Moyal bracket
of Eq.(95) goes over to the classical PB {Acl, Bcl}cl; the subalgebra Acl, therefore, is closed
under the classical Poisson brackets. The classical PB {, }cl determines the nondegenerate
classical symplectic form ωcl. [ If {f, g}cl = σαβ ∂f

∂ξα
∂g
∂ξβ

, then ωcl = σαβdξ
α ∧ dξβ where the

matrix (σαβ) is the inverse of the matrix (σαβ).] When HW ∈ (AW )reg [which is the case for
the HW of Eq.(94)], the subsystem (AW , ωW , HW )reg goes over to the supmech Hamiltonian
system (Acl, ωcl, Hcl).

When the ~ → 0 limits of AW and ρW on the right hand side of Eq.(92) exist (call them
Acl and ρcl), we have

Tr(Aρ)→
∫ ∫

Acl(x, p)ρcl(x, p)dxdp. (97)
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The quantity ρcl must be non-negative (and, therefore, a genuine density function). To see
this, note that, for any operator A ∈ A such that AW ∈ (AW )reg, the object A∗A goes over
to ĀW ∗AW in the Weyl-Wigner-Moyal formalism which, in turn, goes to ĀclAcl in the ~→ 0
limit; this limit, therefore, maps non-negative operators to non-negative functions. Now if, in
Eq.(97), A is a non-negative operator, the left hand side is non-negative for an arbitrarily small
value of ~ and, therefore, the limiting value on the right hand side must also be non-negative.
This will prove the non-negativity of ρcl if the objects Acl in Eq.(97) realizable as classical
limits constitute a dense set of non-negative functions in C∞(M). This class is easily seen to
include non-negative polynomials; good enough.

In situations where the ~ → 0 limit of the time derivative equals the time derivative of
the classical limit [i.e. we have A(t) → Acl(t) and dA(t)

dt →
dAcl(t)
dt ], the Heisenberg equation

of motion for A(t) goes over to the classical Hamilton’s equation for Acl(t). With a similar
proviso, one obtains the classical Liouville equation for ρcl as the classical limit of the von
Neumann equation.

Before closing this section, we briefly discuss an interesting point :
For commutative algebras, the inner derivations vanish and one can have only outer deriva-

tions. Classical mechanics employs a subclass of such algebras (those of smooth functions
on manifolds). It is an interesting contrast to note that, while the quantum symplectics em-
ploy only inner derivations, classical symplectics employ only outer derivations. The deeper
significance of this is related to the fact that the noncommutativity of quantum algebras is
generally tied to the nonvanishing of the Planck constant ~. [This is seen most transparently
in the star product of Eq.(93) above.] In the limit ~ → 0, the algebra becomes commutative
(the star product of functions reduces to ordinary product) and the inner derivations become
outer derivations (commutators go over to classical Poisson brackets implying that an inner
derivation DA goes over to the Hamiltonian vector field XAcl).

5. AXIOMS

We shall now write down a set of axioms covering the work presented in papers I and II.
Before the statement of axioms, a few points are in order :

(i) These axioms are meant to be provisional; the ‘final’ axioms will, hopefully, be formulated
(not necessarily by the present author) after a reasonably satisfactory treatment of quantum
theory of fields and space-time geometry in an appropriately augmented supmech type frame-
work has been given.
(ii) The terms ‘system’, ‘observation’, ‘experiment’ and a few other ‘commonly used’ terms will
be assumed to be understood. The term ‘relativity scheme’ employed below will be understood
to have its meaning as explained in section 2.5.
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(iii) The ‘universe’ will be understood as the largest possible observable system containing
every other observable system as a subsystem.
(iv) By an experimentally accessible system we shall mean one whose ‘identical’ (for all practical
purposes) copies are reasonably freely available for repeated trials of an experiment. Note that
the universe and its ‘large’ subsystems are not included in this class.
(v) The term ‘system’ will, henceforth will normally mean an experimentally accessible one.
Whenever it is intended to cover the universe and/or its large subsystems (this will be the case
in the first three axioms only), the term system∗ will be used.

The axioms will be labeled as A1,..., A7.

A1.(Probabilistic framework; System algebra and states)
(a) System algebra; Observables. A system∗ S has associated with it a (topological) superalgebra
A = A(S) satisfying the conditions stated in section 3.4 of I. (Its elements will be denoted as
A,B,...). Observables of S are elements of the subset O(A) of even Hermitian elements of A.
(b) States. States of the system∗, also referred to as the states of the system algebra A (denoted
by the letters φ, ψ, ..), are defined as (continuous) positive linear functionals on A which are
normalized [i.e. φ(I) = 1 where I is the unit element of A]. The set of states of A will be
denoted as S(A) and the subset of pure states by S1(A). For any A ∈ O(A) and φ ∈ S(A),
the quantity φ(A) is to be interpreted as the expectation value of A when the system is in the
state φ.
(c) Expectation values of odd elements of A vanish in every pure state (hence in every state).
(d) Compatible completeness of observables and pure states. The pair
(O(A), S1(A)) satisfies the CC condition described in section 2.2.
(e) Experimental situations and probabilities. An experimental situation (relating to observa-
tions on the system∗ S) has associated with it a positive observable-valued measure (PObVM)
as defined in section 2.1; it associates, with measurable subset of a measurable space (the
‘value space’ of for the quantities being measured), objects called supmech events which have
measure-like properties. Given the system prepared in a state φ, the probability of realization
of a supmech event ν(E) is φ(ν(E)). It is stipulated that all probabilities in the formalism
must be of this type.

A2. Differential calculus; Symplectic structure. The system algebra A of a system∗ S is such
as to permit the development of superderivation-based differential calculus on it (as described
in section 2 of I); moreover, it is equipped with a real symplectic form ω thus constituting a
symplectic superalgebra (A, ω) [more generally, a generalized symplectic superalgebra (A,X , ω)
when the derivations are restricted to a distinguished Lie sub-superalgera X of the Lie super-
algebra SDer(A)of the superderivations of A].
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A3. Dynamics. The dynamics of a system∗ S is described by an equicontinuous one-parameter
family of canonical transformations generated by an even Hermitian element H (the Hamilto-
nian) of A which is bounded below in the sense that its expectation values in all pure states
(hence in all states) are bounded below.

The mechanics described by the above-stated axioms will be referred to as Supmech. The
triple (A, ω,H) or, more precisely, the quadruple (A,S1(A), ω,H) will be said to constitute a
supmech Hamiltonian system.

A4. Relativity scheme. For systems admitting space-time description, the ‘principle of relativ-
ity’, as described in section 2.5, will be operative.

A5. Elementary systems; Material particles. (a) In every relativity scheme, material particles
will be understood to be localizable elementary systems (as defined in sections 2.4 and 2.5).
(b) The system algebra for a material particle will be the one generated by its fundamental
observables (as defined in section 2.5) and the identity element.

A6. Coupled systems. Given two systems S1 and S2 described as supmech Hamiltonian systems
(A(i),S(i)

1 , ω(i), H(i)) (i=1,2), the coupled system (S1 + S2) will be described as a supmech
Hamiltonian system (A,S1, ω,H) with

A = A(1) ⊗A(2), S1 = S1(A), ω = ω(1) ⊗ I2 + I1 ⊗ ω(2)

(where I1 and I2 are the unit elements of A(1) and A(2) respectively) and H as in Eq.(100) of I.

Note. Theorem (2) in I implied restrictions on the possible situations when the interaction of
two systems along the lines of the axiom A6 can be consistently described. A consequence of
this theorem is that all experimentally accessible systems in nature must have either super-
commutative or non-supercommutative system algebras. The next axiom indicates the choice.

A7. Quantum systems. All (experimentally accessible) systems in nature have non-supercommutative
system algebras (and hence are quantum systems); they have a quantum symplectic structure
(as defined in section 3.3 of I) with the universal parameter b = −i~.

Note. (i) The quantum systems were shown (in section 3.2) to have equivalent (as supmech
Hamiltonian systems) Hilbert space based realizations (without introducing additional postu-
lates); those having finitely generated system algebras were guaranteed to have their system
algebras represented irreducibly in the Hilbert space.

(ii) Axioms A7 and A5(a) imply that all material particles are localizable elementary quan-
tum systems. Since they have finitely generated system algebras, the corresponding supmech
Hamiltonian systems are guaranteed to have Hilbert space based realizations with the system

43



algebra represented faithfully and irreducibly. They can be treated as in section 3.4 without
introducing any extra postulates; in particular, introduction of the Schrödinger wave functions
with the traditional Born interpretation and the Schrödinger dynamics are automatic.

(iii) General quantum systems were shown in section 3.2 to admit commutative superselection
rules.

10. CONCLUDING REMARKS

1. The central message of the first two papers in this series is this : Complex associative alge-
bras are the appropriate objects for the development of a universal mechanics. The proposed
universal mechanics— supmech — is constrained by the formalism (and empirical acceptabil-
ity) to reduce to traditional quantum mechanics for all ‘experimentally accessible’ systems.
It is worth re-emphasizing that, for an autonomous development of quantum mechanics, the
fundamental objects are algebras and not Hilbert spaces.

2. A contribution of the present work expected to be of some significance for the algebraic
schemes in theoretical physics and probability theory is the introduction of the condition of
compatible completeness for observables and pure states [axiom A1(d)] which plays an impor-
tant role in ensuring that the quantum systems defined algebraically in section 3.1, have faithful
Hilbert space-based realizations. It is desirable to formulate necessary and/or sufficient condi-
tions on the superalgebra A alone (i.e. without reference to states) so that the CC condition
is automatically satisfied.

An interesting result, obtained in section 2.3, is that the superclassical systems with a
finite number of fermionic generators generally do not satisfy the CC condition. This probably
explains their non-occurrence in nature. It is worth investigating whether the CC condition is
related to some stability property of dynamics.

3. Some features of the development of QM in the present work (apart from the fact that it
is autonomous) should please theoreticians : there is a fairly broad-based algebraic formalism
connected smoothly to the Hilbert space QM; there is a natural place for commutative superse-
lection rules and for the Dirac’s bra-ket formalism; the Planck constant is introduced ‘by hand’
at only one place (at just the right place : the quantum symplectic form) and it appears at
all conventional places automatically. Moreover, once the concepts of localization, elementary
system and standard quantum system are introduced at appropriate places, it is adequate to
define a material particle as a localizable elementary quantum system ; ‘everything else’ —
including the emergence of the Schrödinger wave functions with their traditional interpretation
and the Schrödinger equation — is automatic.
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4. The treatment of quantum-classical correspondence in section 4, illustrated with the example
of a nonrelativistic spinless particle, makes clear as to how the subject should be treated in the
general case : go from the traditional Hilbert space -based description of the quantum system
to an equivalent (in the sense of a supmech hamiltonian system) phase space description in the
Weyl-Wigner-Moyal formalism, pick up the appropriate subsets in the observables and states
having smooth ~→ 0 limits and verify that the limit gives a commutative supmech Hamiltonian
system (which is generally a traditional classical hamiltonian system).
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