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Abstract

Ramirez and Vidakovic (2010) considered an estimator of the density function based
on wavelets for a random stratified sample from weighted distributions. We extend these
results to both positively and negatively associated random variables within strata. An
upper bound on Lp-loss for the estimator is given which extends such a result for the
L2-consistent given in Ramirez and Vidakovic(2010).
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1 Introduction

Several methods of estimation of density and regression function are avilable in statistical
literature. Recently, there has been a lot of interest in nonparametric estimation of such
functions based on wavelets. The reader may be referred to Härdle et al.(1998) and Vidakovic
(1999) for a detailed coverage of wavelet theory in statistics and to Prakasa Rao (1999b)
for a comprehensive review and application of various methods of nonparametric functional
estimation.

Antoniadis et al. (1994) and Masry (1994) among others discuss the estimation of regression
and density function using the wavelets. Walter and Ghorai (1992) discuss the advantages and
disadvantages of wavelet based methods of nonparametric estimation from i.i.d. sequences of
random variables. Prakasa Rao (2003) Doosti et al. (2006) extended the results for negatively
and positively associated sequences, respectively.



Definition 1.1 A finite family of random variables (r.v.s) {Xi, 1 ≤ i ≤ n} is said to be
negatively associated (NA) if, for every pair of disjoint subsets A and B of {1, 2, ..., n}, we have

Cov{h1(Xi, i ∈ A), h2(Xj , j ∈ B)} ≤ 0,

whenever h1 and h2 are real-valued coordinate-wise increasing functions and the covariance
exists. A random process {Xi}∞i=−∞ is NA if every finite sub-family is NA.

The dependence structure characterized by NA was first introduced by Alam and Saxena
(1981) and later studied by Joag-Dev and Proschan (1983). Roussas (1996) provides an excel-
lent review of the subject with a comprehensive list of references.

Definition 1.2 A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be positively
associated (PA) if, we have

Cov{h1(X1, X2, . . . , Xn), h2(X1, X2, . . . , Xn)} ≥ 0,

whenever h1 and h2 are real-valued coordinate-wise increasing functions and the covariance
exists. Similarly, a random process {Xi}∞i=−∞ is PA if every finite sub-family is PA.

PA random variables are of considerable interest in reliability studies, percolation theory and
statistical mechanics. For a review of several probabilistic and statistical result for PA se-
quences, see Prakasa Rao and Dewan (2001).

Here, we adopt the method of estimation of a density function on the basis of a random
stratified sample from weighted distributions, discussed in Ramirez and Vidakovic (2010) to
the case of associated random variables within the strata. An upper bound on Lp-loss for the
resulting estimator is given which extends such a result for the L2-consistent given in Ramirez
and Vidakovic (2010).

The organization of the paper is as follows. In section 2, we discuss the preliminaries of the
wavelet based estimation of the density along with the necessary underlying setup considered
in Ramirez and Vidakovic (2010). Then in section 3, we extend their result to in Lp−norm.
This result is then generalized to associated cases (NA and PA) and finally we obtain upper
bounds on the Lp−losses similar to the one obtained by Prakasa Rao (2003) and Doosti et. al.
(2006) for density estimation for the case of positive and negative association, respectively.

2 Preliminaries

Our notation in the rest of paper follows Romirez and Vidakovic (2010). Let {Yn, n ≥ 1} be
a sequence of random variables on the probability space (Ω,ℵ, P ). We suppose that Yi has a
stationery bounded and compactly supported marginal density fY (.)
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Definition 2.1 The density associated with a size-biased random variable Y , fY ,is related to
the underlying true density fX by

fY (y) =
g(y)fX(y)

µ
,

where g is the so-called weighting or biasing function and µ is defined as the expected value of
g(X), µ = Eg(X) <∞.

As fX(y) is unknown, the parameter µ is also unknown. The problem is indirect since one
observes Y and wants to estimate the density of an unobserved X.

We estimate this density from n observations Yi, i = 1, ..., n. For any function f ∈ L2(R),
we can write a formal expansion (see Daubechies (1992)):

fX(y) =
∑
k∈Z

cJ,kφJ,k(y) +
∑
j≥J

∑
k∈Z

dj,kψj,k(y) = PJf
X +

∑
j≥J

Djf
X

where J is resolution level and the functions

φJ,k(y) = 2J/2φ(2Jy − k)

and
ψj,k(y) = 2j/2ψ(2jy − k)

constitute an (inhomogeneous) orthonormal basis of L2(R). Here φ(y) and ψ(y) are the scale
function and the orthogonal wavelet, respectively. Wavelet coefficients are given by the integrals

cJ,k =
∫
fX(y)φJ,k(x)dy, dj,k =

∫
fX(y)ψj,k(y)dy

We suppose that both φ and ψ ∈ Cr, (space of functions with r continuous derivatives), r being
a positive integer and have compact supports included in [−δ, δ], for some δ > 0. Note that, by
corollary 5.5.2 in Daubechies (1988), ψ is orthogonal to polynomials of degree ≤ r, i.e.∫

ψ(y)yldy = 0,∀ l = 0, 1, ..., r

We suppose that fX belongs to the Besov class (see Meyer (1992), p.50), Fs,p,q = {fX ∈ Bs
p,q, ‖fX‖Bs

p,q
≤M}

for some 0 ≤ s ≤ r + 1, p ≥ 1 and q ≥ 1, where

‖fX‖Bs
p,q

= ‖PJfX‖p + (
∑
j≥J

(‖Djf
X‖p2js)q)1/q

Ramirez and Vidakovic (2010) proposed the following estimator.

f̂XJ (y) =
∑
k∈Kn

ĉJ,kφJ,k(y), with ĉJ,k =
µ

n

n∑
i=1

φJ,k(Yi)
g(Yi)

, (2.1)
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where Kn is the set of k such that supp(fX) ∩ supp(φJ,k) 6= ∅. The fact that φ has a com-
pact support implies that Kn is finite and card(Kn) = O(2J). The above estimator can be
represented as (3) in Ramirez and Vidakovic(2010):

f̂XJ (y) =
∑
k∈Kn

ĉj0,kφj0,k(y) +
∑

j0≤j≤J

∑
k∈Kn

d̂j,kψj,k(y).

We observe the stratified sample from M strata, y11, ..., y1n1 ; ...; yM1, ..., yMnM
with common

underlying density fX . Let N =
∑M

i=1 ni be the total sample size. Suppose gm(y) is the strata
dependent biasing function. We modify the estimator in (2.1) to account for strata based
biasing .

Then a linear estimator of fX based on all observations, can be defined as

f̂XJ (y) =
M∑
m=1

αmf̂
X
m,J(m)(y), (2.2)

where αm = nm
N , J(m) is the projection level in the mth stratum, and J is defined as

J := minJ(1), ..., J(M)
In(2.2), f̂XJ (y) represents the projection estimate of fX defined in (2.1), based on the mth

stratum, depending on

ĉmJ(m),k =
µm
nm

nm∑
i=1

φJ(m),k(Ymi)
gm(Ymi)

, (2.3)

the estimate of cJ(m),k withing stratum m. µm,m = 1, ...,M are unknown parameters which
are related to unknown density function fX . Ramirez and Vidakovic (2010) proposed an
unbiased estimators for inverse of these parameters, but in the proof of their main theorem
they considered them as a known parameters which we follow this in next section.
The following two lemmas are needed for the proofs in the next section.

Lemma 2.1 Let {ξi, 1 ≤ i ≤ n} be a sequence of NA identically distributed random variables
such that E(ξi) = 0, and ‖ξi‖∞ < M <∞. Then there exist positive constant C(p) such that

E(|
n∑
i=1

ξi|p) ≤ C1(p){Mp−2
n∑
i=1

E(ξ2i ) + (
n∑
i=1

E(ξ2i ))p/2}, p > 2 (2.4)

Proof: This is readily obtained by using the results (1.6) and (1.7) of Theorem 2 of Shao
(2000).

Lemma 2.2 Let {ξi, 1 ≤ i ≤ n} be a sequence of PA identically distributed random variables
satisfifying E(ξi) = 0, and E|ξi|p+δ ≤M for some p > 2 and δ > 0. Assume

u(n) = sup
k≥1

∑
j:|j−k|≥n

Cov(ξj , ξk) = O(n−(p−2)(p+δ)/(2δ)) (2.5)
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then there is a constant B not depending on n such that for all n

E(|
n∑
i=1

ξi|p) ≤ B{M (p−2)/znp/2}, (2.6)

where z = δ + (p− 2)(p+ δ).

Proof: This is a result from Theorem 1 Birkel (1988) p.1185. The only difference is that we
drop the assumption (2.1) in Theorem 1, Birkel (1988) and instead we assume upper bound
for E|ξi|r+δ ≤M . Conclusions of the theorem hold even if M is not finite.

3 Main Results

First, we consider the i.i.d. sequence {Yij , j = 1, ..., ni, i = 1, ...,M ; } of random variables and
extend the result of Ramirez and Vidakovic (2010) when the error is measured in Lp−norm.
Next, we obtain similar results for sequences are NA and PA within the strata in Theorems
3.2 and 3.3. Here an additional condition on the scale function, namely bounded variation, is
imposed. We note that C is a generic positive number in the rest of paper.

Theorem 3.1 Let fX(x) ∈ Fs,p,q with 0 < B1 ≤ gm(y), s ≥ 1/p, p ≥ 1, and q ≥ 1. The
density function fX is uniformly bounded and fXJ is the linear wavelet density estimator in Eq.
(2.2) for the i.i.d. sequence of random variables {Yij , j = 1, ..., ni, i = 1, ...,M ; }, Then for
p′ ≥ max(2, p), there exists a constant C such that

E‖f̂XJ (y)− fX(y)‖2p′ ≤ C N
− 2s′

1+2s′

where s′ = s+ 1/p′ − 1/p and 2J(m) = n
1

1+2s′
m .

Proof: We have

E‖f̂XJ (y)− fX(y)‖2p′ ≤
m∑
m=1

α2
mE‖f̂Xm,J(m)(y)− fX(y)‖2p′ (3.1)

It is sufficient to find an upper bound for E‖f̂Xm,J(m)(y) − fX(y)‖2p′ for some m. First, we
decompose E‖f̂Xm,J(m) − f

X‖2p′ into a bias term and stochastic term

E‖f̂Xm,J(m) − f
X‖2p′ ≤ 2(‖fX − PJ(m)f

X‖2p′ + E‖f̂Xm,J(m) − PJ(m)f
X‖2p′) = 2(T1 + T2) (3.2)

Now, we want to find upper bounds for T1 and T2 using techniques of Leblanc (1996), p.83
(see also Prakasa Rao (2003), p.373).

T1 ≤ C2−2s′J(m), (3.3)
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where s′ = s+ 1/p′ − 1/p.
By using Lemma 1 in Leblanc (1996), p. 82 (using Meyer (1992), lemma 8, p.30),

T2 ≤ CE{‖ĉmJ(m),k − cJ(m),k‖2lp′}2
2J(m)(1/2−1/p′).

Further, by using Jensen’s inequality the above equation implies,

T2 ≤ C22J(m)(1/2−1/p′){
∑
k∈Kn

E|ĉmJ(m),k − cJ(m),k|p
′}2/p′

. (3.4)

To complete the proof, it is sufficies to estimate E|ĉmJ(m),k − cJ(m),k|p
′
. We know that

ĉmJ(m),k − cJ(m),k =
1
nm

nm∑
i=1

{[
φJ(m),k(Ymi)
gm(Ymi)

− cJ(m),k]}.

Denote ξi = [φJ(m),k(Ymi)

gm(Ymi)
− cJ(m),k]. Note that ‖ξi‖∞ ≤ K.21/2J(m)‖φ‖∞,Eξi = 0,

Eξ2i <∞ and |ĉmJ(m),k − cJ(m),k| = 1
nm
|
∑nm

i=1 ξi|. Hence applying the Rosenthal’s inequality for
i.i.d random variables, e.g. in Härdle et al. (1998) p. 244, and using card(Kn) = O(2J(m)) we
have

{
∑
k∈Kn

E|ĉmJ(m),k − cJ(m),k|p
′}2/p′ ≤ {C2J(m) 1

np′ (nm2(J(m)/2)(p′−2) + np
′/2
m )}2/p′

≤ C{ 2J(m)(1)

n
2(1−1/p′)
m

+
22(J(m)/p′)

nm
}. (3.5)

Now by substituting the above bound in (3.4), we get

T2 ≤ C{
2J(m)

nm
(
2J(m)

nm
)1−2/p′

+
2J(m)

nm
}. (3.6)

Since nm ≥ 2J(m) and 1− 2/p′ ≥ 0 imply (2J(m)

nm
)1−2/p′ ≤ 1, we have the inequality

T2 ≤
C2J(m)

nm
. (3.7)

By using the bounds obtained in (3.3) and (3.7),nm = O(N) for aome m, and choosing J(m)

such that 2J(m) = n
1

1+2s′
m in (3.1), the theorem is proved.

Now, in the rest of paper we consider {Yij} as a negatively(positively) associated sequence of
random variables within strata and independent accross strata. We also assume φJ(m),k/gm,
to be a function of bounded variation (BV) .
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Theorem 3.2 Let φJ(m),k/gm be BV, fX ∈ Fs,p,q with s ≥ max (1/p, d), p ≥ 1, and q ≥ 1.
Consider the linear wavelet based estimator in Eq. (2.2) for NA sequence of random variables
{Yij} within strata. Then, for p′ > max(2, p), there exists a constant C such that

E‖f̂XJ (y)− fX(y)‖2p′ ≤ C N
− 2s

1+2s′

where s′ = s+ 1/p′ − 1/p, and 2J(m) = n
1

1+2s′
m , for some m.

Proof: The proof is similar to the proof of Theorem 3.1 , see Doosti et al.(2006). They assumed
the monotonicity of the scale function, which is a rather restrictive condition. Here the bounded
variation property of the φJ(m),k/gm is assumed which is more general in contrast. The method
of proof follows in theorem 3.2 in Chaubey et al. (2008) p.460. We shall prove that (3.7) still
remains true under NA case. Since φJ(m),k/gm is function of BV, so it is the difference of two
monotone increasing function, say φ1, φ2, on [−δ, δ], i.e., φJ(m),k/gm = φ1(J(m),k) − φ2(J(m),k).
Furthermore If we define:

a1 =
∫
φ1(J(m),k)(y)fX(y)dy,

a2 =
∫
φ2(J(m),k)(y)fX(y)dy,

ξ1(i) = φ1(J(m),k)(Yi)− a1,

ξ2(i) = φ2(J(m),k)(Yi)− a2,

then it is easy to see:

Eξ1(i) = Eξ2(i) = 0

‖ξl(i)‖∞ ≤ C‖ξi‖∞ < C2J(m)/2‖φ‖∞, l = 1, 2,

Eξ2l(i) ≤ CEξ2i <∞, l = 1, 2,

, where ξi defined in Theorem 3.1.
Since {Yij ; 1 ≤ j ≤ ni} is NA and the monotonicity of the functions φ

1(J(m),k) and φ
2(J(m),k),

it follows that the sequences {ξ1(i), i ≥ 1} and {ξ2(i), i ≥ 1} are also a sequences of NA random
variables. Now by considering lemma 2.1 and using following inequality, we see the Eq. (3.7)
remains true.

|
nm∑
i=1

ξi|p
′ ≤ 2p

′
(|
nm∑
i=1

ξ1(i)|p
′
+ |

nm∑
i=1

ξ2(i)|p
′
). (3.8)

The rest of proof is similar to the proof of Theorem 3.1.

Theorem 3.3 Let φJ(m),k/gm be BV, {ξl(i)}, l = 1, 2 satistiefied in (2.5), fX ∈ Fs,p,q with
s ≥ max (1/p, d), p ≥ 1, and q ≥ 1. Consider the linear wavelet based estimator in Eq. (2.2)
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for PA sequence of random variables {Yij} within strata. Then, for p′ > max(2, p), there exists
a constant C such that

E‖f̂XJ (y)− fX(y)‖2p′ ≤ C
2

J(m)

p′ [(p′+δ−2)(p′−2)/z+2]

N
,

where z = δ + (p′ − 2)(p′ + δ).

Proof: The proof follows the proof of last theorem which we use Lemma 2.2 instead of Lemma
2.1.
Remark 1: One can adopt the method in Prakasa Rao (2003) in p.377 and in Theorem 3.3
Chaubey et al. (2008) to get upper bound similar to those as in last three theorems for the
expected loss E‖f̂Xm,J(m) − f

X‖p
′

p′ when 1 ≤ p′ ≤ 2. Observe that

E‖f̂Xm,J(m) − f
X‖p

′

p′ ≤ 2p
′−1(‖fX − PJ(m)f

X‖p
′

p′ + E‖f̂Xm,J(m) − PJ(m)f
X‖p

′

p′) (3.9)

and
‖fX − PJ(m)f

X‖p
′

p′ ≤ C2−p
′s′J(m) (3.10)

we have

E‖f̂Xm,J(m) − PJ(m)f
X |p

′

p′ ≤ C22J(m)(p′/2−1){
∑
k∈Kn

E|ĉJ(m),k − cJ(m),k|p
′}. (3.11)

Remark 2: We may use other version of Rosenthal’s inequality as in Prakasa Rao (2003) to
find another upper bound .

Remark 3: By using similar techniques and the results in Chaubey et al. (2006, 2008)
and Prakasa Rao (1996, 1999a, 1999b) one can find upper boundes for derivatives of density
function for positive and negative associated sequences of random variables within strata.
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