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Abstract: A straightforward derivation of the traditionally postulated von Neumann projec-
tion/collapse rule is given in a supmech based treatment of quantum measurements, treating
the apparatus carefully as a quantum system approximated well by a classical one and taking
into consideration some aspects of the physics of the apparatus missed in traditional treatments.

1. INTRODUCTION

In this open-ended program aimed at a solution of Hilbert’s sixth problem (relating to ax-
iomatization of physics and probability theory), the first two papers (Dass, 2010 A; 2010 B;
henceforth referred to as I and II) were devoted to evolving the geometro-statistical framework
of a universal mechanics called ‘supmech’ and a consistent treatment of quantum systems in
that framework. In this third paper, we shall treat measurements on quantum systems in
the supmech framework and obtain a straightforward derivation of the von Neumann projec-
tion/collapse rule, obtaining, in the process, a clear understanding of the sense in which this
rule should be understood.

The negative result about the possibility of a consistent quantum-classical interaction in the
supmech framework [obtained as part of theorem (2) in I] is by no means ‘fatal’ for a consistent
treatment of measurement interaction between the system and apparatus. It turns out that it is
adequate to treat the apparatus carefully as a quantum system approximated well by a classical
one (in the setting of, for example, phase space descriptions of quantum and classical dynamics);
the fact that both quantum and classical mechanics are special subdisciplines of supmech is
very helpful in such a treatment. We shall see that, taking properly into consideration (i) the
‘settling down of the apparatus after the measurement interaction’, and (ii) the fact that the
observations on the apparatus are restricted to macroscopically distinguishable pointer readings
(this is what automatically brings into play the decohering effect of the internal environment of
the apparatus), the unwanted superpositions of (system + apparatus)-states can be shown to
be suppressed, leading eventually to the projection/collapse rule postulated in von Neumann’s
treatment of measurements (von Neumann, 1955).

In the next section, the measurement problem in quantum mechanics (QM) is recalled. In
section 3, some proposed improvements in the treatment of the physics of the apparatus are
discussed. In section 4, we briefly recall the essential features of supmech and, in section 5, a
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supmech-based treatment of measurements on a quantum system is given leading eventually to
the von Neumann projection rule; the functioning of some crucial ingredients of this treatment
is illustrated with the example of the Stern-Gerlach experiment in section 6. In section 7,
we add, to the list of seven axioms of the supmech program given in II, another one covering
measurement situations. The last section contains some concluding remarks.

Note. Originally, the work reported here was intended to be the last part of II; however, as that
paper, even without this material, was quite long, it was considered proper to publish this as
a separate paper. The (tentative) program of papers after the second, announced in I, stands,
therefore, accordingly shifted.

2. THE MEASUREMENT PROBLEM IN QUANTUM MECHANICS

We consider, for simplicity, the measurement of an observable (of a quantum system S)
represented by a self-adjoint operator F (acting in an appropriate domain in the Hilbert space
HS of S) having a non-degenerate spectrum with the eigenvalue equations F |ψj >= λj |ψj >
(j = 1,2,...). The apparatus A is chosen such that, to each of the eigenvalues λj corresponds
a pointer position Mj . If the system is initially in an eigenstate |ψj >, the apparatus is
supposedly designed to give, after the measurement interaction, the pointer reading Mj ; the
outcome of the measurement is then understood as λj . A question immediately arises : ‘What
is the measurement outcome when the initial state of the system S is a superposition state
|ψ >=

∑
j cj |ψj > ?’ The theoretical framework employed for the treatment of measurements

on quantum systems must provide a satisfactory answer to this question.
The standard treatment of measurements in QM (von Neumann, 1955; Wheeler and Zurek,

1983; Jauch, 1968; Omnes, 1994; Dass, 2005) is due to von Neumann who, treating the appa-
ratus as a quantum system, introduced, for the pointer positions Mj , state vectors |µj > in the
Hilbert space HA of the apparatus. The Hilbert space for the coupled system (S + A) is taken
to be the tensor product H = HS ⊗HA. The measurement interaction is elegantly described
(Omnes, 1994; Dass, 2005) by a unitary operator U on H which, acting on the initial state of
(S+A) (with the system S in the initial state in which it is prepared for the experiment and the
apparatus in the ‘ready’ state which we denote as |µ0 >) gives an appropriate final state. We
shall assume the measurement to be ideal which is supposedly such that (Omnes, 1999) ‘when
the measured system is initially in an eigenstate of the measured observable, the measurement
leaves it in the same state.’ In this case, the measurement outcome must be the corresponding
eigenvalue which must be indicated by the final pointer position. This implies

U(|ψj > ⊗|µ0 >) = |ψj > ⊗|µj > . (1)
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For S in the initial state |ψ >=
∑
cj |ψj >, the final (S + A)- state must be, by linearity of U,

|Ψf > ≡ U [(
∑
j

cj |ψj >)⊗ |µ0 >] =
∑
j

cj [|ψj > ⊗|µj >]. (2)

Note that the right hand side of Eq.(2) is a superposition of the quantum states of the (generally
macroscopic) system (S + A).

Experimentally, however, one does not observe such superpositions. Instead, one obtains, in
each measurement, a definite outcome λj corresponding to the final (S + A)-state |ψj > ⊗|µj >.
Repetitions of the experiment, with system in the same initial state, yield various outcomes
randomly such that, when the number of repetitions becomes large, the relative frequencies of
various outcomes tend to have fixed values. To account for this, von Neumann postulated that,
after the operation of the measurement interaction as above, a discontinuous, noncausal and
instantaneous process takes place which changes the state |Ψf > to the state represented by
the density operator

ρf =
∑
i

P̃i|Ψf >< Ψf |P̃i (3)

=
∑
j

|cj |2[|ψj >< ψj | ⊗ |µj >< µj |]; (4)

here P̃i = |ψi >< ψi| ⊗ IA where IA is the identity operator on HA. This is referred to as von
Neumann’s projection postulate and the phenomenon with the above process as the underlying
process the state vector reduction or wave function collapse. Eq.(4) represents, in the von
Neumann scheme, the (S +A)-state on the completion of the measurement. It represents an
ensemble of (S + A)-systems in which a fraction pj = |cj |2 appears in the j th product state
in the summand. With the projection postulate incorporated, the von Neumann formalism,
therefore, predicts that, in a measurement with the system S initially in the superposition state
as above,
(i) the measured values of the observable F are the random numbers λj with respective prob-
abilities |cj |2;
(ii) when the measurement outcome is λj , the final state of the system is |ψj >.
Both the predictions are in excellent agreement with experiment.

The main problem with the treatment of a quantum measurement given above is the ad-hoc
nature of the projection postulate. Moreover, having to invoke a discontinuous, acausal and
instantaneous process is an unpleasant feature of the formalism. The so-called measurement
problem in QM is essentially the problem of explaining the final state (4) without introducing
anything ad-hoc and/or physically unappealing in the theoretical treatment. This means that
one should either give a convincing dynamical explanation of the reduction process or else
circumvent it; we shall do the former.
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A critical account of various attempts to solve the measurement problem and related de-
tailed references may be found in the author’s article (Dass, 2005); none of them can be claimed
to have provided a satisfactory solution. [Even the relatively more appealing decoherence pro-
gram (Zurek, 2003) has problems (Dass, 2005).]

3. DOING JUSTICE TO THE PHYSICS OF THE APPARATUS

Von Neumann’s treatment does not do adequate justice to the physics of the apparatus and
needs some improvements. We propose to take into consideration the following points :

(i) The apparatus A is a quantum mechanical system admitting, to a very good approximation,
a classical description. Even when the number of the effective apparatus degrees of freedom is
not large (for example, in the Stern-Gerlach experiment, treated in section 6, where the center
of mass position vector of a silver atom acts as the effective apparatus variable), a classical
description of the relevant variables is adequate. This feature is of more than mere academic
interest and must be properly incorporated in the theoretical treatment. [Items (iii)-(v) below
cannot be treated properly unless this feature is incorporated.]

(ii) Introduction of vector states for the pointer positions is neither desirable (no operational
meaning can be assigned to a superposition of the pointer states |µj >) nor necessary : a better
procedure is to introduce density operators for the pointer states and take into consideration
the fact that the Wigner functions corresponding to them are approximated well by classical
phase space density functions.

(iii) The pointer states have a stability property : After the measurement interaction is over,
the apparatus, left to itself, settles quickly into one of the pointer positions. It is this process
which should replace von Neumann’s ‘instantaneous, non-causal and discontinuous’ process.

Note. A detailed mathematical treatment of this process, as we shall see below, is not necessary;
it is adequate to take its effect correctly into account. To get a feel for this, note that, in, for
example, the Stern-Gerlach experiment, treated in section 6, the measurement interaction is
over (ignoring fringe effects) after the atom is out of the region between the magnetic pole pieces.
In this case, by ‘the apparatus settling to a pointer position’ one means the movement of the
atom from just outside the pole pieces to a detector. In this case, the choice of the detector is
decided by the location of the atom just after the measurement interaction. Details of motion
of the atom from the magnets to the detector is of no practical interest in the present context.
In the case of a macroscopic apparatus, the ‘settling ...’ refers to the process of the apparatus
reattaining thermal equilibrium (disturbed slightly during the measurement interaction) after
the measurement interaction; again, details of this process are not important in the present
context (the eventual pointer position is decided by the region of the apparatus phase space in
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which the apparatus happens to be immediately after the measurement interaction).

(iv) Observations relating to the apparatus are restricted to the pointer positions Mj . A prop-
erly formulated dynamics (classical or quantum) which takes this into consideration (treating
the apparatus ‘respectfully’ as a system) would involve, at appropriate stage, averaging over
the inoperative part of the phase space of the apparatus [the ‘internal environment’ (Dass,
2005) of the apparatus]. It is this averaging, as we shall see below, which [combined with
item (v) below] produces the needful decoherence effects (Zurek, 2003; Dass, 2005) to wipe out
undesirable quantum interferences.

(v) Different pointer positions are macroscopically distinguishable. We shall take this into
consideration by employing an appropriate energy-time uncertainty inequality.

4. SUPMECH : A BRIEF OUTLINE

Supmech is an ‘all-embracing’ mechanics having both classical and quantum mechanics as
its subdisciplines. Its framework facilitates an autonomous development of QM (i.e. without
having to quantize classical dynamical systems) and a transparent treatment of quantum-
classical correspondence. A brief presentations of its basic features follows. Since fermionic
objects are not needed in the present work, we shall present only the bosonic version of supmech.

4.1 Probabilistic Framework

a. Experimentally accessible systems. By these, we mean systems whose ‘identical’ (for all
practical purposes) copies are reasonably freely available for repeated trials of an experiment.
Henceforth by a system we shall mean an experimentally accessible one. Some aspects of
systems not included in this class (the universe and its ‘large’ subsystems) can be covered by
the formalism of this paper with the slightly more refined presentation of the basic postulates as
given in II and an appropriate interpretation of classical probabilities in the statistical analysis
of the experimental data relating to such systems.

b. System algebra; Observables. Supmech associates, with every system S, a complex associative
?-algebra A = A(S) having a unit element (denoted here as I). Observables of S are elements
of the subset O(A) of Hermitian elements of A. A positive observable is a sum of terms of the
form

∑
iA
∗
iAi where Ai ∈ A.

c. States. States of the system, also referred to as the states of the system algebra A (denoted
by the letters φ, φ′, ..), are defined as positive linear functionals on A which are normalized
[i.e. φ(I) = 1]. The set of states of A will be denoted as S(A) and the subset of pure states
by S1(A). For any A ∈ O(A) and φ ∈ S(A), the quantity φ(A) is to be interpreted as the
expectation value of A when the system is in the state φ.
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d. Compatible completeness of observables and pure states. The pair (O(A), S1(A)) is assumed
to be compatibly complete in the sense that

(i) given A,B ∈ O(A), A 6= B, there should be a state φ ∈ S1(A) such that φ(A) 6= φ(B);

(ii) given two different states φ1 and φ2 in S1(A), there should be an A ∈ O(A) such that
φ1(A) 6= φ2(A).

We shall refer to this condition as the ‘CC condition’ for the pair (O(A),S1(A)).

e. Experimental situations and probabilities. In supmech, experimental situations relating to
a system with system algebra A are formalized in terms of positive observable valued measures
(PObVMs) defined as follows. One introduces a measurable space (Ω,F) where Ω is the ‘value
space’ (spectral space) of one or more observables and elements of F (measurable subsets) are
(standardized idealizations of) those subsets of Ω which can be experimentally distinguished.
A PObVM for the system S, based on this measurable space, is a family {ν(E);E ∈ F} where
the objects ν(E) (supmech events) are positive observables in A such that

(i) ν(∅) = 0, (ii) ν(Ω) = I,

(iii) ν(∪iEi) =
∑

i ν(Ei) (for disjoint unions).

It is the abstract counterpart of the ‘positive operator-valued measure’ (POVM) employed in
Hilbert space QM. Given a state φ of the system S, we have a probability measure pφ on (Ω,F)
given by

pφ(E) = φ(ν(E)) ∀E ∈ F . (5)

Eq.(5) represents the theoretically desirable relationship between supmech expectation values
and classical probabilities. In supmech, all probabilities in the formalism are stipulated to be
of this type (i.e. expectation values of supmech events).

4.2 Noncommutative Symplectic Geometry

a. Derivation based noncommutative differential calculus (Dubois-Violette, 1991; 1997). Re-
placing, in the classical differential form calculus, the commutative algebra C∞(M) of smooth
complex valued functions on a manifold M by an algebra A in the class mentioned above and
the Lie algebra X (M) of smooth vector fields on M by the Lie algebra Der(A) of derivations
of A, the elements of the space Ωp(A) of noncommutative differential p-forms on A (p= 1,2,..)
are defined as multilinear maps (Der(A))p → A such that, for ω ∈ Ωp(A), X, Y ∈ Der(A) and
K ∈ Z(A), the center of A, we have

ω(.., X, Y, ..) = − ω(.., Y,X, ..); ω(..,KX, ..) = Kω(.., X, ..);
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moreover Ω0(A) = A. The usual operations on differential forms [exterior product ∧ :
Ωp(A) × Ωq(A) → Ωp+q(A), exterior derivative d : Ωp(A) → Ωp+1(A), interior product
iX : Ωp(A) → Ωp−1(A) and Lie derivative LX : Ωp(A) → Ωp(A) are defined along lines
parallel to the commutative case and analogous relations involving these operations hold, with
very few exceptions. [The not so well known algebraic definition of the exterior derivative in
the commutative case (Matsushima, 1972) works as such for the noncommutative case.]

b. Induced mappings on derivations and differential forms. These are analogues of the push-
forward and pull-back mappings on vector fields and differential forms induced by diffeomor-
phisms between manifolds. Given an algebra isomorphism Φ : A → B, we have the induced
linear mappings Φ∗ : Der(A)→ Der(B) and Φ∗ : Ωp(B)→ Ωp(A) given by

(Φ∗X)(B) = Φ(X[Φ−1(B)]) for all X ∈ Der(A) and B ∈ B;

(Φ∗ω)(X1, .., Xp) = Φ−1[ω(Φ∗X1, ..,Φ∗Xp)]

for all ω ∈ Ωp(B) and X1, .., Xp ∈ Der(A).

These mappings satisfy the relations [with Ψ : B → C and other obvious notation]

(Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗; Φ∗[X,Y ] = [Φ∗X,Φ∗Y ]; (Ψ ◦ Φ)∗ = Φ∗ ◦Ψ∗;

Φ∗(α ∧ β) = (Φ∗α) ∧ (Φ∗β); Φ∗(dα) = d(Φ∗α).

c. Symplectic structures; Poisson brackets (Dubois-Violette, 1991; 1997); Canonical transfor-
mations. The system algebra A is assumed to be equipped with a symplectic form ω which, by
definition, is a closed 2-form which is non-degenerate in the sense that, for any A ∈ A, there is
a unique derivation YA ∈ Der(A) such that

iYA
ω = −dA.

The pair (A, ω) is called a symplectic algebra. For any two elements A,B of A, their Pois-
son bracket (PB) is defined as {A,B} = YA(B) and has the usual properties of bilinearity,
antisymmetry, Leibnitz rule and Jacobi identity.

Given two symplectic algebras (A, ω) and (A′, ω′), an algebra isomorphism Φ : A → A′ is
called a symplectic mapping if Φ∗ω′ = ω. A symplectic mapping of (A, ω) onto itself is called
a canonical/symplectic transformation. An infinitesimal transformation of A of the form

A 7→ A+ δA; δA = ε{G,A} (6)

is a canonical transformation (generated by G ∈ A).
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d. Special algebras; the canonical symplectic form. An algebra A of the above mentioned type
is called special if all its derivations are inner (i.e. those of the form DA with DA(B) = [A,B]).
The differential 2-form ωc defined on such an algebra A by

ωc(DA, DB) = [A,B] (7)

is said to be the canonical form on A. It is a symplectic form giving, for A,B ∈ A, YA = DA

and {A,B} = [A,B]. If one takes, on such an algebra, the form ω = bωc as a symplectic form
(where b is a nonzero complex number), we have

YA = b−1DA, {A,B} = b−1[A,B]. (8)

The quantum Poisson bracket

{A,B}Q = (−i~)−1[A,B] (9)

is a special case of this with b = −i~; the corresponding symplectic form is the quantum
symplectic form ωQ = −i~ωc.

4.3 Dynamics.

Dynamics in supmech is described (in the Heisenberg type picture) by a one-parameter
family Φt of canonical transformations generated by by an observable H ∈ O(A) called the
Hamiltonian. Writing Φt(A) = A(t) and taking G = H and ε = δt in Eq.(6), we have the
supmech Hamilton’s equation

dA(t)
dt

= {H,A(t)} ≡ ∂H(A(t)). (10)

In the Schrödinger type picture, time evolution is carried by states, the two descriptions being
related as

< φ,A(t) >=< φ(t), A > (11)

[so that φ(t) = Φ̃t(φ) where the tilde indicates transpose]. Writing φ(t+ δt) = φ(t) + δφ(t), we
have, from equations (10,11), the supmech Liouville equation for the time evolution of states :

dφ(t)
dt

(A) = φ(t)({H,A}) ≡ (∂̃H(φ(t))(A). (12)

We may write, formally,

Φt = exp(t∂H); Φ̃t = exp(t∂̃H). (13)

The quadruple Σ = (A,S1(A), ω,H) is called a supmech Hamiltonian system. Another
supmech hamiltonian system Σ′ is said to be equivalent to Σ if there is a symplectic mapping
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Φ : (A, ω) → (A′, ω′) such that Φ(H) = H ′. The states are then related through Φ̃. When
states are not being considered, we may refer to a triple (A, ω,H) as a supmech Hamiltonian
system.

4.4 Interaction between two systems in supmech.

Given two sytems S1 and S2 considered as supmech Hamiltonian systems Σi = (A(i),S1(A(i)), ω(i), H(i))
[the PBs in the two algebras will be denoted as {., .}i (i=1,2)], we treat the coupled system
(S1 + S2) as a supmech Hamiltonian system Σ = (A,S1(A), ω,H) where A = A(1) ⊗A(2),

ω = ω(1) ⊗ I2 + I1 ⊗ ω(2), (14)

H = H(1) ⊗ I2 + I1 ⊗H(2) +Hint (15)

where Ii is the unit element of A(i) (i= 1,2) and, typically,

Hint =
n∑
i=1

Fi ⊗Gi.

The 2-form ω of (14) is closed but, according to theorem (2) in I, is non-degenerate if and
only if either both the algebras A(1) and A(2) are commutative or both noncommutative with
their respective PBs proportional to commutators with the same proportionality constant i.e.

{A,B}1 = λ[A,B]; {C,D}2 = λ[C,D] (16)

(with the parameter λ nonzero and imaginary); in either case, the PB in A is given by [I,
Eq.(99)]

{A⊗B,C ⊗D} = {A,C}1 ⊗
BD +DB

2
+
AC + CA

2
⊗ {B,D}2. (17)

The dynamics of the coupled system is governed by the supmech Hamilton’s equation [I,
Eq.(101)]

d

dt
[A(t)⊗B(t)] = {H,A(t)⊗B(t)}

= {H(1), A(t)}1 ⊗B(t) +A(t)⊗ {H(2), B(t)}2
+{Hint, A(t)⊗B(t)}. (18)

.

4.5 Classical Hamiltonian mechanics and traditional Hilbert space quantum me-
chanics as subdisciplines of supmech

A classical Hamiltonian system (P, ωcl, Hcl) [where P is the phase space which is a symplectic
manifold with the classical symplectic form ωcl ≡

∑
dpα ∧ dqα (in canonical coordinates)
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and Hcl is the classical Hamiltonian, a smooth function on P] is a special case of a supmech
Hamiltonian system (A,S1(A), ω,H) with A = Acl ≡ C∞(P ), S1(A) = P (Dirac measures on
the phase space P identified with points of P), ω = ωcl and H = Hcl; the supmech PBs are
now the traditional classical PBs. The supmech Hamilton’s equation (10) is now the classical
Hamilton’s equation. Representing states by probability densities in phase space, Eq.(12) goes
over, in appropriate cases (for P = R2n, for example, after the obvious partial integrations), to
the classical Liouville equation for the density function. The CC condition can be easily verified
in this case (II, section 2.2). The supmech events are now the characteristic/indicator functions
corresponding to the Borel subsets of P (which correspond to events in classical probability
theory) (II, section 2.1).

To see the traditional Hilbert space QM as a subdiscipline of supmech, it is useful to
introduce the concept of a quantum triple (H,D,A) where H is a complex separable Hilbert
space, D a dense linear subset of H and A an Op∗-algebra of operators based on (H,D). [Such
an algebra is a family of operators which, along with their adjoints, map D into itself. The *-
operation on the algebra is defined as the restriction of the Hilbert space adjoint onD. These are
the algebras of operators (not necessarily bounded) appearing in the traditional Hilbert space
QM; for example, the operator algebra generated by the position and momentum operators in
the Schrodinger representation for a nonrelativistic spinless particle (the Heisenberg algebra)
belongs to this class, with H = L2(R3) and D = S(R3).]

Here we shall consider only the standard quantum triples by which we mean those in which
(i) the algebra A is special in the sense described above, and (ii) A acts irreducibly on (H,D)
[i.e. there does not exist a smaller quantum triple (H′,D′,A) with D′ ⊂ D, AD′ ⊂ D′ and H′

is a proper subspace of H]. The quantum triple associated with the Schrödinger representation
for a non-relativistic spinless particle mentioned above satisfies these conditions.

With A special, one can define the quantum symplectic form ωQ = −i~ωc which gives the
Poisson brackets of Eq.(9). With the A-action irreducible, the space S1(A) of pure states of A
consists of vector states corresponding to normalized vectors in D. Choosing an appropriate
self adjoint element H of A as the Hamiltonian operator, we have a quantum Hamiltonian
system (A,S1(A), ωQ, H) as a special case of a supmech Hamiltonian system. The PObVMs
are now the traditional POVMs (positive operator-valued measures). With the quantum PBs of
Eq.(9), the supmech Hamilton’s equation (10) goes over to the traditional Heisenberg equation
of motion. General states are represented by density operators ρ satisfying the condition
|Tr(ρA)| < ∞ for all observables A in A. The CC condition holds in this case as well (II,
section 2). By virtue of this condition, Tr(ρ1A) = Tr(ρ2A) for all A ∈ A implies ρ1 = ρ2.
Eq.(12) now goes over to the von Neumann equation

dρ(t)
dt

= (−i~)−1[ρ(t), H]. (19)
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4.6 Quantum-classical correspondence

This feature of supmech (of accommodating both classical and quantum mechanics) facil-
itates a transparent treatment of quantum-classical correspondence. The strategy adopted in
II was to start with a quantum Hamiltonian system, transform it to an isomorphic supmech
Hamiltonian system involving phase space functions and ?-products (Weyl-Wigner-Moyal for-
malism) and show that, in this latter Hamiltonian system, the subclass of phase space functions
in the system algebra which go over to smooth functions in the ~ → 0 limit yield the corre-
sponding classical Hamiltonian system. The working of this strategy was demonstrated for the
case of a spinless nonrelativistic particle. It was, however, clear that the treatment permitted
trivial generalization to systems with phase space R2n. We collect below the R2n-analogues of
some equations from section 4 of II. [The integrals in equations (20-26) below are over Rn.]

Given a quantum triple (H,D,A) where H = L2(Rn),D = S(Rn) and A an Op∗-algebra
based on (H,D), we have, for any A ∈ A and φ, ψ normalized elements in D,

(φ,Aψ) =
∫ ∫

φ∗(y)KA(y, y′)ψ(y′)dydy′ (20)

where the kernel KA is a (tempered) distribution. The Wigner function AW corresponding to
A is defined as the function on R2n given by

AW (x, p) =
∫
exp[−ip.y/~]KA(x+

y

2
, x− y

2
)dy. (21)

Given a density operator ρ on H such that |Tr(Aρ)| < ∞ for all A ∈ A and defining ρW as
above, we have

Tr(Aρ) =
∫ ∫

AW (x, p)ρW (x, p)dxdp. (22)

The Wigner function ρW is real but generally not non-negative.
Introducing, in R2n, the notations ξ = (x,p), dξ = dxdp and σ(ξ, ξ

′
) = p.x

′ − x.p′
(the

symplectic form in R2n), we have, for A,B ∈ A

(AB)W (ξ) = (2π)−6

∫ ∫
exp[−iσ(ξ − η, τ)]AW (η +

~τ
4

).

.BW (η − ~τ
4

)dηdτ

≡ (AW ? BW )(ξ). (23)

The associativity condition A(BC) = (AB)C implies the corresponding condition AW ?

(BW ? CW ) = (AW ? BW ) ? CW in the space AW of the Wigner functions corresponding to
the elements of A which is a complex associative non-commutative, unital *-algebra (with the
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star-product of Eq.(23) as product and complex conjugation as involution) isomorphic (as a
star-algebra) to A. Under this isomorphism, the quantum symplectic form ωQ = −i~ωc on A
goes over to the 2-form ωW = −i~ωWc where ωWc is the canonical form on AW ; this makes the
pair (AW , ωW ) a symplectic algebra isomorphic to (A, ωQ). The corresponding PB on AW is
given by the Moyal bracket

{AW , BW }M ≡ (−i~)−1(AW ? BW −BW ? AW ). (24)

For functions f, g inAW which are smooth and such that f(ξ) and g(ξ) have no ~−dependence,
we have, from Eq.(23),

f ? g = fg − (i~/2){f, g}cl +O(~2). (25)

The functions AW (ξ) will have, in general, some ~ dependence and the ~ → 0 limit may be
singular for some of them. We denote by (AW )reg the subclass of functions in AW whose ~→ 0
limits exist and are smooth (i.e. C∞ ) functions; moreover, we demand that the Moyal bracket
of every pair of functions in this subclass also have smooth limits. This class is easily seen to
be a subalgebra of AW closed under Moyal brackets. Now, given two functions AW and BW

in this class, if AW → Acl and BW → Bcl as ~ → 0, then AW ? BW → AclBcl; the subalgebra
(AW )reg, therefore, goes over, in the ~ → 0 limit , to a subalgebra Acl of the commutative
algebra C∞(R2n) (with pointwise product as multiplication). The Moyal bracket of Eq.(24)
goes over to the classical PB {Acl, Bcl}cl; the subalgebra Acl, therefore, is closed under the
classical Poisson brackets. The classical PB {, }cl determines the classical symplectic form ωcl.
In the ~→ 0 limit, therefore, we have the classical symplectic algebra (Acl, ωcl).

When the ~ → 0 limits of AW and ρW on the right hand side of Eq.(22) exist (call them
Acl and ρcl), we have, in this limit,

Tr(Aρ)→
∫ ∫

Acl(x, p)ρcl(x, p)dxdp. (26)

The quantity ρcl can be shown to be non-negative (and, therefore, a genuine density function
on the phase space R2n).

We shall make, in our treatment of measurements below, the fairly safe assumption that this
strategy works for the apparatus treated as a quantum system. [See the axiom A8(b) in section
7.] This will enable us to exploit the fact that the apparatus admits a classical description to
a very good approximation.

5. TREATMENT OF A QUANTUM MEASUREMENT IN SUPMECH

We shall now treat the (S +A) system in the framework of section 4.4 above treating
both, the system S and the apparatus A, as quantum Hamiltonian systems. Given the two
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quantum triples (HS ,DS ,AS) and (HA,DA,AA) corresponding to S and A, the quantum triple
corresponding to (S+A) is (HS ⊗HA,DS ⊗DA,AS ⊗AA).

A general pointer observable for A is of the form

J =
∑
j

bjPj (27)

where Pj is the projection operator onto the space of states in HA corresponding to the pointer
position Mj [considered as an apparatus property; for a detailed treatment of the relationship
between classical properties and quantum mechanical projectors, see (Omnes, 1994; 1999)
and references therein] and bjs are real numbers such that bj 6= bk for j 6= k. In purely
quantum mechanical terms, the projector Pj represents the question (von Neumann 1955;
Jauch, 1968) : ‘Is the pointer at positionMj?’ The observable J has different ‘values’ at different
pointer positions. Since one needs only to distinguish between different pointer positions, any
observable J of the above mentioned specifications can serve as a pointer observable.

The phase space function PWj corresponding to the projector Pj is supposedly approximated
well by a function P clj on the phase space Γ of the apparatus A (the ~→ 0 limit of PWj ). Now,
in Γ, there must be non-overlapping domains Dj corresponding to the pointer positions Mj . In
view of the point (iv) in section 3, different points in a single domain Dj are not distinguished by
the experiment. We can, therefore, take P clj to be proportional to the characteristic/indicator
function χDj of the domain Dj ; it follows that the phase space function JW corresponding to
the operator J above is approximated well by the classical pointer observable

Jcl =
∑
j

b′jχDj (28)

where b′js have properties similar to the bjs above.

The pointer states φ(A)
j corresponding to the pointer positions Mj are represented by density

operators ρ(A)
j supposedly such that the phase space functions ρ(A)W

j corresponding to them

are approximated well by the classical phase space density functions ρ(A)cl
j which vanish outside

the domain Dj .
We shall take Hint = F⊗K (absorbing the coupling constant in K) where F is the measured

quantum observable and K is a suitably chosen apparatus observable . We shall make the usual
assumption that, during the measurement interaction, Hint is the dominant part of the total
Hamiltonian (H ' Hint). The unitary operator U of section 2 describing the measurement
interaction in the von Neumann scheme is now proposed to be replaced by the measurement
operator M in supmech which implements the appropriate canonical transformation on the
states of the (S +A) system. It is given by M ≡ exp[τ ∂̃H ] where τ = tf − ti is the time
interval of measurement interaction and ∂̃H is the evolution generator in the supmech Liouville
equation [see Eq.(13)].
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Assuming, again, that the measurement is ideal and denoting the ‘ready state’ of the ap-
paratus by φ(A)

0 , we have the following analogue of Eq.(1):

M(|ψj >< ψj | ⊗ φ(A)
0 ) = |ψj >< ψj | ⊗ φ(A)

j . (29)

Here and in the following developments, we have identified the quantum states of the system
S with the corresponding density operators. When the system is initially in the superposition
state |ψ > as in section 2, the initial and final (S+A)- states are

Φin = |ψ >< ψ| ⊗ φ(A)
0 ; Φf = M(Φin). (30)

Note that the ‘ready’ state may or may not correspond to one of the pointer readings. (In a
voltage type measurement, it does; in the Stern-Gerlach experiment with spin half particles, it
does not.) For the assignment of the Γ-domain to the ‘ready’ state, the proper interpretation
(which covers both the situations above) of the ready state is ‘not being in any of the (other)
pointer states’. Accordingly, we assign, to this state, the domain

D̃0 ≡ Γ− ∪j 6=0Dj (31)

where the condition j 6= 0 on the right is to be ignored when the ‘ready’ state is not a pointer
state.

We must now take care of the point (iii) of section 3. When the measurement interaction
is over, the apparatus, left to itself, will quickly occupy, in any single experiment, a pointer
position Mj (depending on the region of the phase space Γ it happens to be in after the
measurement interaction). For the ensemble of (S +A) systems described by the initial state
Φin, the final state (after ‘settling down’) must be of the form

Φ̂f =
∑
j

pjρ
(S)
j ⊗ φ(A)

j (32)

where ρ(S)
j are some states of S. Eq.(32) incorporates the net effect of the processes involved in

the ‘settling down’ of the apparatus. The unknowns pj and ρ
(S)
j must be determined by iden-

tifying the conditions that must be satisfied by the processes involved in the above mentioned
‘settling down’.

During the transition from the state Φf to Φ̂f , the change taking place in the system (S+A)
is predominantly ‘settling down’ of the apparatus which, in view of the stability property (iii)
above, is not expected to change the expectation value of a pointer observable J. We must have,
therefore, for an arbitrary system observable A,

Φ̂f (A⊗ J) = Φf (A⊗ J) (33)
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for all observables J of the form (27). It is this condition, based on physical reasoning, which
replaces von Neumann’s projection postulate in our treatment.

Now, Φf = Φ′f + Φ′′f where

Φ′f = M

∑
j

|cj |2[|ψj >< ψj | ⊗ φ(A)
0 ]


=

∑
j

|cj |2[|ψj >< ψj | ⊗ φ(A)
j ] (34)

(where we have used the fact that the canonical transformation M on states preserves convex
combinations) and

Φ′′f = M

[
∑
j 6=k

c∗kcj |ψj >< ψk|]⊗ φ
(A)
0

 ≡M(R). (35)

[Note that R, the operand of M, is not an (S +A)-state; here M has been implicitly extended
by linearity to the dual space of the algebra AS ⊗AA.]

We shall now prove that

W ≡ Φ′′f (A⊗ J) ' 0. (36)

Proof. Transposing the M operation to the observables and adopting the phase space description
of the apparatus, we have

W = < exp(τ ∂̃H)(R), A⊗ J > = < R, [exp(τ∂H)(A⊗ J)]

= < (
∑
j 6=k

c∗kcj |ψj >< ψk|)⊗ φ
(A)
0 , [exp(τ∂H)](A⊗ J) >

=
∫

Γ
dΓρ(A)W

0

∑
j 6=k

c∗kcj < |ψj >< ψk|, exp(τ∂H′)(A⊗ JW ) > (37)

where dΓ is the phase space volume element, ρ(A)W
0 is the Wigner function corresponding to

the state φ(A)
0 and H ′ = F ⊗KW [see Eq.(22)]. Using equations (9), (17) and (24) above, we

have

∂H′(A⊗ JW ) = {F ⊗KW , A⊗ JW }

= (−i~)−1

(
[F,A]⊗ KW ∗ JW + JW ∗KW

2

+
FA+AF

2
⊗ (KW ∗ JW − JW ∗KW )

)
. (38)
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Given the fact that the apparatus is well described classically, we have KW ' Kcl and JW ' Jcl

to a very good approximation. This gives

∂H′(A⊗ JW ) ' (−i~)−1KclJcl[F,A]

which, in turn, implies (recalling the notation DF (A) = [F,A])

< |ψj >< ψk| , exp(τ∂H′)(A⊗ JW ) >

= < |ψj >< ψk|, exp(
iτ

~
KclDF )(A) > Jcl

= < ψk|exp(
iτ

~
KclDF )(A)|ψj > Jcl

= exp[
iτ

~
Kcl(λk − λj)] < ψk|A|ψj > Jcl.

We now have, replacing, in Eq.(37), ρ(A)W
0 by its classical approximation ρ

(A)cl
0 ,

W '
∫
D̃0

dΓρ(A)cl
0

∑
j 6=k

c∗kcj exp[
i

~
(λk − λj)Kclτ ]Jcl < ψk|A|ψj > . (39)

Let

< Kcl >0 ≡
∫
D̃0

Kclρ
(A)cl
0 dΓ (40)

(the mean value of Kcl in the domain D̃0). Putting Kcl =< Kcl >0 s, taking s to be one of
the integration variables and writing dΓ = dsdΓ′, we have

W '
∫
D̃0

dsdΓ′ρ(A)cl
0

∑
j 6=k

c∗kcj exp[
i

~
ηjks]Jcl < ψk|A|ψj > (41)

where

ηjk = (λk − λj) < Kcl >0 τ. (42)

Note that s is a real dimensionless variable with a bounded domain of integration [see remark
(iv) below].

We shall now argue that, for j 6= k,

|ηjk| >> ~. (43)

[This is not obvious; when F is a component of spin, for example, the quantity (λk − λj) is
a scalar multiple of ~.] To this end, we invoke the apparatus feature (v) of section 3. A
reasonable procedure for formulating a criterion for macroscopic distinguishability of different
pointer positions would be to identify a quantity of the dimension of action which could be
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taken as characterizing the physical separation between two different pointer positions and
show that its magnitude is much larger than ~. The objects ηjk (for j 6= k) are quantities
of this type. A simple way of seeing this is to treat Eq.(43) as the time-energy uncertainty
inequality |∆E∆t| >> ~ where ∆t = τ and ∆E is the difference between the energy values
corresponding to the apparatus locations in two different domains Dj and Dk in Γ. Recalling
that H ' Hint during the relevant time interval, we have

∆E ' (λk − λj) < Kcl >0 . (44)

[See the remark (iii) below.] The inequality (43) then follows from the assumed macroscopic
distinguishability of different pointer positions. This assumption along with the argument
above also implies < Kcl >0 6= 0 which will be assumed henceforth.

The large fluctuations implied by Eq.(43) wipe out the integral in Eq.(41) giving W ' 0 as
desired. �

Remarks. (i) It is easily seen that any additional terms in Hint will lead to the corresponding
additional terms in the exponential in Eq.(39). This does not affect the argument for the
validity of Eq.(36).

(ii) For an argument, starting from the condition of macroscopic distinguishability of pointer
positions and arriving at the time-energy uncertainty inequality in the context of the Stern-
Gerlach experiment, see (Gottfried, 1966).

(iii) How does one justify the appearance of the mean value of Kcl in the ‘ready’ state in the
expression for ∆E in the energy time inequality above ? A plausible answer is this : Since
the apparatus is initially in the ‘ready’ state and since K appears in Hint,, it is the quantity
< Kcl >0 which will, at the classical level, be effective in determining the probabilities of
transitions to the various domains Dj .
[A more refined argument : Suppose, at time t = ti, the system point of the apparatus A,
considered as a classical system, in the phase space Γ is ξ0 ∈ D̃0. With the system in the initial
state |ψk >, the effective classical Hamiltonian is Hcl(k) = λkK

cl. After the measurement
interaction, at t = tf , we have the system point of A at ξ(tf ) = ξ0k ∈ Dk. For the quantity
∆E considered above, a good estimate is

∆E '
∫
dΓ(ξ0)ρ(A)cl

0 (ξ0)[λkKcl(ξ0k)− λjKcl(ξ0j)]. (45)

But the Hamiltonians Hcl(k) and Hcl(j) conserve the quantity Kcl. This gives Kcl(ξ0k) =
Kcl(ξ0) = Kcl(ξ0j), hence Eq.(44).]

(iv) Physical quantities related to an apparatus must, in their classical description, be bounded
functions on Γ. (Even observables like the Cartesian components of position or momentum of
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macroscopic parts/components of the apparatus must vary in finite intervals.) Boundedness of
the domain of integration of the variable s now follows from the relation |s|max = |(< Kcl >0

)−1Kcl|max. [Note. In the example in the next section, the dimensionless variable u, playing
the same role as s here, has domain of variation of length of order 1. In the general case,
let s1 ≤ s ≤ s2. If s2 − s1 ≤ 2π, no further argument is necessary. If s2 − s1 > 2π, put
s = (s2−s1)w; now the integration variable w is similar to u and the additional factor (s2−s1)
in the exponent is welcome.]

Equations (33), (32) and (36) now give

0 ' (Φ̂f − Φ′f )(A⊗ J)

=
∑
j

φ
(A)
j (J)Tr([pjρ

(S)
j − |cj |2|ψj >< ψj |]A)

which must be true for all J [with arbitrary bj in Eq.(27) satisfying the stated condition]. This
gives

Tr([pjρ
(S)
j − |cj |2|ψj >< ψj |]A) = 0

for all system observables A and, therefore,

pjρ
(S)
j = |cj |2|ψj >< ψj |.

Finally, therefore, we have Φ̂f = Φ′f which is precisely the state obtained from Φf by applying
the von Neumann projection.

This completes the derivation of the von Neumann projection rule. This has been obtained
through straightforward physics; there is no need to give any ad hoc prescriptions. The deriva-
tion makes it clear as to the sense in which this reduction rule should be understood : it is
a prescription to correctly take into consideration the effect of the ‘settling down’ of the ap-
paratus after the measurement interaction for obtaining the final state of the system (S + A)
observationally constrained as in items (iv) and (v) of section 3.

Eq.(41), followed by the reasoning above, represents, in a live form, the operation of
environment-induced decoherence. To see this, note that, the domain D̃0 may be taken to
represent the internal environment of the apparatus. With this understanding, the mechanism
wiping out the unwanted quantum interference terms is, indeed, the environment-induced de-
coherence. In the treatment presented here this mechanism becomes automatically operative.
(Even the external environment can be trivially included by merely saying that the system A
above represents ‘the apparatus and the external environment’.)

6. EXAMPLE : THE STERN-GERLACH EXPERIMENT

As an illustration of the automatic appearance of the decoherence mechanism in the sup-
mech based treatment of quantum measurements presented in the previous section, we consider
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the Stern-Gerlach experiment (Busch, Grabowski and Lahti, 1995; Omnes, 1994; Gottfried,
1966; Cohen- Tannoudji, Diu and Laloë, 2005) with, say, silver atoms (which means spin s
= 1

2). A collimated beam of (unpolarized) silver atoms is made to pass through inhomoge-
neous magnetic field after which the beam splits into two beams corresponding to atoms with
Sz = ±~

2 . The spin and magnetic moment operators of an atom are S = ~
2σ and µ = gS (where

g is the magnetogyric ratio). Let the magnetic field be B(r) = B(z)e3 (in obvious notation).
[Refinements (Potel et al, 2004) introduced to ensure the condition 5.B = 0 do not affect the
essential results obtained below.] We have

Hint = −µ.B = −gB(z)S3. (46)

The force on an atom, according to Ehrenfest’s theorem, is

F = −5 < −µ.B >= g
dB(z)
dz

< S3 > e3 (47)

where the average is taken in the quantum state of the atom. During the experiment, the
internal state of the atom remains unchanged (to a very good approximation); only its center
of mass r and spin S have significant dynamics. In this experiment, S3 is the measured quantum
observable and r acts as the operative apparatus variable.

Let us assume that the beam initially moves in the positive x-direction, the pole pieces are
located in the region x1 ≤ x ≤ x2 and the detectors located in the plane x = x3 > x2 (one
each in the regions z > 0 and z < 0; these regions contain the emergent beams of silver atoms
corresponding, respectively, to S3 = +~

2 and S3 = −~
2 ). We have, in the notation used above,

F = S3 and K = - g B(z). Assuming the experiment to start when the beam reaches at x = x1,
the phase space of the apparatus is

Γ = {(x, y, z, px, py, pz) ∈ R6;x ≥ x1, ∗} (48)

where * indicates the restriction that, for x1 ≤ x ≤ x2, the space available for the movement
of atoms is the one between the two pole pieces. For the order of magnitude calculation below,
we shall ignore the shape of the pole pieces and take * to imply z1 ≤ z ≤ z2.

The domains D1 and D2 corresponding to the two pointer positions are

D1 = {(x, y, z, px, py, pz) ∈ Γ;x > x2, pz > 0}

D2 = {(x, y, z, px, py, pz) ∈ Γ;x > x2, pz < 0};

the domain D̃0 = Γ − (D1 ∪D2). For simplicity, let us take B(z) = b0 + b1z where b0 and b1

are constants. For j 6= k, we have λj − λk = ±~. The relevant integral is [see Eq.(41) above]

I =
∫ z2

z1

dz(...)exp[± i
~
µb1zτ ] (49)
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where µ = g~. Putting z = (z2−z1)u, the new integration variable u is a dimensionless variable
taking values in a domain of length of order one. The quantity of interest is

|η| = µ|b1|(z2 − z1)τ. (50)

According to the data in (Cohen-Tannoudji, Diu and Laloë, 2005) and (Goswami, 1992; problem
4.6), we have (vx is the x- component of velocity of the silver atom)

|b1| ∼ |
dB

dz
| ∼ 105 gauss/cm

z2 − z1 ' 1 mm, vx ∼ 500 m/sec

x2 − x1 = 3 cm, x3 − x2 = 20 cm

This gives

τ ∼ x3 − x1

vx
∼ 5× 10−4sec.

Denoting the Bohr magneton by µb and putting µ ∼ µb ' 0.9 × 10−20 erg/gauss, we have
|η| ∼ 10−19erg-sec. With ~ ' 1.1× 10−27 erg-sec, we have, finally (|η|/~) ∼ 108, confirming the
strong suppression of the undesirable quantum interferences.

7. THE EIGHTH AXIOM OF THE SUPMECH PROGRAM

A provisional set of seven axioms, underlying the plan to do ‘all physics’ in the framework
of a noncommutative symplectic geometry based universal mechanics adopted in this series of
papers (the supmech program), was presented in section 5 of II. The use of the word ‘provisional’
reflects the expectation that a stage may come when, after achieving some successes, a more
compact set of axioms (which may themselves be ‘provisional’ at a higher level) is found more
suitable. Till such a stage is reached, the list of provisional axioms is expected to increase
with additions in coverage of the program. The new assumptions made in the present work are
being listed below as the eighth provisional axiom.

A8. Measurements. In a measurement involving a ‘measured system’ S and apparatus A

(a) both S and A are standard quantum systems (as defined in section 3.2 of II; it means
that that the system algebra is a noncommutative algebra generated by a finite number of
fundamental observables and the unit element);

(b) the supmech Hamiltonian system (A(A),S(A)
1 , ω(A), H(A)) corresponding to the apparatus

admits an equivalent (in the sense of section 4.3) phase space realization (in the Weyl-Wigner-
Moyal scheme) (A(A)

W ,S(A)
1W , ω

(A)
W , H

(A)
W );
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(c) elements of A(A)
W and S(A)

1W appearing in the description of dynamics of the coupled system
(S+A) admit ~→ 0 limits and are approximated well by these limits;

(d) the various pointer positions of the apparatus (i) have the stability property as stated
in section 3 [item (iii)] and (ii) are macroscopically distinguishable [the macroscopic distin-
guishability can be interpreted, for example, in terms of an energy-time uncertainty product
inequality (∆E∆t >> ~) relevant to the experimental situation];

(e) observations on the apparatus are restricted to readings of the output devices (pointers).

8. CONCLUDING REMARKS

1. The central message of the present work is this : ‘In the theoretical treatment of mea-
surement on a quantum system, the apparatus must be properly treated as a quantum system
approximated well by a classical one.’ The main body of the paper is devoted to just doing
this job sensibly.

We have seen in operation the general plan (II, sections 4 and 6) for dealing with situations
involving quantum systems approximated well by classical ones : Start with the quantum
system (treating it as a supmech Hamiltonian system), transform it to an equivalent supmech
Hamiltonian system, employing the Weyl-Wigner-Moyal formalism and then introduce the
classical approximations of the relevant phase space functions. This made it possible (and
smooth going) the treatment of the apparatus along the above mentioned lines.

2. It is worth (re-)emphasizing that, in the theoretical treatment of quantum measurements,
if the physics of the apparatus is treated adequately (with due attentions to points mentioned
in section 3), the decoherence effects needed to wipe off the unwanted quantum interferences
appear automatically. The sight of Eq.(41) where one can see the operation of the decohering
effect of averaging over the passive region of the apparatus phase space (which can be inter-
preted as the effect of the ‘internal environment’ of the apparatus) in live action, should please
theoreticians. The incorporation of the external environment (for the restricted purpose of
realizing von Neumann reduction) has been reduced to a matter of less than two lines : just
saying that the symbol ‘A’ now stands for ‘the apparatus and the external environment’.
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