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ASYMPTOTIC NORMALITY OF HILL ESTIMATOR FOR TRUNCATED
DATA

ARIJIT CHAKRABARTY

Abstract. The problem of estimating the tail index from truncated data is addressed in

?. In that paper, a sample based (and hence random) choice of k is suggested, and it is

shown that the choice leads to a consistent estimator of the inverse of the tail index. In this

paper, the second order behavior of the Hill estimator with that choice of k is studied, under

some additional assumptions. In the untruncated situation, it is well known that asymptotic

normality of the Hill estimator follows from the assumption of second order regular variation

of the underlying distribution. Motivated by this, we show the same in the truncated case in

light of the second order regular variation.

1. Introduction

Historically, one of the most important statistical issues related to distributions with regu-
larly varying tail is estimating the tail index. A detailed discussion on estimators of the tail
index can be found in Chapter 4 of ?. One of the most popular estimators is the Hill estimator,
introduced by ?. For a one-dimensional non-negative sample X1, . . . , Xn, the Hill statistic is
defined as

(1.1) h(k, n) :=
1
k

k∑
i=1

log
X(i)

X(k)
,

where X(1) ≥ . . . ≥ X(n) are the order statistics of X1, . . . , Xn, and 1 ≤ k ≤ n is an user
determined parameter. It is well known that if X1, . . . , Xn are a i.i.d. sample from a distri-
bution whose tail is regularly varying with index −α and k satisfies 1 � k � n, then h(k, n)
consistently estimates α−1. In a sense made precise by ?, the consistency of Hill statistic is
equivalent to the regular variation of the tail of the underlying distribution. Various authors
have studied the second order behavior of the Hill estimator; see for example ?, ?, ?, ?, ? and
? among others. It is well known that if the tail of the i.i.d. random variables X1, . . . , Xn
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2 A. CHAKRABARTY

satisfies a stronger assumption than regularly varying with index −α, known as second order
regular variation, then

√
k

(
h(k, n)− 1

α

)
=⇒ N

(
0,

1
α2

)
.

While there are real life phenomena that do exhibit the presence of heavy tails, in lot of the
cases there is a physical upper bound on the possible values. For example most internet service
providers put an upper bound on the size of a file that can be transferred using an internet
connection provided by them. Clearly the natural model for such phenomena is a truncated
heavy-tailed distribution, a distribution which fits a heavy-tailed distribution till a certain point
and then decays significantly faster. This can be made precise in the following way. Suppose
that H,H1, . . . are i.i.d. random variables so that P (H > ·) is regularly varying with index
−α, α > 0 and that L,L1, L2, . . . are i.i.d. random variables independent of (H,H1, H2, . . .).
All these random variables are assumed to take values in the positive half line. We observe the
sample X1, . . . , Xn given by

(1.2) Xj := Hj1(Hj ≤Mn) + (Mn + Lj)1(Hj > Mn) ,

where Mn, representing the truncating threshold, is a sequence of positive numbers going to
infinity. Strictly speaking, the model is actually a triangular array {Xnj : 1 ≤ j ≤ n}. However,
in practice we shall observe only one row of the triangular array, and hence we denote the sample
by the usual notation X1, . . . , Xn. The random variable L can be thought of to have a much
lighter tail, a tail decaying exponentially fast for example. However the results of this article
are true under milder assumptions.

It was observed in Chakrabarty and Samorodnitsky (2009) that if the sequence Mn goes to
infinity slow enough so that

(1.3) lim
n→∞

nP (H > Mn) =∞ ,

then a priori choosing a k so that the Hill estimator is consistent is a problem. In order to
overcome that problem, the following sample based choice of k was suggested in that paper:

(1.4) k̂n :=

n
 1
n

n∑
j=1

1(Xj > γX(1))

β
 ,

where β, γ ∈ (0, 1) are user determined parameters. It has been shown in that article that this
choice of k̂n leads to a consistent estimator of α−1 when (1.3) is true, or when that limit is
zero.

In this paper, we investigate the second order behavior of h(k̂n, n) under the assumption (1.3)
and some additional assumptions. We hope to address the case when the corresponding limit
is zero in future. Knowing the second order behavior of an estimator, at least asymptotically,
helps in constructing confidence intervals for the unknown parameter. While the problem is
motivated by statistics, it is an interesting mathematical problem in itself. The complexity in
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analyzing the second order behavior of h(k̂n, n) arises from the fact that now we are dealing
with a random sum, and the number of summands is heavily dependent on the summands
themselves. Also, a quick inspection will reveal that conditioning on the number of summands
will completely destroy the i.i.d. nature of the sample, and thus make the analysis even more
difficult.

In Section 2, it is shown that under some assumptions, the Hill estimator with k = k̂n is
asymptotically normal with mean 1/α. In Section 3, we connect the assumptions of Section 2
to the second order regular variation of the tail of H.

2. Asymptotic normality of the Hill estimator

Suppose that we have a one-dimensional non-negative sample X1, . . . , Xn given by (1.2). We
shall assume the following throughout this section.

Assumption A: There exists a sequence (εn) such that

lim
n→∞

P (H > Mn)−(1−β)εn = 0 ,(2.1)

lim
n→∞

nP (H > Mn)P (L > εnMn) = 0 ,(2.2)

and lim
n→∞

P (H > Mn)−(1−β)

{
l (γMn(1 + εn))

l(γMn)
− 1
}

= 0 ,(2.3)

where l(x) := xαP (H > x).
Assumption B: limn→∞ nP (H > Mn) =∞.
Assumption C: limn→∞ nP (H > Mn)2−β(logMn)2 = 0.
Assumption D: For any sequence (vn) satisfying

(2.4) vn ∼ nP (H > γMn)β ,

it holds that

lim
n→∞

√
vn

[
n

vn
P
(
H > b(n/vn)y−1/α

)
− y
]

= 0

uniformly on compact sets in [0,∞), where

(2.5) b(y) := inf
{
x :

1
P (H > x)

≥ y
}
.

Assumption E: For any sequence (vn) satisfying (2.4), it is true that

lim
T→∞

lim sup
n→∞

√
vn

∫ ∞
T

∣∣∣∣ nvnP (H > b(n/vn)s)− s−α
∣∣∣∣ dss = 0 .

The main result of this section, Theorem 2.1, describes the second order behavior of h(k̂n, n),
where h(·, ·) and k̂n are as defined in (1.1) and (1.4) respectively, under the assumptions A-E.
Of course, these assumptions are hard to check in practice. However, in Section 3, we show
that most of these can be verified if the tail of H is second order regularly varying and some
additional conditions are satisfied. One could thus state the hypothesis of Theorem 2.1 in terms
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of the second order regular variation. The only reason why we decided not to do that is the
following. The simplest example of a distribution with a regularly varying tail is a Pareto, which
is known to not satisfy the second order regular variation as defined in ?. Hence, if Theorem
2.1 is stated in terms of second order regular variation, it will not entail simple examples of
regularly varying distributions like! Pareto, which clearly satisfy the assumptions A, D and E.

Theorem 2.1. Under assumptions A,B,C,D and E,

(2.6)
√
k̂n

{
h(k̂n, n)− 1

α

}
=⇒ N

(
0,

1
α2

)
.

The following is a brief outline of how we plan to prove this. Define

Un :=
n∑
j=1

1(Xj > γMn) ,

Vn :=
n∑
j=1

1(Xj > γX(1)) ,

k̃n :=
[
n1−βUβn

]
.

Note that
k̂n :=

[
n1−βV β

n

]
.

Since we are dealing with a random sum, a natural way of proceeding is conditioning on the
number of summands. However, as commented earlier, conditioning on Vn or k̂n destroys the
i.i.d. nature of the sample. Hence, we condition on Un = un, where (un) is any sequence of
integers satisfying un ∼ nP (H > γMn). Lemma 2.1 is a general result, which allows us to claim
weak convergence of the unconditional distribution based on that of the conditional distribution.
Clearly, by conditioning on Un, h(k̃n, n) becomes the Hill statistic with a deterministic k applied
to a triangular array. The second order behavior of that is studied in Lemma 2.3. In view of
Lemma 2.1, this translates to second order behavior of (the unconditional distribution of)
h(k̃n, n). In order to argue the claim of Theorem 2.1, all we need is showing that h(k̃n, n) and
h(k̂n, n) are not very far apart, and that is done in Lemma 2.4. For Lemma 2.3 and Lemma
2.4, we need that the tail empirical process, after suitable centering and scaling, converge to a
Brownian Motion. This has been showed in Lemma 2.2.

Lemma 2.1. Suppose that (Bn : n ≥ 1) is a sequence of discrete random variables satisfying

Bn
bn

P−→ 1 ,

for some deterministic sequence (bn). Assume that (An : n ≥ 1) is a family of random variables
such that whenever b̂n is any deterministic sequence satisfying b̂n ∼ bn as n −→∞ and P (Bn =
b̂n) > 0, it follows that

(2.7) P (An ≤ ·|Bn = b̂n) =⇒ F (·) ,
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for some c.d.f. F . Then An =⇒ F .

Proof. It suffices to show that every subsequence of (An) has a further subsequence that con-
verges weakly to F . Since every sequence that converges in probability has a subsequence that
converges almost surely, we can assume without loss of generality that

(2.8)
Bn
bn
−→ 1 a.s. .

Fix a continuity point x of F and define a function fn : R −→ [0, 1] by

fn(u) =

{
P (An≤x,Bn=u)

P (Bn=u) , if P (Bn = u) > 0

0, otherwise.

Clearly, for all n ≥ 1,

P (An ≤ x) = Efn(Bn) .

By (2.7) and (2.8), it follows that

fn(Bn) −→ F (x) a.s. .

By the bounded convergence theorem, it follows that

lim
n→∞

Efn(Bn) = F (x) ,

and this completes the proof. �

Throughout this section, assumptions A, B, C, D and E will be in force.

Lemma 2.2. Suppose that (un) is a sequence of integers satisfying

(2.9) un ∼ nP (H > γMn) ,

and let

vn := [n1−βuβn]− un ,(2.10)

M̃n := γMn .(2.11)

Let for n ≥ 1, Yn,1, . . . , Yn,n be i.i.d. with c.d.f. Fn, defined as

Fn(x) := P (H ≤ x|H ≤ M̃n) .

Then,

(2.12)
√
vn

(
1
vn

n−un∑
i=1

δYn−un,i/b((n−un)/vn)(y
−1/α,∞]− y

)
=⇒W (y)

in D[0,∞), where D[0,∞) is endowed with the topology of uniform convergence on compact
sets and W is the standard Brownian Motion on [0,∞).
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Proof. For simplicity sake, denote wn := n−un. It is easy to see by assumptions B and C that

(2.13) 1� wnP (H > M̃n)�
√
vn �

√
wn .

Let (Γi : i ≥ 1) be the arrivals of a unit rate Poisson Process. Define

φn(s) :=
Γwn+1

vn
F̄n(s−1/αb(wn/vn)) ,

where Ḡ := 1−G for any function G. By the discussion on page 24 in ?, it follows that

(2.14) lim
n→∞

wn
vn
P (H > b(wn/vn)) = 1 .

It follows by (2.13) that
lim
n→∞

wn
vn
P (H > M̃n) = 0 .

This in conjunction with (2.14) implies that

b(wn/vn) = o(M̃n) .

It is easy to see that vn satisfies (2.4). Hence, for n large enough,
wn
vn
F̄n(s−1/αb(wn/vn))− s

=
1

P (H ≤ M̃n)

[
wn
vn
P
(
H > s−1/αb(wn/vn)

)
− wn
vn
P (H > M̃n)

−s+ sP (H > M̃n)
]
,

and hence in view of Assumption D and (2.13), it follows that for 0 < T <∞,

(2.15) lim
n→∞

√
vn sup

0≤s≤T

∣∣∣∣wnvn F̄n(s−1/αb(wn/vn))− s
∣∣∣∣ = 0 .

Also note that,

sup
0≤s≤T

∣∣∣∣φn(s)− wn
vn
F̄n(s−1/αb(wn/vn))

∣∣∣∣
=

∣∣∣∣Γwn+1

wn
− 1
∣∣∣∣ wnvn F̄n(T−1/αb(wn/vn))

= Op(w−1/2
n )O(1)

= op(v−1/2
n ) .

This in conjunction with (2.15) shows that

(2.16)
√
vn (φn(s)− s) P−→ 0

in D[0,∞). Recall that since 1� vn � wn, in D[0,∞),

√
vn

(
1
vn

wn∑
i=1

1 (Γi ≤ vns)− s

)
=⇒W (s) ;
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see (9.7), page 294 in ?. Hence, it follows by the continuous mapping theorem and Slutsky’s
theorem that

(2.17)
√
vn

(
1
vn

wn∑
i=1

1 (Γi ≤ vnφn(s))− φn(s)

)
=⇒W (s)

in D[0,∞). By similar arguments as those in the proof of Theorem 9.1 in ?, it follows that
wn∑
i=1

δYwn,i/b(wn/vn)(y
−1/α,∞] d=

wn∑
i=1

1 (Γi ≤ vnφn(s)) .

This along with (2.16) and (2.17) shows (2.12). �

Lemma 2.3. Let (un) be a sequence of integers satisfying (2.9) and let (vn) and (M̃n) be as
defined in (2.10) and (2.11) respectively. Then,

√
vn

(
1
vn

vn∑
i=1

log
Y(n−un,i)

Y(n−un,vn)
− 1
α

)
=⇒ N

(
0,

1
α2

)
,

where Y(n,1) ≥ . . . ≥ Y(n,n) are the order statistics of Yn,1, . . . , Yn,n, and the latter is as defined
in Lemma 2.2.

Proof. Once again, let us denote wn := n−un. An application of Vervaat’s lemma (Proposition
3.3 in ?) to (2.12) shows that

(2.18)
√
vn

[{
Y(wn,vn)

b(wn/vn)

}−α
− 1

]
=⇒ −W (1)

jointly with (2.12). This in particular, shows that(
√
vn

{
1
vn

wn∑
i=1

δYwn,i/b(wn/vn)(x,∞]− x−α
}
,
Y(wn,vn)

b(wn/vn)

)

=⇒ (W (x−α), 1) ,

in D(0,∞]×R, jointly with (2.18), where D(0,∞] is also endowed with the topology of uniform
convergence on compact sets. Using the continuous mapping theorem, it follows that

√
vn

{
1
vn

wn∑
i=1

δYwn,i/Y(wn,vn)
(x,∞]− x−α

Y −α(wn,vn)

b(wn/vn)−α

}

(2.19) =⇒W (x−α) ,

in D(0,∞], jointly with (2.18). As in the proof of Proposition 9.1 in ?, we shall apply the map
ψ from D(0,∞] to R, defined by

ψ(f) :=
∫ ∞

1
f(s)

ds

s
,
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to conclude that

(2.20)
√
vn

{
1
vn

vn∑
i=1

log
Y(wn,i)

Y(wn,vn)
− 1
α

Y −α(wn,vn)

b(wn/vn)−α

}
=⇒

∫ ∞
1

W (x−α)
dx

x
,

jointly with (2.18). This implies that

√
vn

{
1
vn

vn∑
i=1

log
Y(n,i)

Y(n,vn)
− 1
α

}
=⇒

∫ ∞
1

W (x−α)
dx

x
− 1
α
W (1)

as desired. Thus, it suffices to show (2.20).
To that end, note that for 1 < T <∞, the map ψT , defined by

ψT (f) :=
∫ T

1
f(s)

ds

s

is continuous and has compact support. Also, as T −→∞,

ψT (W (s−α)) =⇒ ψ(W (s−α)) .

Some calculations will show that ψ applied to the left hand side of (2.19) gives the left hand
side of (2.20). Thus, all that needs to be done is justifying the application of ψ to (2.19), and
for that, it suffices to check that for all ε > 0,

lim
T→∞

lim sup
n→∞

P

[
√
vn

∫ ∞
T

∣∣∣∣ 1
vn

wn∑
i=1

δYwn,i/Y(wn,vn)
(x,∞]

−x−α
Y −α(wn,vn)

b(wn/vn)−α

∣∣∣∣dxx > ε

]
= 0 .

Note that on the set {Y(wn,vn)/b(wn/vn) > 1/2},∫ ∞
T

∣∣∣∣ 1
vn

wn∑
i=1

δYwn,i/Y(wn,vn)
(x,∞]− x−α

Y −α(wn,vn)

b(wn/vn)−α

∣∣∣∣dxx
=

∫ ∞
TY(wn,vn)/b(wn/vn)

∣∣∣∣∣ 1
vn

wn∑
i=1

δYwn,i/b(wn/vn)(u,∞]− u−α
∣∣∣∣∣ duu

≤
∫ ∞
T/2

∣∣∣∣∣ 1
vn

wn∑
i=1

δYwn,i/b(wn/vn)(u,∞]− u−α
∣∣∣∣∣ duu .

Since P [Y(wn,vn)/b(wn/vn) ≤ 1/2] goes to zero, it suffices to show that

lim
T→∞

lim sup
n→∞

P

[
√
vn

∫ ∞
T/2

∣∣∣∣ 1
vn

wn∑
i=1

δYwn,i/b(wn/vn)(u,∞]

−u−α
∣∣∣∣duu > ε

]
= 0 .(2.21)



HILL ESTIMATOR 9

Clearly, ∫ ∞
T/2

∣∣∣∣∣ 1
vn

wn∑
i=1

δYwn,i/b(wn/vn)(u,∞]− u−α
∣∣∣∣∣ duu

≤
∫ ∞
T/2

∣∣∣∣∣ 1
vn

wn∑
i=1

δYwn,i/b(wn/vn)(u,∞]− wn
vn
F̄n (ub(wn/vn))

∣∣∣∣∣ duu
+
wn
vn

∫ ∞
T/2

∣∣F̄n (ub(wn/vn))− P (H > ub(wn/vn))
∣∣ du
u

+
∫ ∞
T/2

∣∣∣∣wnvn P (H > ub(wn/vn))− u−α
∣∣∣∣ duu

=
∫ ∞
T/2

∣∣∣∣∣ 1
vn

wn∑
i=1

δYwn,i/b(wn/vn)(u,∞]− wn
vn
F̄n (ub(wn/vn))

∣∣∣∣∣ duu
+
wn
vn

∫ M̃n/b(wn/vn)

T/2

∣∣F̄n (ub(wn/vn))− P (H > ub(wn/vn))
∣∣ du
u

+
wn
vn

∫ ∞
M̃n

P (H > u)
du

u

+
∫ ∞
T/2

∣∣∣∣wnvn P (H > ub(wn/vn))− u−α
∣∣∣∣ duu

=: I1 + I2 + I3 + I4 .

Since vn is defined by (2.10), (2.4) holds. By Assumption E, it follows that

lim
T→∞

lim sup
n→∞

√
vnI4 = 0 .

Karamata’s theorem (Theorem VIII.9.1, page 281 in ?) implies that

I3 = O

(
wn
vn
P (H > M̃n)

)
= o

(
v−1/2
n

)
,

the second equality following from (2.13). For I2, note that

F̄n (ub(wn/vn))− P (H > ub(wn/vn))

= −P (H > M̃n)P (H ≤ ub(wn/vn))
P (H ≤ M̃n)

.

Also, it is easy to see from assumption C that

(2.22) lim
n→∞

wnP (H > M̃n)√
vn

log

{
M̃n

b(wn/vn)

}
= 0 .

Thus,

I2 = O

(
wn
vn
P (H > M̃n) log

M̃n

b(wn/vn)

)
= o

(
v−1/2
n

)
,
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the second equality following from (2.22).
Thus, all that remains is showing

(2.23) lim
T→∞

lim sup
n→∞

P [
√
vnI1 > ε] = 0 .

Notice that

E

[
1
vn

wn∑
i=1

δYwn,i/b(wn/vn)(u,∞]

]
=
wn
vn
F̄n (ub(wn/vn)) .

Letting C to be a finite positive constant independent of n, whose value may change from line
to line,

P [
√
vnI1 > ε]

≤
√
vn
ε
E(I1)

= C
√
vn

∫ ∞
T/2

E

∣∣∣∣∣ 1
vn

wn∑
i=1

δYwn,i/b(wn/vn)(u,∞]− wn
vn
F̄n (ub(wn/vn))

∣∣∣∣∣ duu
≤ C

√
vn

∫ ∞
T/2

Var

[
1
vn

wn∑
i=1

δYwn,i/b(wn/vn)(u,∞]

]1/2
du

u

≤ C

√
wn√
vn

∫ ∞
T/2

F̄n (ub(wn/vn))1/2
du

u

≤ C

∫ ∞
T/2

√
wn√
vn
P (H > ub(wn/vn))1/2

du

u
.

By (2.14), the integrand clearly converges to u−α/2 as n −→ ∞. By (2.5), the integrand is
bounded above by [

P (H > ub(wn/vn))
P (H > b(wn/vn))

]1/2

,

which by the Potter bounds (Proposition 2.6 in ?) is bounded above by 2u−α/3 for n large
enough. An appeal to the dominated convergence theorem shows (2.23) and thus completes
the proof. �

Lemma 2.4. As n −→∞,

(2.24)
√
k̃n

{
h(k̃n, n)− h(k̂n, n)

}
P−→ 0 .

Proof. We start with showing that

(2.25)
√
k̂n

[
k̂n

k̃n
− 1

]
P−→ 0 .
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In the proof of Theorem 3.2 in Chakrabarty and Samorodnitsky (2009), it has been shown that
under Assumption B,

Un
nP (H > γMn)

P−→ 1 ,(2.26)

Vn
nP (H > γMn)

P−→ 1 ,(2.27)

and
k̂n

nP (H > γMn)β
P−→ 1 .(2.28)

In view of (2.28), it suffices to show that

n1/2P (H > Mn)β/2
[
k̂n

k̃n
− 1

]
P−→ 0 .

Note that,
n1−βV β

n

n1−βUβn + 1
≤ k̂n

k̃n
≤ n1−βV β

n + 1

n1−βUβn
,

n1−βV β
n

n1−βUβn + 1
≤
(
Vn
Un

)β
≤ n1−βV β

n + 1

n1−βUβn
,

and

n1−βV β
n + 1

n1−βUβn
− n1−βV β

n

n1−βUβn + 1
=

n1−βV β
n + n1−βUβn + 1

n1−βUβn (n1−βUβn + 1)

= Op

(
n−1P (H > Mn)−β

)
= op

(
n−1/2P (H > Mn)−β/2

)
,

the equality in the second line following from (2.26) and (2.27), and that in the third line
following from Assumption B. Thus, it suffices to show that

n1/2P (H > Mn)β/2
[(

Vn
Un

)β
− 1

]
P−→ 0 .

By the mean value theorem, it follows that as x −→ 1,

xβ − 1 = O(|x− 1|) .

Hence, in view of the fact that Vn/Un converges to 1 in probability, it suffices to show that

n1/2P (H > Mn)β/2
(
Vn
Un
− 1
)

P−→ 0 .

Using (2.26) once again, all that needs to be shown is

Vn − Un = op

(
n−1/2P (H > Mn)−(1−β/2)

)
.
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Note that on the set {Mn ≤ X(1) ≤Mn(1 + εn)}, where εn is chosen to satisfy Assumption A,

0 ≤ Un − Vn ≤
n∑
j=1

1 (γMn < Xj ≤ γMn(1 + εn)) =: Tn .

Thus, it suffices to show that

(2.29) lim
n→∞

P (X(1) ≤Mn(1 + εn)) = 1 ,

(2.30) lim
n→∞

P (X(1) ≥Mn) = 1 ,

(2.31) and Tn = op

(
n−1/2P (H > Mn)−(1−β/2)

)
.

For (2.29), note that as n −→∞,

P (X(1) ≤Mn(1 + εn)) = (1− P (H > Mn)P (L > εnMn))n −→ 1 ,

the convergence following from (2.2) in Assumption A. This shows (2.29). For (2.30), observe
that

P (X(1) < Mn) ≤ (1− P (H > Mn))n .

By Assumption B, the right hand side converges to zero, and hence (2.30) holds. To show
(2.31), note that

Var(Tn) ≤ E(Tn) = npn ,

where

pn := P (γMn < X1 ≤ γ(1 + εn)Mn) .

In view of Assumption C, for (2.31), it suffices to show that

(2.32) pn = o(P (H > Mn)2−β) .

For n large enough so that γ(1 + εn) < 1,

pn = P (H > γMn)− γ−αM−αn (1 + εn)−αl (γMn(1 + εn))

= γ−αM−αn l (γMn(1 + εn))
{

1− (1 + εn)−α
}

+P (H > γMn)
{

1− l (γMn(1 + εn))
l(γMn)

}
.

The first term on the right hand side is clearlyO(εnP (H > Mn)), which by (2.1), is o
(
P (H > Mn)2−β

)
.

By (2.3), it follows that the second term is also o
(
P (H > Mn)2−β

)
. This shows (2.32), and

thus completes the proof of (2.25).
Next, we show that for all η ∈ R, as n −→∞,

(2.33)
√
k̃n log

X
(n,[k̃n+ηk̃

1/2
n ])

X(n,k̃n)

P−→ − η
α
.
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Let (un) be a sequence of positive integers satisfying (2.9) For n large enough so that 1 ≤
un < [n1−βuβn] ≤ n and 1 ≤ un < [n1−βuβn] + η[n1−βuβn]1/2 ≤ n, the conditional distribution of(
X(k̃n), X([k̃n+ηk̃

1/2
n ])

)
given that Un = un is same as the (unconditional) distribution of(
Y

(n−un,[n1−βuβn]−un)
, Y

(n−un,[n1−βuβn]+η[n1−βuβn]1/2−un)

)
,

where {Y(n,j) : 1 ≤ j ≤ n} is as defined in Lemma 2.2, with M̃n as in (2.11). Define vn as in
(2.10) By Lemma 2.2, it follows that

√
vn

(
1
vn

n∑
i=1

δYn−un,i/b((n−un)/vn)(y
−1/α,∞]− y

)
=⇒W (y)

in D[0,∞). Using Vervaat’s lemma, it follows that

(2.34)
√
vn

[(
Y(n−un,[vnx])

b((n− un)/vn)

)−α
− x

]
=⇒ −W (x)

in D[0,∞). From here, we conclude that(
√
vn

[(
Y(n−un,[vnsn])

b((n− un)/vn)

)−α
− sn

]
,
√
vn

[(
Y(n−un,vn)

b((n− un)/vn)

)−α
− 1

])

=⇒ (−W (1),−W (1)) ,

where sn := 1 + ηv−1
n [n1−βuβn]1/2. Since the limit process is C[0,∞) × C[0,∞) valued, this

can be done using Skorohod’s Theorem (Theorem 2.2.2 in ?). Using the Delta method with
x 7→ − 1

α log x, it follows that(
√
vn

{
log

Y(n−un,[vnsn])

b((n− un)/vn)
+

1
α

log sn

}
,
√
vn log

Y(n−un,vn)

b((n− un)/vn)

)

=⇒
(

1
α
W (1),

1
α
W (1)

)
.

Since,

lim
n→∞

√
vn log sn = η ,

it follows that
√
vn log

Y
(n−un,[n1−βuβn]−un)

Y
(n−un,[n1−βuβn]+η[n1−βuβn]1/2−un)

P−→ − η
α
.

What we have shown is that whenever (un) is a sequence satisfying (2.9), the conditional
distribution of the left hand side of (2.33) given Un = un converges weakly to −η/α. By an
appeal to Lemma 2.1, this shows (2.33).
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Coming to the proof of (2.24), note that√
k̃n

[
h(k̂n, n)− h(k̃n, n)

]
=

1√
k̃n

 k̂n∑
i=1

log
X(i)

X(k̃n)

−
k̃n∑
i=1

log
X(i)

X(k̃n)

+
k̂n√
k̃n

log
X(k̃n)

X(k̂n)

+
√
k̃n

(
1

k̂n
− 1
k̃n

) k̂n∑
i=1

log
X(i)

X(k̂n)

=: A+B + C .

Clearly,

C =
√
k̃n

(
1− k̂n

k̃n

)
h(k̂n, n) P−→ 0 ,

the convergence in probability following from (2.25) and the fact that

h(k̂n, n) P−→ 1/α ,

which has been shown in ?. For showing that B P−→ 0, fix ε > 0 and let η := εα/6. Note that

P (|B| > ε)

≤ P

[
k̂n

k̃n
> 2

]
+ P

[√
k̃n

∣∣∣∣∣ k̂nk̃n − 1

∣∣∣∣∣ > η

]
+ P

[√
k̃n log

X
(k̃n−ηk̃1/2

n )

X
(k̃n+ηk̃

1/2
n )

> 3
η

α

]
.

By (2.25) and (2.33), it follows that B P−→ 0. Since for 0 < ε < 1,

P (|A| > ε) ≤ P

[√
k̃n

∣∣∣∣∣ k̂nk̃n − 1

∣∣∣∣∣ > ε

]
+ P

[
log

X
(k̃n−k̃1/2

n )

X
(k̃n+k̃

1/2
n )

> 1

]
,

it is immediate that A P−→ 0. This completes the proof. �

Proof of Theorem 2.1. In view of Lemma 2.4, it suffices to show that

(2.35)
√
k̃n

(
h(k̃n, n)− 1

α

)
=⇒ N

(
0,

1
α2

)
.

Define

S1 :=
Un∑
i=1

log
X(i)

X(k̃n)

S2 :=
k̃n∑

i=Un+1

log
X(i)

X(k̃n)

and note that on the set {Un ≤ k̃n},

h(k̃n, n) =
1
k̃n

(S1 + S2) .
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Let un be a sequence of integers satisfying (2.9) and define vn and M̃n as in (2.10) and (2.11).
For n large enough, note that

[S2|Un = un] d=
vn∑
i=1

log
Y(n−un,i)

Y(n−un,vn)
=: S̃2 ,

where {Y(n,j) : 1 ≤ j ≤ n} is as defined in the statement of Lemma 2.3. By Lemma 2.3, it
follows that

√
vn

(
1
vn
S̃2 −

1
α

)
=⇒ N

(
0,

1
α2

)
.

This along with the fact that

√
vnS̃2

(
1

[n1−βuβn]
− 1
vn

)
= − S̃2

[n1−βuβn]

un√
vn

= Op(1)o(1) ,

shows that [√
k̃n

(
1
k̃n
S2 −

1
α

)∣∣∣∣Un = un

]
=⇒ N

(
0,

1
α2

)
.

Since this is true for all sequence of integers (un) satisfying (2.9), by Lemma 2.1 it follows that√
k̃n

(
1
k̃n
S2 −

1
α

)
=⇒ N

(
0,

1
α2

)
.

On the set {1 ≤ X(1) ≤ 2Mn},

S1√
k̃n

≤ Un log(2Mn)√
k̃n

= Op

(
n1/2P (H > Mn)1−β/2 logMn

)
= op(1) .

Since the probability of that set converges to one, it follows that

S1√
k̃n

P−→ 0 .

This completes the proof. �

3. Second order regular variation

In this section, we show that if the tail of H is second order regularly varying, and L is
sufficiently light-tailed, then the hypotheses of Theorem 2.1 hold. By the tail being second
order regularly varying, we mean that there is a function A : (0,∞) −→ (0,∞) which is
regularly varying with index ρα where ρ < 0, such that

(3.1) lim
t→∞

P (H>tx)
P (H>t) − x

−α

A(t)
= x−α

xρα − 1
ρ/α

for all x > 0; see (2.3.24) in ?.
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Theorem 3.1. Suppose that

(3.2) max(1− 1/α, 0) < β < 1 ,

all moments of L are finite, Mn satisfies assumptions B and C, and the tail of H is second
order regularly varying so that the second order parameter ρ satisfies

ρ < −1− β
β

.

Then, (2.6) holds.

Proof. In view of Theorem 2.1, it suffices to check that assumptions A, D and E hold. By
Theorem 2.3.9 in ?, it follows that given ε, δ > 0, there exist t0 > 1 such that whenever
t, tx ≥ t0,

(3.3)

∣∣∣∣∣∣
P (H>tx)
P (H>t) − x

−α

A(t)
− x−αx

ρα − 1
ρ/α

∣∣∣∣∣∣ ≤ εx−α+ρα max(xδ, x−δ) .

Note that (3.3) holds with a possibly different A(t) from that in (3.1). However, this A is also
regularly varying with index ρα. For the rest of the proof, by A(·), we shall mean the one for
which (3.3) holds.

We start with showing that

(3.4)
√
vn = o

(
A(b(n/vn))−1

)
,

whenever vn is a sequence satisfying (2.4). Let

η := −ρβ − (1− β) .

The upper bound on ρ implies η > 0. Note that A(b(·)) varies regularly with index ρ and
n/vn ∼ P (H > γMn)−β. Thus, there is a slowly varying function l̄ so that

A (b(n/vn))−1 ∼ l̄(Mn)P (H > Mn)ρβ

� P (H > Mn)η+ρβ

=
n1/2P (H > Mn)β/2

n1/2P (H > Mn)1−β/2

� n1/2P (H > Mn)β/2

∼ γαβ/2
√
vn ,

the inequality in the second last line following from Assumption C. This shows (3.4).
Now, we show that assumptions D and E hold. Let

εn := A(b(n/vn)) ∧ (1/2) .
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Clearly 1 > εn > 0 for all n. Recall from (2.5) that z < b(y) if and only if P (H > z)−1 < y.
Thus,

1
P (H > (1− εn)b(n/vn))

<
n

vn
≤ 1
P (H > b(n/vn))

.

Let δ > 0 be such that ρα + δ < 0. Let t0 be such that whenever t, tx ≥ t0, (3.3) holds with
ε = 1 and this δ. Fix 0 < T <∞. Let N be such that for n ≥ N , b(n/vn) > 2t0 ∨ t0/T . Thus,
there is C < ∞, whose value may change from line to line, depending only on T , so that for
n ≥ N and x ≥ T ,∣∣∣∣P (H > b(n/vn)x)

P (H > b(n/vn))
− x−α

∣∣∣∣ ≤ CA(b(n/vn))x−α+ρα+δ ≤ CA(b(n/vn))x−α

the second inequality following since ρα+ δ < 0, and similarly

sup
T≤x<∞

∣∣∣∣ P (H > b(n/vn)x)
P (H > (1− εn)b(n/vn))

− x−α(1− εn)α
∣∣∣∣

≤ CA((1− εn)b(n/vn))
(

x

1− εn

)−α
≤ CA(b(n/vn))x−α .

Since

(1− εn)α − 1 = O(εn) = O(A(b(n/vn))) ,

it follows that there is (a possibly different) C <∞ so that for all x ≥ T ,∣∣∣∣ nvnP (H > b(n/vn)x)− x−α
∣∣∣∣ ≤ CA(b(n/vn))x−α .

This in view of (3.4) shows that assumptions D and E hold.
Finally, we show that Assumption A holds. By (3.2), it follows that

1− α(1− β) > 0 .

Let p > 0 be such that
α(1− β)

p
< 1− α(1− β) .

This choice of p ensures that

(3.5)
α(2− β)

p
< 1− α

(
1− β − 1

p

)
.

Note that xP (H > x)1−β−1/p is regularly varying with index 1 − α(1 − β − 1/p) and P (H >

x)−(2−β)/p is regularly varying with index α(2− β)/p. Thus, by (3.5) it follows that

MnP (H > Mn)1−β−1/p � P (H > Mn)−(2−β)/p � n1/p ,

the last inequality following from Assumption C. Thus

n1/pP (H > Mn)1/pM−1
n � P (H > Mn)1−β .
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Let (εn) be such that

n1/pP (H > Mn)1/pM−1
n � εn � P (H > Mn)1−β .

Clearly, (2.1) holds with this choice of (εn). For (2.2), note that since ELp <∞,

nP (H > Mn)P (L > εnMn) = O
(
nP (H > Mn)ε−pn M−pn

)
= o(1) .

This shows (2.2). Finally, for (2.3), choose δ > 0 so that ρα+ δ < 0. Let t0 be such that (3.3)
holds with this δ and ε = 1. Thus, as n −→∞,∣∣∣∣ l(γMn(1 + εn))

l(γMn)
− 1
∣∣∣∣ = O

(∣∣∣∣P (H > γMn(1 + εn))
P (H > γMn)

− (1 + εn)−α
∣∣∣∣)

= O
(
A(Mn)M−α+ρα+δ

n

)
= o

(
P (H > Mn)1−β

)
,

the last step following from the observations that

P (H > Mn)−(1−β)A(Mn)M−α+ρα+δ
n

=
{
M−αn P (H > Mn)−(1−β)

}
Mρα+δ
n A(Mn)

and that each of the three terms on the right hand side go to zero. This shows that Assumption
A holds and thus completes the proof. �
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