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Abstract

The reliability of any coherent system is the probability that it completes a mission of time

t without failure. To calculate it one needs to know the structure function of the system and

the distribution of the component life times which we assume to be independent and identically

distributed continuous positive valued random variables. In this paper we bring together (i) the

single crossing property of IFRA distributions , (ii) the concept of a signature and (iii) the fact

that the life distribution of a coherent system of IFRA components is itself IFRA (the celebrated

IFRA closure theorem) to obtain useful functional bounds for the reliability of coherent systems of

IFRA components. These bounds are in terms of the quantile of a specified order or the mean of

the common component life distribution and the signature of the coherent system. This obviates

the need of the knowledge of the entire survival function and the knowledge of the coherent system

beyond its signature. We tabulate these reliability bounds for several 3, 4 and 5 component systems

and show that they are very close to the true reliability in certain instances.

Keywords : Coherent system, IFRA, signature, reliability bounds.

AMS Classification 2010: 62 N05, 62 P30

1 Introduction

The exact reliability of coherent systems is notoriously difficult to calculate. It requires the distribution

of component lifetimes as well as the exact structure function of the system. Therefore there have been

efforts made to obtain useful bounds for it. Barlow and Proschan (1975 Ch 4) have given such bounds.

Bodin (1970), Beichelt and Spross (1989) have also found useful bounds based on cut and path sets and

module-decompositions of the coherent system. In Chaudhuri, Deshpande and Dharmadhikari (1991)

bounds for coherent systems composed of independent IFRA components were derived. These bounds
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required the knowledge of the structure function of the system. From (2011) has found bounds for the

reliability of sum of n New Better Than Used (NBUE) components. For other papers on bounds of

reliability function see Koutras, Papastavridis and Patakos (1996) and Hsieh (2003) .

Recently Samaniego (1985), Kochar, Mukerjee and Samaniego (1999),

Samaniego (2007) have introduced and utilized the concept of ’signature’ of a coherent system to repre-

sent its reliability in the following manner. Let h(x1, x2, . . . , xn) be the structure function of the system,

that is to say,

h(x1, x2, . . . , xn) = 1, if the system is working

0, if the system has failed, (1)

where

xi = 1, if the ith component is working

0, if it has failed.

The reliability of any system for a mission of duration t is defined as the probability that the system does

not fail upto time t. If the random variable T denotes the life time of the system, then the reliability at

time t is R(t) = P (T > t). It is well known that

R(t) = P (T > t) = h(F̄1(t), F̄2(t), . . . , F̄n(t)), (2)

where h is the structure function defined in (1) and F̄i(t) is the continuous survival function of the ith

component with random lifetime Xi, i = 1, 2, . . . , n. If these random variables are independent and

identically distributed with common survival function F̄ (t), then the reliability of the system is

R(t) = P (T > t) = h(F̄ (t), F̄ (t), . . . , F̄ (t)). (3)

Samaniego and his associates in the above references have pointed out that any system fails only

at the epoch of a component failure. Therefore, the lifetime of the system T is one of the component
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lifetimes. If we denote by X(1), X(2), . . . , X(n) the ordered component life times, and

P [T = X(i)] = si, i = 1, 2, . . . , n,

then s = (s1, s2, . . . , sn) is a probability distribution, that is, si ≥ 0 and
∑n

i=1 si = 1. The vector s is

defined as the signature of the coherent system. It is seen that

R(t) = P (T > t) =
n∑

i=1

siF̄(i)(t), (4)

where

F̄(i)(t) = P (X(i) > t) =

i−1∑

j=0

(
n

j

)
(1 − F̄ (t))j(F̄ (t))n−j (5)

is the survival function of the ith order statistics of the random sample

X1, X2, . . . , Xn, the lifetimes of the n components which have i.i.d. life times. The survival function

represented in (5) is the reliability function of the (n − i + 1)-out-of-n system.

Navarro and Rychlik (2007) have derived bounds for the reliability function and expected lifetimes of

coherent systems composed of exchangeable components in terms of the common margianl component

life distribution and the signature. They (2010) derived bounds for the expected lifetimes of coherent

or mixed systems with independent components having unknown distributions based on the expected

lifetimes of the components and signature.

Now suppose that Fi, i = 1, 2, . . . , n or the common c.d.f F belong to the Increasing Failure Rate

Average (IFRA) class of distributions. This class is of special significance in reliability theory as it is

the smallest class of probability distributions which contains the exponential distribution and is closed

under operations of (i) formation of coherent systems and (ii) taking limits of sequences of distributions.

The Increasing Failure Rate (IFR) class is a subclass of the IFRA class which in turn is contained in

New Better than Used (NBU) class of distributions. Thus all IFRA distributions exhibit the aspect of

positive ageing (deteriorating effect of age) on the lifetimes. The distributions belonging to this class are

appropriate models for a large number of components and systems occuring in electronics, engineering

and other phenomena, which are subject to wear and tear with time.

It is a well known fact that any IFRA distribution function crosses every exponential distribution

function at most once from below, if it does, and exactly once if the IFRA distribution and the expo-
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nential distribution have a common quantile ζp of any order p, (0 < p < 1). Using this fact and the

expressions (2) and (3), the paper by Chaudhuri, Deshpande and Dharmadhikari (1991) , referred to as

CDD (1991) in the sequel, have provided a lower bound for R(t) over 0 < t ≤ t0 and an upper bound for

t0 ≤ t < ∞. The calculation of these bounds require the knowledge of the structure function h and ζp,

the quantile of a specific order p of the common component life time distribution. One need not know

the entire distribution F , except for the fact that it belongs to the IFRA class. In CDD (1991) these

bounds have been tabulated for the 5 component bridge sructure.

In the work presented in this paper we note that the expressions (4) and (5) provide a representation

of the reliability function based on the common component life time survival function and the signature.

The order statistic distribution F̄(i)(t) is itself the reliability function of the (n− i + 1)-out-of n system

which is a coherent system. If F (or F̄ ) belong to the IFRA class then so do the F̄(i), i = 1, 2, . . . , n.

In Section 2 we derive the bounds for the reliabilty function R(t) which are based on the signature

vector s and the quantile ζp of a specified order p of the IFRA distribution F or the common mean µ

of F . In section 3, we illustrate the bounds by calculating the bounds for (i) some of the 5 coherent

structures of 3 components, (ii) for several coherent structures of 4 components and (iii) for the 5

component bridge structure. We show that the bounds are reasonably close to the exact reliability in

these examples. In section 4 we provide some general remarks on the usefulness of these bounds in

practical situations.

2 The Bounds for Reliability Function

Consider the representation (4) of the system reliability. Let us assume that F̄ (or F ) belongs to the

IFRA class. Then, because of IFRA closure theorem F̄(i), which is the survival function of the (n−i+1)-

out-of-n system, being coherent systems, also belong to the IFRA class, and so does the survival function

or the reliability function R(t) = P (T > t) of the original coherent system. We have mentioned above

the single crossing property of an IFRA distribution F . The failure rate average (FRA) function of a

distribution function is

1

t

∫ t

0

rF (u)du,
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where rF (u) is the failure rate corresponding to F . Since rF (u) = d
du

(−logF̄ (u)), the FRA function is

equal to − 1
t
logF̄ (t) and it is increasing in t for an IFRA distribution . Let ζp be the quantile of order

p of the distribution F . Then F (ζp) = p and F̄ (ζp) = 1 − p. The increasing nature of FRA function

implies that

−
1

t
logF̄ (t) ≤ −

1

ζp

log(1 − p) for t ≤ ζp,

and −
1

t
logF̄ (t) ≥ −

1

ζp

log(1 − p) for t ≥ ζp. (6)

The above inequalities may be rewritten as

F̄ (t) ≥ exp{t(
log(1 − p)

ζp

)} for t ≤ ζp,

and F̄ (t) ≤ exp{t(
log(1 − p)

ζp

)} for t ≥ ζp. (7)

It should be noted that the R.H.S. of the above inequalities is the survival function of the exponential

distribution with mean −
ζp

log(1−p) , with the same quantile ζp of order p as the IFRA distribution F

appearing on the LHS. This is the ’single crossing property’ of an IFRA distribution which states that

every IFRA survival function crosses every exponential distribution at most once; and if the crossing

takes place it is from above. Of course the point where the crossing takes place is the quantile of the

same order of both the IFRA and the exponential distribution. The subsequent result follows from this

basic result, originally given in Barlow and Proschan (1975, Ch 4).

The structure function h as given in (3) above is an increasing function of its arguments. Hence

combining it with (7) one may write

R(t) ≥ h(e
tlog(1−p)

ζp , e
tlog(1−p)

ζp , . . . , e
tlog(1−p)

ζp ), for t ≤ ζp,

and R(t) ≤ h(e
tlog(1−p)

ζp , e
tlog(1−p)

ζp , . . . , e
tlog(1−p)

ζp ), for t ≥ ζp. (8)

And specialising it to the reliability function of a (n − i + 1)-out-of-n system given by (3), we have

the following inequality

F̄(i)(t) ≥
i−1∑

j=0

(
n

j

)
(1 − e

t
log(1−p)

ζp )j(e
t

log(1−p)
ζp )n−j , t ≤ ξp,
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and F̄(i)(t) ≤

i−1∑

j=0

(
n

j

)
(1 − e

t
log(1−p)

ζp )j(e
t

log(1−p)
ζp )n−j , t ≥ ξp. (9)

Effectively we are bounding the survival function or reliability of the (n − i + 1)-out-of-n system

of i.i.d. IFRA components by the corresponding system of independent exponential components which

have the quantile ζp of order p. These inequalities put together in the mixture (4) and a change in the

order of summation lead to the following theorem.

Theorem 2.1: Let (s1, s2, . . . , sn) be the signature of a coherent system composed of n components

with independent and identically distributed lifetimes with common survival function F̄ having the

quantile ζp of order p. Then, the reliability of the system is bounded as below:

R(t) ≥
n∑

i=1

si

i−1∑

j=0

(
n

j

)
(1 − e

t
log(1−p)

ξp )j(e
t

log(1−p)
ξp )n−j , t ≤ ξp,

≤

n∑

i=1

si

i−1∑

j=0

(
n

j

)
(1 − e

t
log(1−p)

ξp )j(e
t

log(1−p)
ξp )n−j , t ≥ ξp.

(10)

These bounds are based on (i) the signature of the coherent system and (ii) the quantile of order p

of the common component survival function. The bound obtained in CDD (1991) were based on the

common quantile ζp and the structure function h of the coherent system. It is felt that the bounds being

presented here will have wider applicability as the requirement of a known structure function is being

weakened to that of a known signature. In any case the calculations will be easier, based on (10) rather

than on the original structure function which can be very complicated.

These are one sided functional bounds, lower on the range (0, ζp] and upper on the range (ζp,∞).

One can choose ζp and hence the corresponding p to vary the ranges to suit the user. For example,

choosing p small, thus (1 − p) large, will give us a quantile ζp which has a small magnitude leading to

a lower bound over the small range (0, ζp]. But this lower bound is for the high reliability region of the

lifetime of the system. In situations where we do not know the structure function beyond the signature

and only know the quantile ζp of order p of the common IFRA survival function of the component

lifetimes, we have an effective lower bound to the exact reliability in this region. That these bounds are

sharp is obvious, since these lower as well as upper bounds together is the exact reliability function of
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the coherent system under consideration, when it is composed of the specified exponentially distributed

components that also belong to the IFRA class.

Further, if we know the mean µ of the common component lifetimes and the value of the common

survival function at the mean, that is, the value of F̄ (µ), then we can take a slightly different path

after the definition of IFRA distribution. Since F̄ is the survival function of an IFRA distribution if

− 1
t
logF̄ (t) is an increasing function, it implies that

−
1

t
logF̄ (t) ≤ −

1

µ
logF̄ (µ), for t ≤ µ,

−
1

t
logF̄ (t) ≥ −

1

µ
logF̄ (µ), for t ≥ µ. (11)

These inequalities can be rewritten as

F̄ (t) ≥ exp{t logF̄ (µ)
µ

}, for t ≤ µ,

F̄ (t) ≤ exp{t logF̄ (µ)
µ

}, for t ≥ µ. (12)

The R.H.S. in the above inequalities is the survival function of the exponential distribution with

mean − µ

logF̄ (µ)
. F̄ (t) and this exponential distribution cross at µ ( a common quantile whose order will

depend upon F ). Then arguing as before we can bound the reliability function of (n− i + 1)- out-of-n

system as below:

F̄(i)(t) ≥

i−1∑

j=0

(
n

j

)
(1 − et

logF̄ (µ)
µ )j(et

logF̄ (µ)
µ )n−j , t ≤ µ,

F̄(i)(t) ≤

i−1∑

j=0

(
n

j

)
(1 − et

logF̄ (µ)
µ )j(et

logF̄ (µ)
µ )n−j , t ≥ µ. (13)

These inequalities then lead to the following theorem:

Theorem 2.2: Let (s1, s2, . . . , sn) be the signature of a coherent system composed of n components

with independent and identically distributed lifetimes with common survival function F̄ having mean

µ. Then the reliability of the system is bounded as below:

R(t) ≥
n∑

i=1

si

i−1∑

j=0

(
n

j

)
(1 − et

logF̄ (µ)
µ )j(et

logF̄ (µ)
µ )n−j , t ≤ µ,
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R(t) ≤

n∑

i=1

si

i−1∑

j=0

(
n

j

)
(1 − et

logF̄ (µ)
µ )j(et

logF̄ (µ)
µ )n−j , t ≥ µ. (14)

In fact one may replace µ by any a(∈ (0,∞)) and the inequalities (11) still hold . Therefore, one

can modify Theorem 2.2 to obtain bounds in terms of the reliability function of the coherent system

composed of i.i.d. component lifetimes with exponential distribution with mean − a
logF̄ (a)

. Thus, to

actually use these bounds one needs to know (i) the signature of the system and (ii) the value of the

common component life distribution at a. The theorem provides a lower bound upto a and an upper

bound beyond a.

Remark 2.1: Note that the bound in (14) can also be expressed as

n∑

i=1

si

i−1∑

j=0

(
n

j

)
(1 − e−t

logF̄ (µ)
µ )j(e−t

logF̄ (µ)
µ )n−j

=

n−1∑

i=1

(
n

i

)
(1 − e−t

logF̄ (µ)
µ )i(e−t

logF̄ (µ)
µ )n−i

n∑

j=i

sj.

Thus, given two signature vectors s and s∗, if
∑n

j=i sj ≤
∑n

j=i s∗j , then we will have

n−1∑

i=1

(
n

i

)
(1 − e−t

logF̄ (µ)
µ )i(e−t

logF̄ (µ)
µ )n−i

n∑

j=i

sj

≤

n−1∑

i=1

(
n

i

)
(1 − e−t

logF̄ (µ)
µ )i(e−t

logF̄ (µ)
µ )n−i

n∑

j=i

s∗j . (15)

That is, majorisation of the signature vector leads to ordering of the bounds for the reliability function.

Remark 2.2: The basic single crossing propert between the IFRA distributions and the exponential

distribution can be exploited for bounding the reliability of coherent systems composed of independent

but not identically distributed components as well. The representation

R(t) =

n∑

i=1

siF̄(i)(t)

holds in this case also. However, there is no closed form expression for F̄(i)(t), the relaibility of (n−i+1)-

out of-n system. It becomes a sum of products of individual (non identical) component distribution

functions and survival functions. Suppose we can specify numbers a1, a2, . . . , an such that the component

lifetime’s survival functions Ḡi(t) have known values Ḡi(ai) at these points. Then, following arguments
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similar to those before, one can specify lower bound for 0 < t ≤ min(a1, a2, . . . , an) and upper bounds

for max(a1, a2, . . . , an) ≤ t < ∞ in terms of the exponential distributions with mean − ai

logḠi(ai)
. By

choosing a1 = a2 = . . . , an = a, one can extend the range of the two inequalities to (−∞, a] and [a,∞)

and not leaving any gap.

3 APPLICATIONS AND NUMERICAL RESULTS

There is a lot of interest in verifying whether certain coherent systems are highly reliable or not. In the

literature ’highly’ reliable systems are described to be those whose reliability exceeds a large fractional

number, e.g., 0.9, 0.95, 0.99, etc. See for example, Mease and Nair (2006) for concern in this issue. Any

system which undergoes wear and tear is said to exhibit positive ageing. Since the reliability function

of the system is the survival function of its lifetime, it is necessarily a monotone decreasing function.

The systems which further exhibit the phenomenon of positive ageing would have the survival function

belonging to one of the positive ageing classes such as IFR, IFRA, etc. Since IFRA class has the

closure property under formation of coherent systems, it is a natural class to contain system lifetime

distributions. Therefore, it is useful to find bounds for systems composed of IFRA components.

First we consider the bridge structure studied by CDD (1991). Each component has life distribution

G(µ, 1) with survival function given by

F̄G(t) =

∫
∞

t

xµ−1e−x

Γ(µ)
dx, µ > 1. (16)

The reliability function of the bridge structure with i.i.d. components is given by

F̄BS(t) = (F̄G(t))2[2 + 2F̄G(t) − 5(F̄G(t))2 + 2(F̄G(t))3].

Then, from Theorem 2.2 it follows that the bounds to system reliability of the bridge structure are

given by

F̄BS(t) ≥

n∑

i=1

si

i−1∑

j=0

(
n

j

)
(1 − et

logF̄G(µ)

µ )j(et
logF̄G(µ)

µ )n−j , t ≤ µ,

F̄BS(t) ≤

n∑

i=1

si

i−1∑

j=0

(
n

j

)
(1 − et

logF̄G(µ)

µ )j(et
logF̄G(µ)

µ )n−j , t ≥ µ, (17)
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where F̄G(µ) is given in (16) and the signature of the bridge structure

is (0, 1
5 , 3

5 , 1
5 , 0).

Table I gives the exact reliability and the reliability bounds for the bridge structure when the

components have i.i.d. G(2, 1) distribution. The second and the fifth columns give the exact reliability

of the bridge structure and the third and the sixth columns give the bounds based on signatures. Note

that upto t = 2 we have the lower bounds to the reliability function and beyond t = 2 we have the upper

bound to the relaibility function. It is interesting to note that for this example the CDD bounds and

the bounds based on the signature coincide. CDD (1991) observed that their bounds are significantly

better than Barlow and Proschan (1975) bounds. Hence the same is true for the proposed bounds based

on signature of the system.
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Table 1 : Reliabilty/ Reliability Bounds for Bridge system Based on Mean

time exact rel. Sign.bounds time exact rel. sign. bounds

.1 .9994 .9841 2.1 .3095 .3223

.2 .9993 .9841 2.2 .2727 .2967

.3 .9972 .9652 2.3 .2393 .2729

.4 .9920 .9400 2.4 .2092 .2507

.5 .9825 .9097 2.5 .1823 .2301

.6 .9677 .8753 2.6 .1583 .2110

.7 .9466 .8378 2.7 .1371 .1934

.8 .9190 .7981 2.8 .1185 .1771

.9 .8850 .7570 2.9 .1021 .1622

1. .8452 .7152 3.0 .0878 .1484

1.1 .8003 .6734 3.1 .0754 .1357

1.2 .7515 .6320 3.2 .0646 .1240

1.3 .7000 .5914 3.3 .0553 .1133

1.4 .6469 .5520 3.4 .0472 .1035

1.5 .5933 .5140 3.5 .0403 .0945

1.6 .5404 .4776 3.6 .0343 .0863

1.7 .4890 .4429 3.7 .0292 .0787

1.8 .4397 .4100 3.8 .0249 .0719

1.9 .39321 .3789 3.9 .0211 .0656

2.0 .3497 .3497 4.0 .0179 .0598

In Table 2 we report the bounds to the reliability of the bridge structure of i.i.d G(2, 1) random

variables. But unilke the bounds reported in Table 1, these bounds are based on quantiles of the

distribution. We consider p = .1, .2, .3, .4, .5 and the corresponding quantiles from G(2, 1) distributions.

In each case the time (T), the exact reliability (Ex) and the bound based on signatures (Bd) has been

reported, We have chosen 5 values of T less than the relevant quantile and 5 values more than the same

quantile.
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Table 2 : Reliabilty/ Reliability Bounds for Bridge system Based on Quantiles

p = .1, ζp = .5318 p = .2, ζp = .8243 p = .3, ζp = 1.0973 p = .4, ζp = 1.3764 p = .5, ζp = 1.6783

T Bd Ex T Bd Ex T Bd Ex T Bd Ex T Bd Ex

.1 .9992 .9999 .1 .9985 .9999 .2 .9916 .9993 .5 .9367 .9825 1.2 .6735 .7515

.2 .9968 .9993 .2 .9941 .9993 .4 .9676 .9920 .7 .8838 .9466 1.3 .6356 .7000

.3 .9930 .9971 .4 .9773 .9920 .6 .9306 .9677 .9 .8217 .8850 1.4 .5983 .6469

.4 .9876 .9920 .6 .9506 .9677 .8 .8836 .9190 1.1 .7546 .8003 1.5 .5619 .5933

.5 .9809 .9825 .8 .9160 .9190 1.0 .82961 .8452 1.3 .6857 .7000 1.6 .5267 .5404

.6 .9728 .9677 1.0 .8751 .8452 1.1 .8008 .8003 1.4 .6514 .6469 1.7 .4927 .4890

.7 .9634 .9466 1.2 .8298 .7515 1.3 .7414 .7000 1.6 .5844 .5404 1.8 .4602 .4397

.8 .9529 .9190 1.4 .7815 .6469 1.5 .6810 .5937 1.8 .5206 .4397 1.9 .4291 .3932

.9 .9412 .8850 1.6 .7316 .5404 1.7 .6213 .4890 2.0 .4611 .3497 2.0 .3996 .3497

1.0 .9286 .8452 1.8 .6813 .4397 1.9 .5636 .3932 2.1 .4330 .3095 2.1 .3716 .3095

These numerical contributions are more vividly presented in the several graphs that follow in Figures

1.1 - 1.5, . . . , 5.1 - 5.5. The exact reliability is given by the blue curve and the bounds by the red curve.

Note that series(3) denotes a series system with 3 components. The other expressions are interpreted

in a similar manner.

In the accompanying tables and graphs we see that for some 3, 4 and 5 component systems the

bounds for the entire class give useful values. As an example we have calculated the exact relaibility of

the corresponding systems with a specific IFRA distribution (viz, Gamma(2,1) distribution). Several

points may be noted:

(i) The bounds (both the lower bound part and the upper bound part) are close to the exact reliability.

(ii) We have illustrated the fact that by choosing various p, 0 < p < 1, (order of quantile) one can

get very accurate bounds for values of the exact relaibility near ζp, the point of intersection of the exact

relaibility and the bound.

(iii) By choosing values of p as small as p = .1, we have been able to obtain conservative (lower)

bounds for the reliability which are extremely close to it in the region 0 < t < ζp.

(iv) It seems to us that for all practical purposes one can use the bound values over the region as

the actual values of the relaibility, without any information about the component life times beyond the

fact that they belong to the IFRA class and have a known quantile ζp of order p.
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4 Conclusions

Here we have proposed bounds for the reliability of coherent systems consisting of independent IFRA

components. In CDD (1991) the bounds for the reliability of a coherent system were obtained by

applying the single crossing property of an IFRA distribution to the survival function of the entire

system. However, if the signature of the system is available then one may apply this property to the

survival function of the (n− i+1)-out-of-n systems to obtain bounds for these survival functions. Then

these bounds could be combined in an over all bound for the entire system with the given signature via

(4). Tables of signatures of all the coherent systems with n = 3, 4 components are given by Samaniego

(2007). Navarro and Rubio (2009) have discussed an algorithm for finding the signature of n ≥ 5

components.

The usefulness of the above tables in designing highly reliable systems is explained here by example

of the bridge structure. It is composed of 5 components, say, with unknown i.i.d. IFRA distributions

having a quantile of order 0.3 equal to 1.0973. Actually, these numbers correspond to the Gamma (2,1)

distribution. Now the third part in this tableau gives the values of the lower bound for the reliability of

any bridge structure composed of any i.i.d. IFRA distributed components. The value of the reliability

of any of these structures cannot fall below the values given in the (Bd) column of column of this part

upto T = 1.0 and cannot exceed the values in this column at T ≥ 1.1. The values in the ninth column

are the exact reliability values if the bridge structure happens to be composed of i.i.d Gamma (2,1)

components. Thus while designing a high reliability structure, one gets an idea of the reliability of

the components that one must use in terms of (p, ζp), even if the distributions are not entirely known

provided they can be assumed to belong to the IFRA class.
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Figure 1.1 (Bridge system p = .1) Figure 1.2 (Bridge system p = .2)
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Figure 1.3 (Bridge system p = .3) Figure 1.4 (Bridge system p = .3)
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Figure 1.5 (Bridge system p = .5)
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Figure 2.1 (Series system (3) p = .1) Figure 2.2 (Series system (3) p = .2)
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Figure 2.3 (Series system (3) p = .3) Figure 2.4 (Series system (3) p = .4)
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Figure 2.5 (Series system (3) p = .5)
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Figure 3.1 (Series system (4) p = .1) Figure 3.2 (Series system (4) p = .2)
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Figure 3.3 (Series system (4) p = .3) Figure 3.4 (Series system (4) p = .4)
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Figure 3.5 (Series system (4) p = .5)
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Figure 4.1 (Parallel system (3) p = .1) Figure 4.2 (Parallel system (3) p = .2)
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Figure 4.3 (Parallel system (3) p = .3) Figure 4.4 (Parallel system (3) p = .4)
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Figure 4.5 (Parallel system (3) p = .51)
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Figure 5.1 (Parallel system (4) p = .1) Figure 5.2 (Parallel system (4) p = .2)
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Figure 5.3 (Parallel system (4) p = .3) Figure 5.4 (Parallel system (4) p = .4)
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Figure 5.5 (Parallel system (4) p = .5)
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