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Abstract

We consider the estimation of a two dimensional continuous-discrete density
function with applications to competing risks. We construct two new wavelet
estimators (non-adaptive and adaptive) for the joint density function taking into
account this special continuous-discrete structure. The rates of convergence of the
proposed estimators are established under the L2 risk over Besov balls. Our main
result proves that our adaptive wavelet estimator (based on hard thresholding)
attains a sharp rate of convergence. A simulation study illustrates the usefulness
of the proposed estimators.

Key words and phrases: Density estimation, competing risks, wavelets, adaptivity,
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1 Introduction

Probability density function (pdf) estimation plays an important role in statistical data

analysis and has application to many fields. Since the pdf characterizes several popula-

tion characteristics - it is of interest to estimate the density function. Among the most
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widely used techniques of density estimation is the “kernel method” developed by Rosen-

blatt (1956), Parzen (1962), Cacoullos (1966), Van Ryzin (1969), Prakasa Rao (1983),

among others. The techniques have also been extended to estimation of multivariate

density function.

Many a times the bivariate random variable of interest is of a special type - one

marginal is discrete and the other is continuous. Such random variables arise in survival

analysis where one studies the failure/censoring time and an indicator variable indicating

whether the event was failure or censoring. Or one could consider the length of marriage

(continuous random variable) along with the reason of end of marriage - divorce or

death (discrete random variable). Ahmed and Cerrito (1994) considered nonparametric

estimation using kernels of the joint pdf of a random vector (X, Y ) where X is continuous

and Y is discrete. They studied the basic properties of the density estimator they

proposed. Li and Racine (2003) defined an estimator for joint pdfs over mixed discrete

and continuous variables. They derived the rate of convergence and also established the

asymptotic normality of the resulting kernel density estimator. Li et. al. (2009) used the

earlier results and considered the problem of testing for equality of two density functions

over mixed discrete and continuous variables.

In the last twenty years, the subject of nonparametric density estimation has been

enriched by considerable mathematical advance in the theory of wavelets. The early

papers on density estimation using wavelets by Doukhan and Leon (1990), Walter (1992)

and Kerkyacharian and Picard (1992) dealt with linear estimators in i.i.d. setting and

established rates of convergence for the Lp risk. Walter and Ghorai (1992) discussed the

advantages and disadvantages of wavelet based density estimation. The reader can refer

to Härdle et al. (1998) and Vidakovic (1999) for a detailed coverage of wavelet theory

in statistics. Chaubey et al. (2011) gives details of work done in wavelet based linear

density estimation in the last two decades.

In this paper we consider a wavelet-based density estimation for a random vector

(X, Y ) where X is continuous and Y is discrete. We investigate the estimation of such

a two dimensional density in the framework of competing risks. We develop two new

wavelet estimators: a linear estimator and a non-linear adaptive hard thresholding esti-

mator. We evaluate their performance by taking the L2 risk over Besov balls. We prove

that the hard thresholding wavelets attains the rate of convergence (lnn/n)2s/(2s+1) where

s denotes the smoothness parameter of the density. It is interesting to note that this

rate is the standard one for the one dimensional hard thresholding wavelet estimator
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(see Donoho et al. (1996)). A short simulation study illustrates the performances of the

proposed estimators.

The paper is organized as follows. In section 2 we introduce the competing risks set

up. The two dimensional wavelets are stated in section 3. We introduce our wavelet

estimators applicable to competing risks data and investigate some of their theoretical

and practical properties in Sections 4 and 5, respectively. Section 6 contains the details

of the proofs and is followed by an appendix.

2 Competing risks

Consider a series system consisting of m components. The system fails as soon as the

first component fails. Information consists of the system failure time and a marker

indicating failure of which component resulted in system failure. Thus, competing risks

data consists of the failure time of a unit (say T ) and the cause of failure δ where

T > 0 and δ = j with j ∈ {1, . . . ,m}. Or T could be the number of years spent in an

unemployment registry and δ indicates the job that the individual got. Crowder (2001)

gives a comprehensive review of the theory of competing risks. The joint distribution of

(T, δ) is given by the sub-distribution function

F (t, j) = P (T ≤ t, δ = j), j = 1, 2, . . . ,m.

Note that
∑m

j=1 F (t, j) = F (t), where F (t) is the distribution function of the failure time

T . We set pj = P (δ = j), the probability that the individual fails due to jth failure.

Since an individual fails due to only one of the m risks we have
∑m

j=1 pj = 1.

The joint pdf of (T, δ) is given by the sub-density function

f(t, j) =
∂

∂t
F (t, j), j = 1, 2, . . . ,m.

Note that
∑m

j=1 f(t, j) = g(t), where g is the density function of the failure time T .

The cause specific failure rate of (T, δ) is given by

h(t, j) =
f(t, j)

1− F (t)
, j = 1, 2, . . . ,m.

Notice that
∑m

j=1 h(t, j) = h(t), where h(t) is the failure rate of T .

The sub-distribution functions, the sub-density functions and the cause specific failure

rates defined above can be estimated on the basis of n i.i.d. observations of (T, δ) denoted
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by (T1, δ1), . . . , (Tn, δn). Deshpande and Purohit (2005) review several test procedures

for testing of equality of sub-distribution functions and equality of cause specific hazard

rates.

In what follows we consider estimators for the sub-density function based on wavelets

and study their properties.

We formulate the following assumptions:

• The support of f is included into [−a, a]2 for a a > 0.

• There exists a constant C > 0 such that supx∈R g(x) ≤ C.

3 Two dimensional wavelets

In this section we consider two dimensional wavelets that will be useful in constructing

nonparametric estimators for the sub-density function f(t, δ).

Let a > 0, φ be a compactly supported ”father” wavelet and ψ be a compactly

supported ”mother” wavelet ψ. For any x ∈ R and any integer j, let

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer τ and a set of consecutive integers Dj with cardinality

proportional to 2j such that the collection {φτ,k, k ∈ Dτ ; ψj,k, j = τ, . . . ,∞, k ∈ Dj}
forms an orthonormal basis of L2([−a, a]) (the space of square integrable two dimensional

functions on [−a, a]).

For the purpose of this paper, we consider the tensor product wavelet basis on

L2([−a, a]2). Let us briefly recall the construction of such a basis (see, for instance,

Vidakovic (1999), Antoine et. al. (2004) and Mallat (2009)). Let us define the tensor-

product wavelets Φ, Ψ1, Ψ2 and Ψ3 as

Φ(x, y) = φ(x)φ(y), Ψ1(x, y) = ψ(x)φ(y), Ψ2(x, y) = φ(x)ψ(y), Ψ3(x, y) = ψ(x)ψ(y).

For any orientation ` ∈ {1, 2, 3}, scale j ≥ τ and spatial location k = (k1, k2) ∈ Λj = D2
j ,

we define the translated and scaled versions

Φj,k(x, y) = 2jΦ(2jx− k1, 2
jy − k2), Ψj,k,`(x, y) = 2jΨ`(2jx− k1, 2

jy − k2).

4



For any integer J0 ≥ τ , any function f ∈ L2([−a, a]2) can be expanded into a wavelet

series

f(x, y) =
∑

k∈ΛJ0

αJ0,kΦJ0,k(x) +
3∑
`=1

∞∑
j=J0

∑
k∈Λj

βj,k,`Ψj,k,`(x, y),

where

αJ0,k =

∫ ∫
f(x, y)ΦJ0,k(x, y)dxdy, βj,k,` =

∫ ∫
f(x, y)Ψj,k,`(x, y)dxdy

are the wavelet coefficients of f .

We say that a function f in L2([−a, a]2) belongs to the two dimensional Besov ball

Bs
p,r(M) if and only if there exists a constant M∗, depending on M , such that the

wavelet coefficients of f satisfy 3∑
`=1

∞∑
j=τ

2j(s+1−2/p)

∑
k∈Λj

|βj,k,`|p
1/p


r

1/r

≤M∗ <∞,

with a smoothness parameter s > 0, and the norm parameters: 0 < p ≤ ∞ and

0 < r ≤ ∞. See Mallat (2009) for details.

4 Estimators

The most standard wavelet approach to estimate a density function f ∈ L2([−a, a]2)

from n i.i.d. observations (X1, Y1), . . . , (Xn, Yn) from continuous (X, Y ) is to consider

the following linear estimator:

f̂L(x, y) =
∑

k∈ΛJ0

α̂J0,kΦJ0,k(x, y),

where (x, y) ∈ [−a, a]2 , J0 is a “suitable integer” and

α̂j,k =
1

n

n∑
i=1

Φj,k(Xi, Yi). (4.1)

Tribouley (1995) and Masry (1997) discussed their statistical properties, viz, uniform

rates of almost sure convergence, optimality in the minimax sense, etc.
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In our competing risks framework, since δ is a discrete random variable, the wavelet

coefficients estimators (4.1) are not really adapted. For this reason, following the idea of

Dong and Jiang (2009), we consider the following unknown step function:

f∗(t, δ) =
m∑
v=1

pvf(t|δ1 = v)1{v−1/2≤δ<v+1/2},

where 1D is the indicator function over the set D and f(t|δ1 = v) is the density of T

conditionally to {δ1 = v}. Note that, for any j ∈ {1, . . . ,m}, f∗(t, j) = f(t, j).

We consider the following estimators of the unknown wavelet coefficients of f∗: for

any j ≥ τ , any k ∈ Λj and any ` ∈ {1, 2, 3},

α̂j,k =
1

n

n∑
i=1

∫ δi+1/2

δi−1/2

Φj,k(Ti, δ)dδ, β̂j,k,` =
1

n

n∑
i=1

∫ δi+1/2

δi−1/2

Ψj,k,`(Ti, δ)dδ. (4.2)

The choice of these estimators is motivated by the following statistical results. The

proofs are postponed to Section 5.

Lemma 4.1 Let j ≥ τ , k ∈ Λj, ` ∈ {1, 2, 3}, α̂j,k and β̂j,k,` be (4.2). Then

E(α̂j,k) = αj,k, E(β̂j,k,`) = βj,k,`.

Lemma 4.2 Let j ≥ τ such that 2j ≤ n, k ∈ Λj, ` ∈ {1, 2, 3}, α̂j,k and β̂j,k,` be (4.2).

Then there exists a constant C > 0 such that

E((α̂j,k − αj,k)4) ≤ C
1

n2
2−2j, E((β̂j,k,` − βj,k,`)4) ≤ C

1

n2
2−2j.

The proof of Lemma 4.2 is based on the Rosenthal inequality (see the appendix).

An immediate consequence of Lemmas 4.1 and 4.2 is

V (α̂j,k) ≤ C
2−j

n
, V (β̂j,k,`) ≤ C

2−j

n
.

Lemma 4.3 Let j ≥ τ such that 2j ≤ n/ lnn, k ∈ Λj, ` ∈ {1, 2, 3}, α̂j,k and β̂j,k,` be

(4.2). Then there exists a constant κ > 0 such that

P

(
|α̂j,k − αj,k| ≥

κ

2
2−j/2

√
lnn

n

)
≤ 2

1

n2
, P

(
|β̂j,k,` − βj,k,`| ≥

κ

2
2−j/2

√
lnn

n

)
≤ 2

1

n2
.
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The proof of Lemma 4.3 is based on the Bernstein inequality (see the appendix).

We investigate the estimation of f∗ via two different wavelet estimators: a linear

estimator denoted by f̂L and a hard thresholding estimator denoted f̂H .

Under the a priori assumption that f∗ ∈ Bs
p,r(M) with p ≥ 2, we define the linear

estimator f̂L by

f̂L(t, δ) =
∑

k∈ΛJ0

α̂J0,kΦJ0,k(t, δ), (4.3)

where α̂J0,k is given in (4.2) and J0 is an integer satisfying

1

2
n1/(2s+1) < 2J0 ≤ n1/(2s+1).

For a review on the density estimation via the linear wavelet estimator, we refer to

Chaubey et al. (2011).

Now let us suppose that the smoothness of f∗ is not known a priori. We define the

hard thresholding estimator f̂H by

f̂H(t, δ) =
∑
k∈Λτ

α̂τ,kΦτ,k(t, δ) +
3∑
`=1

J1∑
j=τ

∑
k∈Λj

β̂j,k,`1{|β̂j,k,`|≥κθj}Ψj,k,`(t, δ), (4.4)

where α̂τ,k and β̂j,k,` are as in (4.2), J1 is the integer satisfying

1

2

n

lnn
< 2J1 ≤ n

lnn
,

κ is a large enough constant (the one exhibited in Lemma 4.3) and θj is the “threshold

level dependent” defined by

θj = 2−j/2
√

lnn

n
.

The feature of the hard thresholding estimator is to only estimate the “large” unknown

wavelet coefficients of f∗ because they are the ones which contain the main character-

istics of f∗ (singularities etc). Details on the hard thresholding estimator for standard

statistical models can be found in Härdle et al. (1998).

5 Results

5.1 Theoretical results

Theorems 5.1 and 5.2 below investigate the mean integrated square error of the linear

estimator f̂L(t, δ) and the hard threshold estimator f̂H(t, δ).
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Theorem 5.1 (Upper bound for f̂L) Consider the model described in Section 2. Sup-

pose that f∗ ∈ Bs
p,r(M) with s > 0, p ≥ 2 and r ≥ 1. Let f̂L be as defined (4.3). Then

there exists a constant C > 0 such that

E

(∫ ∫ (
f̂L(t, δ)− f∗(t, δ)

)2

dtdδ

)
≤ Cn−2s/(2s+1).

Theorem 5.2 (Upper bound for f̂H) Consider the model described in Section 2. Let

f̂H be as defined in (4.4). Suppose that f∗ ∈ Bs
p,r(M) with r ≥ 1, {p ≥ 2 and s > 0} or

{p ∈ [1, 2) and s > 2/p}. Then there exists a constant C > 0 such that

E

(∫ ∫ (
f̂H(t, δ)− f∗(t, δ)

)2

dtdδ

)
≤ C

(
lnn

n

)2s/(2s+1)

.

The proof of Theorem 5.2 is based on a suitable decomposition of the mean integrated

square error and the statistical properties of (4.2) presented in Lemmas 4.1, 4.2 and 4.3.

Theorem 5.2 shows that, besides being adaptive, f̂H attains a rate of convergence

close to the one of f̂L.

Note that (lnn/n)2s/(2s+1) is the standard rate of convergence for the hard thresh-

olding wavelet estimator in the standard one dimensional density estimation problem

(see Donoho et al. (1996)). It is faster than (lnn/n)2s/(2s+2) which corresponds to the

one attained by the standard two dimensional wavelet hard thresholding estimator (see

e.g. Delyon and Jusditsky (1996)). This difference can be explained by the original

construction of our estimator entirely adapted to the “continuous-discrete structure” of

our density estimation problem.

A possible improvement of our procedure will be to consider another thresholding rule

as the BlockJS one (see e.g. Cai (1999) and, for the multidimensional case, Chesneau et

al. (2010)). However, several technical difficulties arise and it is not immediatly clear

how to solve them. This needs further investigations that we leave for a future work.

5.2 A Simulation Study

In this section we study the performance of the estimators (4.3) and (4.4) and the

smoothed version of linear estimator (4.3) after local linear regression (see e.g. Fan

(1992)). This smooth version of linear wavelet estimator was proposed by Ramirez and

Vidakovic (2010). We use the Daubechies-Lagarias algorithm, explained in detail in

Ramirez and Vidakovic (2010). The codes are written in Matlab and are adopted from

Ramirez and Vidakovic (2010).
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We generate n = 200 deta points Ti, i = 1, ..., n, from Beta(2,3), distribution. The

discrete random sample are generated from Binomial(1, ti), so it is simple to see the

common two dimensional density function is

f(t, δ) = 12t1+δ(1− t)3−δ,

where δ ∈ {0, 1} and t ∈ [0, 1].

In this simulation study, we used Daubechies’s compactly supported Symmlet 4 (see

Daubechies (1992), p.198) and Coiflet 1 (see Daubechies (1992), p. 258) and primary

resolution level J0 = 5.

Figures (1) in the first column concerns the estimation of f(t, 0) via the linear wavelet

estimator, the wavelet estimator after thresholding and the smooth version of the lin-

ear one. Each figure depicts the true value of the sub-density function along with the

estimators mentioned above. Similarly the figures (1) in the second column give the

corresponding estimators for f(t, 1) for n = 200.

All the figures illustrate the good performances of our proposed linear and nonlinear

estimators. Both the linear wavelet estimator and the linear wavelet estimator after

thresholding appear pretty close because J0 has been chosen to have the best result in

view of f . Note that the hard thresholding one has no tuning parameter, it is entirely

adaptive.

In each case the estimators are close to the true sub-density functions except for a

few initial values.

6 Proofs

Notations. For the sake of simplicity, for any v ∈ {1, . . . ,m}, we set

cj,k2(v) =

∫ v+1/2

v−1/2

φj,k2(δ)dδ. (6.1)

Note that, for any i ∈ {1, . . . , n},∫ δi+1/2

δi−1/2

Φj,k(Ti, δ)dδ = φj,k1(Ti)cj,k2(δi)

and we can write

α̂j,k =
1

n

n∑
i=1

φj,k1(Ti)cj,k2(δi).
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(a) Wavelet linear estimator for f(t, δ) with δ = 0 and δ = 1

(b) Wavelet hard thresholding estimator for f(t, δ) with δ = 0 and δ = 1

(c) Smooth version of our wavelet linear estimator for f(t, δ) with δ = 0 and δ = 1

Figure 1: Original (dashed-point) and estimated densities (dashed) using our wavelet

estimators from n = 200 samples (T, δ).
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In the following, the quantity C denotes a generic constant that does not depend on j,

k and n. Its value may change from one term to another and may depends on φ or ψ.

Proof of Lemma 4.1. Let cj,k2 be (6.1). We have

E(φj,k1(T1)cj,k2(δ1)) = E(E(φj,k1(T1)cj,k2(δ1)|δ1))

= E(cj,k2(δ1)E(φj,k1(T1)|δ1)) = E

(
cj,k2(δ1)

∫
φj,k1(t)f(t|δ1)dt

)
=

m∑
v=1

cj,k2(v)

∫
φj,k1(t)f(t|δ1 = v)dtpv

=

∫ ∫ m∑
v=1

pvf(t|δ1 = v)1{v−1/2≤δ<v+1/2}φj,k1(t)φj,k2(δ)dtdδ

=

∫ ∫
f∗(t, δ)φj,k1(t)φj,k2(δ)dtdδ = αj,k.

Therefore

E(α̂j,k) = αj,k.

Proceeding in a similar fashion, we prove that E(β̂j,k,`) = βj,k,`.

•

Proof of Lemma 4.2. Let cj,k2 be as in (6.1). Set, for any i ∈ {1, . . . , n},

ξi = φj,k1(Ti)cj,k2(δi)− αj,k.

Note that, since (T1, δ1), . . . , (Tn, δn) are i.i.d., ξ1, . . . , ξn are i.i.d.. Moreover, using

Lemma (4.1), we have E(ξ1) = 0. The Rosenthal inequality (see the appendix) yields

E((α̂j,k − αj,k)4) = E

( 1

n

n∑
i=1

ξi

)4
 ≤ C

(
1

n3
E(ξ4

1) +
1

n2
(E(ξ2

1))2

)
. (6.2)

For any u ∈ {2, 4}, we have

E(ξu1 ) ≤ 2uE((φj,k1(T1))u(cj,k2(δ1))u).

By the change of variable y = 2jx− k2, we obtain

|cj,k2(δ1)| ≤
∫
|φj,k2(x)|dx = 2−j/2

∫
|φ(x)|dx = C2−j/2. (6.3)
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Since g (the density of T1) is bounded from above, φ is compactly supported and∫
(φj,k1(x))2dx = 1, we have

E((φj,k1(T1))u) =

∫
(φj,k1(x))ug(x)dx ≤ C

∫
(φj,k1(x))udx

≤ C2j(u−2)/2

∫
(φj,k1(x))2dx = C2j(u−2)/2.

Therefore

E(ξu1 ) ≤ C2j(u−2)/22−ju/2 = C2−j. (6.4)

It follows from (6.2), (6.4) and the fact that 2j ≤ n

E((α̂j,k − αj,k)4) ≤ C

(
1

n3
2−j +

1

n2
2−2j

)
≤ C

1

n2
2−2j.

•

Proof of Lemma 4.3. Let cj,k2 be as in (6.1). Set, for any i ∈ {1, . . . , n},

ξi = φj,k1(Ti)cj,k2(δi)− αj,k.

Then

• since (T1, δ1), . . . , (Tn, δn) are i.i.d., ξ1, . . . , ξn are i.i.d.,

• using Lemma (4.1), we have E(ξ1) = 0,

• using (6.3), |ξ1| ≤ |φj,k1(T1)||cj,k2(δ1)|+ |αj,k| ≤ C2j/22−j/2 + C ≤ C,

• using (6.4), we have E(ξ2
1) ≤ C2−j.

It follows from the Bernstein inequality (see the appendix) and 2j ≤ n/ lnn that

P

(
|α̂j,k − αj,k| ≥

κ

2
2−j/2

√
lnn

n

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

ξi

∣∣∣∣∣ ≥ κ

2
2−j/2

√
lnn

n

)

≤ 2 exp

(
−C

nκ2θ2
j

E (ξ2
i ) + κθj

)
= 2 exp

(
−C κ22−j lnn

2−j + κ2−j./2
√

lnn/n

)

≤ 2 exp

(
−C κ2 lnn

1 + κ2j./2
√

lnn/n

)
≤ 2

1

nh(κ)
,
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where h(κ) = Ck2/(1 + κ). Since limκ→∞ h(κ) = ∞, there exists a κ > 0 such that

h(κ) = 2.

Proceeding in a similar fashion, we prove that

P
(
|β̂j,k,` − βj,k,`| ≥ (κ/2)2−j/2

√
lnn/n

)
≤ 2/n2.

This completes the proof of Lemma 4.3.

•

Proof of Theorem 5.1. Since f∗ is a square integrable function, we can write

f∗(t, δ) =
∑

k∈ΛJ0

αJ0,kΦJ0,k(t, δ) +
3∑
`=1

∞∑
j=J0

∑
k∈Λj

βj,k,`Ψj,k,`(t, δ),

where αJ0,k =
∫ ∫

f∗(t, δ)ΦJ0,k(t, δ)dtdδ and βj,k,` =
∫ ∫

f∗(t, δ)Ψj,k,`(t, δ)dtdδ.

Therefore

f̂L(t, δ)− f∗(t, δ) =
∑

k∈ΛJ0

(α̂J0,k − αJ0,k) ΦJ0,k(t, δ)−
3∑
`=1

∞∑
j=J0

∑
k∈Λj

βj,k,`Ψj,k,`(t, δ).

Using the orthonormality of the wavelet basis, Lemma (4.2), Bs
p,r(M) ⊆ Bs

2,∞(M) and

the fact p ≥ 2, we obtain

E

(∫ ∫ (
f̂L(t, δ)− f∗(t, δ)

)2

dtdδ

)
=

∑
k∈ΛJ0

E
(
(α̂J0,k − αJ0,k)2)+

3∑
`=1

∞∑
j=J0

∑
k∈Λj

β2
j,k,`

=
∑

k∈ΛJ0

V (α̂J0,k) +
3∑
`=1

∞∑
j=J0

∑
k∈Λj

β2
j,k,`

≤ C

(
22J0

2−J0

n
+ 2−2J0s

)
≤ Cn−2s/(2s+1).

This ends the proof of Theorem 5.1.

•

Proof of Theorem 5.2. Since f∗ is a square integrable function, we can write

f∗(t, δ) =
∑
k∈Λτ

ατ,kΦτ,k(t, δ) +
3∑
`=1

∞∑
j=τ

∑
k∈Λj

βj,k,`Ψj,k,`(t, δ),

13



where ατ,k =
∫ ∫

f∗(t, δ)Φτ,k(t, δ)dtdδ and βj,k,` =
∫ ∫

f∗(t, δ)Ψj,k,`(t, δ)dtdδ.

Therefore

f̂H(t, δ)− f∗(t, δ)

=
∑
k∈Λτ

(α̂τ,k − ατ,k)Φτ,k(t, δ) +
3∑
`=1

J1∑
j=τ

∑
k∈Λj

(
β̂j,k,`1{|β̂j,k,`|≥κθj} − βj,k,`

)
Ψj,k,`(t, δ)

−
3∑
`=1

∞∑
j=J1+1

∑
k∈Λj

βj,k,`Ψj,k,`(t, δ).

The orthonormality of the wavelet basis gives

E

(∫ ∫ (
f̂H(t, δ)− f∗(t, δ)

)2

dtdδ

)
=
∑
k∈Λτ

E
(
(α̂τ,k − ατ,k)2)

+
3∑
`=1

J1∑
j=τ

∑
k∈Λj

E

((
β̂j,k,`1{|β̂j,k,`|≥κθj} − βj,k,`

)2
)

+
3∑
`=1

∞∑
j=J1+1

∑
k∈Λj

β2
j,k,`. (6.5)

Let us now bound these three terms.

Using Lemma 4.2, we obtain∑
k∈Λτ

E
(
(α̂τ,k − ατ,k)2) ≤ C22τ 2−τ

n
≤ C

1

n
≤ Cn−2s/(2s+1). (6.6)

For r ≥ 1 and p ≥ 2, we have Bs
p,r(M) ⊆ Bs

2,∞(M). So

3∑
`=1

∞∑
j=J1+1

∑
k∈Λj

β2
j,k,` ≤ C

∞∑
j=J1+1

2−2js ≤ C2−2J1s ≤ C

(
lnn

n

)2s

≤ C

(
lnn

n

)2s/(2s+1)

.

For r ≥ 1 and p ∈ [1, 2), we have Bs
p,r(M) ⊆ B

s+1−2/p
2,∞ (M). Since s > 2/p, we have

s+ 1− 2/p > s/(2s+ 1). Therefore

3∑
`=1

∞∑
j=J1+1

∑
k∈Λj

β2
j,k,` ≤ C

∞∑
j=J1+1

2−2j(s+1−2/p) ≤ C2−2J1(s+1−2/p)

≤ C

(
lnn

n

)2(s+1−2/p)

≤ C

(
lnn

n

)2s/(2s+1)

.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 2/p}, we have

3∑
`=1

∞∑
j=J1+1

∑
k∈Λj

β2
j,k,` ≤ C

(
lnn

n

)2s/(2s+1)

. (6.7)
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Let us now bound the second term of (6.5). We can write

3∑
`=1

J1∑
j=τ

∑
k∈Λj

E

((
β̂j,k,`1{|β̂j,k,`|≥κθj} − βj,k,`

)2
)

= A1 + A2 + A3 + A4, (6.8)

where

A1 =
3∑
`=1

J1∑
j=τ

∑
k∈Λj

E

((
β̂j,k,` − βj,k,`

)2

1{|β̂j,k,`|≥κθj}1{|βj,k,`|<κθj/2}

)
,

A2 =
3∑
`=1

J1∑
j=τ

∑
k∈Λj

E

((
β̂j,k,` − βj,k,`

)2

1{|β̂j,k,`|≥κθj}1{|βj,k,`|≥κθj/2}

)
,

A3 =
3∑
`=1

J1∑
j=τ

∑
k∈Λj

E
(
β2
j,k,`1{|β̂j,k,`|<κθj}1{|βj,k,`|≥2κθj}

)
and

A4 =
3∑
`=1

J1∑
j=τ

∑
k∈Λj

E
(
β2
j,k,`1{|β̂j,k,`|<κθj}1{|βj,k,`|<2κθj}

)
.

Bounds for A1 and A3.

Using elementary inequalities, we establish the following three inclusion results:{
|β̂j,k,`| < κθj, |βj,k,`| ≥ 2κθj

}
⊆
{
|β̂j,k,` − βj,k,`| > κθj/2

}
,{

|β̂j,k,`| ≥ κθj, |βj,k,`| < κθj/2
}
⊆
{
|β̂j,k,` − βj,k,`| > κθj/2

}
and{

|β̂j,k,`| < κθj, |βj,k,`| ≥ 2κθj

}
⊆
{
|βj,k,`| ≤ 2|β̂j,k,` − βj,k,`|

}
.

Therefore

max(A1, A3) ≤ C

3∑
`=1

J1∑
j=τ

∑
k∈Λj

E

((
β̂j,k,` − βj,k,`

)2

1{|β̂j,k,`−βj,k,`|>κθj/2}

)
.

The Cauchy-Schwarz inequality combined with Lemma 4.2 and 4.3 gives

E

((
β̂j,k,` − βj,k,`

)2

1{|β̂j,k,`−βj,k,`|>κθj/2}

)
≤

(
E

((
β̂j,k,` − βj,k,`

)4
))1/2 (

P
(
|β̂j,k,` − βj,k,`| > κθj/2

))1/2

≤ C2−j
1

n2
.

So, using 2J1 ≤ n,

max(A1, A3) ≤ C
1

n2

J1∑
j=τ

22j2−j ≤ C
1

n2
2J1 ≤ C

1

n
≤ C

(
lnn

n

)2s/(2s+1)

. (6.9)
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Bound for A2.

By Lemma 4.2 we get

E

((
β̂j,k,` − βj,k,`

)2
)
≤ C

2−j

n
.

Hence

A2 ≤ C
1

n

3∑
`=1

J1∑
j=τ

2−j
∑
k∈Λj

1{|βj,k,`|>κθj/2}.

Let J2 be the integer defined by

1

2

( n

lnn

)1/(2s+1)

< 2J2 ≤
( n

lnn

)1/(2s+1)

. (6.10)

We can bound A2 as

A2 ≤ A2,1 + A2,2,

where

A2,1 = C
1

n

3∑
`=1

J2∑
j=τ

2−j
∑
k∈Λj

1{|βj,k,`|>κθj/2}

and

A2,2 = C
1

n

3∑
`=1

J1∑
j=J2+1

2−j
∑
k∈Λj

1{|βj,k,`|>κθj/2}.

We have

A2,1 ≤ C
1

n

J2∑
j=τ

2−j22j ≤ C
1

n
2J2 ≤ C

(
lnn

n

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bs
p,r(M) ⊆ Bs

2,∞(M),

A2,2 ≤ C
1

n

3∑
`=1

J1∑
j=J2+1

2−j
1

θ2
j

∑
k∈Λj

β2
j,k,` ≤ C

3∑
`=1

∞∑
j=J2+1

∑
k∈Λj

β2
j,k,`

≤ C
∞∑

j=J2+1

2−2js ≤ C2−2J2s ≤ C

(
lnn

n

)2s/(2s+1)

.
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For r ≥ 1, p ∈ [1, 2) and s > 2/p, since Bs
p,r(M) ⊆ B

s+1−2/p
2,∞ (M) and (2s+ 1)(2− p)/2 +

(s+ 1/2− 1/p)p = 2s, we have

A2,2 ≤ C
1

n

3∑
`=1

J1∑
j=J2+1

2−j
1

θpj

∑
k∈Λj

|βj,k,`|p

≤ C

(
lnn

n

)(2−p)/2 ∞∑
j=J2+1

2−j(1−p/2)2−j(s+1−2/p)p

≤ C

(
lnn

n

)(2−p)/2

2−J2(s+1/2−1/p)p ≤ C

(
lnn

n

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 2/p}, we have

A2 ≤ C

(
lnn

n

)2s/(2s+1)

. (6.11)

Bound for A4

We have

A4 ≤
3∑
`=1

J1∑
j=τ

∑
k∈Λj

β2
j,k,`1{|βj,k,`|<2κθj}.

Let J2 be the integer satisfying (6.10). We can bound A4 as

A4 ≤ A4,1 + A4,2,

where

A4,1 =
3∑
`=1

J2∑
j=τ

∑
k∈Λj

β2
j,k,`1{|βj,k,`|<2κθj}, A4,2 =

3∑
`=1

J1∑
j=J2+1

∑
k∈Λj

β2
j,k,`1{|βj,k,`|<2κθj}.

We have

A4,1 ≤ C

J2∑
j=τ

22jθ2
j = C

lnn

n

J2∑
j=τ

22j2−j ≤ C
lnn

n
2J2 ≤ C

(
lnn

n

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bs
p,r(M) ⊆ Bs

2,∞(M), we have

A4,2 ≤
3∑
`=1

∞∑
j=J2+1

∑
k∈Λj

β2
j,k,` ≤ C

∞∑
j=J2+1

2−2js ≤ C2−2J2s ≤ C

(
lnn

n

)2s/(2s+1)

.

For r ≥ 1, p ∈ [1, 2) and s > 2/p, since Bs
p,r(M) ⊆ B

s+1−2/p
2,∞ (M) and
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(2s+ 1)(2− p)/2 + (s+ 1/2− 1/p)p = 2s, we have

A4,2 ≤ C

3∑
`=1

J1∑
j=J2+1

θ2−p
j

∑
k∈Λj

|βj,k,`|p

= C

(
lnn

n

)(2−p)/2 3∑
`=1

J1∑
j=J2+1

2−j(1−p/2)
∑
k∈Λj

|βj,k,`|p

≤ C

(
lnn

n

)(2−p)/2 ∞∑
j=J2+1

2−j(1−p/2)2−j(s+1−2/p)p

≤ C

(
lnn

n

)(2−p)/2

2−J2(s+1/2−1/p)p ≤ C

(
lnn

n

)2s/(2s+1)

.

Consequently, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 2/p}, we have

A4 ≤ C

(
lnn

n

)2s/(2s+1)

. (6.12)

It follows from (6.8), (6.9), (6.11) and (6.12) that

3∑
`=1

J1∑
j=τ

∑
k∈Λj

E

((
β̂j,k,`1{|β̂j,k,`|≥κθj} − βj,k,`

)2
)
≤ C

(
lnn

n

)2s/(2s+1)

. (6.13)

Putting (6.5), (6.6), (6.7) and (6.13) together, we have, for r ≥ 1, {p ≥ 2 and s > 0}
or {p ∈ [1, 2) and s > 2/p},

E

(∫ ∫ (
f̂H(t, δ)− f∗(t, δ)

)2

dtdδ

)
≤ C

(
lnn

n

)2s/(2s+1)

.

This completes the proof of Theorem 5.2.

•

Appendix

Here we state the two inequalities that have been used for proving the results in earlier

section.
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Lemma 6.1 (Rosenthal’s inequality) Let n be a positive integer, p ≥ 2 and U1, . . . , Un

be n zero mean independent random variables such that supi∈{1,...,n} E(|Ui|p) <∞. Then

there exists a constant C > 0 such that

E

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣
p)
≤ C

 n∑
i=1

E (|Ui|p) +

(
n∑
i=1

E
(
U2
i

))p/2
 .

Lemma 6.1 can be found in Rosenthal (1970).

Lemma 6.2 (Bernstein’s inequality) Let n be a positive integer and U1, . . . , Un be

n zero mean independent random variables such that there exists a constant M > 0

satisfying supi∈{1,...,n} |Ui| ≤M <∞. Then, for any λ > 0,

P

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
− λ2

2 (
∑n

i=1 E (U2
i ) + λM/3)

)
.

Lemma 6.2 can be found in Petrov (1995).
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