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Abstract

With reference to a partially confounded design for a 3n factorial experiment, an explicit ex-
pression is derived for the efficiency factors of natural contrasts of the form linear, linear×linear,
linear×quadratic, etc. This expression involves the harmonic mean of the efficiency factors for
pencils. It is also shown that such a neat result does not exist for general s-level factorials
where s > 3. Nevertheless, the case of such general s is also explored.
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1. Introduction and preliminaries

Factorial experiments, introduced and popularized by Fisher (1935) have not only a rich
theoretical foundation but also immense applications in almost all areas of human endeavor.
Early important contributions to this area are due to Yates (1937) and Bose (1947), while
informative accounts of the subsequent developments are available e.g., in Raktoe, Hedayat
and Federer (1981), Gupta and Mukerjee (1989), Dean and Voss (1999), Hinkelmann and
Kempthorne (2005), Bailey (2008) and Wu and Hamada (2009).

Notwithstanding the availability of a vast literature on factorial experiments as indicated
above, it appears that there exists a gap which impacts even the standard text book level
treatment of the subject. This concerns partial confounding, a topic that even a first course
on factorial designs dwells on, at least for 2- and 3-level factorials. While for 2-level factorials,
the existing theory is intuitively clear because of a 1-1 correspondence between pencils (Bose,
1947) and the associated factorial effects, the lack of a 1-1 correspondence of this kind hinders
such a simple interpretation in the case of 3-level factorials. This motivates the present article
where we investigate the relationship between the efficiency factors for natural contrasts as
defined below and those for pencils in a partially confounded 3-level design.

We begin with some preliminaries in order to specify the problem considered here. Consider
a 3n factorial experiment involving n factors F1, . . . , Fn, each at three levels, 0, 1 and 2. The
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treatment combinations are coded as x = x1 . . . xn, where for 1 ≤ i ≤ n, xi ∈ {0, 1, 2}.
The objects of interest in a factorial experiment are factorial effects, namely the main effects
and interactions. Consider a factorial effect, say the one involving factors F1, F2, . . . , Fg and
denoted by F1 × F2 × · · · × Fg, 1 ≤ g ≤ n. In the literature including standard textbooks, the
2g independent treatment contrasts belonging to F1 × F2 × · · · × Fg are represented via 2g−1

components F1F
b2
2 · · ·F

bg
g , where bi = 1 or 2 for each i, such that any component F1F

b2
2 · · ·F

bg
g

accounts for two independent treatment contrasts, namely those among the three mutually
exclusive and exhaustive sets of treatment combinations, as given by

Vj(b) = {x = x1 . . . xn : x1 + b2x2 + · · ·+ bgxg = j mod 3}, j = 0, 1, 2, (1)

where b = (1, b2, . . . , bg). These components, often called orthogonal components, are equivalent
to pencils as discussed in depth by Bose (1947). It is well known that if a partially confounded
3n factorial experiment is laid out in r replicates and a component F1F

b2
2 · · ·F

bg
g of the factorial

effect F1×F2×· · ·×Fg is confounded in r∗ of these, then the loss of information on any treatment
contrast belonging to this component is r∗/r, or equivalently, the efficiency factor for any such
contrast equals (r − r∗)/r.

Components of the form F1F
b2
2 · · ·F

bg
g are, however, essentially mathematical tools for

constructing confounded designs and lack direct statistical interpretation. As a result, effi-
ciency factors for treatment contrasts belonging to these components, as indicated above, are
of rather limited statistical interest. On the other hand, with quantitative factors, attention
is typically focused from a statistical perspective on natural treatment contrasts, such as the
linear × linear × linear, linear × linear × quadratic, etc. in the context of a three-factor in-
teraction. Thus it is important to know the efficiency factors for these natural contrasts in
a partially confounded design. For example, if in a partially confounded 33 factorial design,
the four components F1F2F3, F1F2F

2
3 , F1F

2
2F3 and F1F

2
2F

2
3 of the three-factor interaction are

confounded in r1, r2, r3 and r4 replicates respectively, then what can be said about the effi-
ciency factors for the aforesaid natural treatment contrasts belonging to this interaction? Even
though this is of compelling interest to a statistician, it seems that this point has not been
addressed in the existing literature, even at an advanced level. We aim at filling this gap.

Given the unified treatment of partial confounding for s(≥ 3)-level factorials in the lit-
erature, the reader may wonder at this stage why we are focusing specifically on three-level
factorials instead of looking at s-level factorials in general, where s ≥ 3 is a prime or prime
power. This is because, some what counter intuitively, there is an intrinsic difference between
three-level factorials and s(> 3)-level factorials for the problem considered here. In the next
section, this difference is indicated and we will return to this point in more detail in Section
4. It will be seen that three-level factorials allow more comprehensive results than the s(> 3)-
level ones do. In a sense, this is reassuring because typically the former are of much more

2



practical interest than the latter.

2. Representation for contrasts and a useful result

In the context of a 3n factorial experiment involving the factors F1, . . . , Fn, consider a
component F1F

b2
2 · · ·F

bg
g of the factorial effect F1×F2×· · ·×Fg. In order to study the interplay

between contrasts belonging to F1F
b2
2 · · ·F

bg
g and what we have called natural contrasts here,

we express these contrasts in a compact notation. Let τ(x) denote the treatment effect for
the treatment combination x = x1 . . . xn, and τ denote the v × 1 vector with elements τ(x),
arranged lexicographically, where v = 3n is the total number of treatment combinations. For
example, if n = 2 then

τ = (τ(00), τ(01), τ(02), τ(10), τ(11), τ(12), τ(20), τ(21), τ(22))′,

with the prime denoting transposition.
We first present an expression for a complete set of orthonormal treatment contrasts be-

longing to F1F
b2
2 · · ·F

bg
g . Recall that the treatment contrasts belonging to this component are

those among the three sets Vj(b), j = 0, 1, 2, as shown in (1). Let A(b) be a 3× v matrix with
jth row representing the indicator function of Vj(b), i.e., A(b) is a matrix, with rows indexed
by 0, 1, 2, and columns indexed by the lexicographically arranged treatment combinations,
such that the (j,x)th element of A(b) equals 1 if x ∈ Vj(b), and 0, otherwise. For example, if
n = 2 and we are considering the component F1F

2
2 of the interaction F1 × F2, then b2 = 2,

V0(b) = {00, 11, 22}, V1(b) = {02, 10, 21}, V2(b) = {01, 12, 20},

and

A(b) =


1 0 0 0 1 0 0 0 1
0 0 1 1 0 0 0 1 0
0 1 0 0 0 1 1 0 0

 .
In general, since the sets Vj(b), j = 0, 1, 2, are disjoint and each of them has cardinality 3n−1,
we have

A(b)A(b)′ = 3n−1I3, A(b)1v = 3n−113, 1′3A(b) = 1′v, (2)

where for a positive integer a, 1a is the a × 1 vector of ones and Ia is the identity matrix of
order a.

A complete set of orthonormal treatment contrasts belonging to F1F
b2
2 · · ·F

bg
g is now given

by H(b)τ , where
H(b) = LA(b), (3)

L being any 2× 3 matrix so chosen that

H(b)H(b)′ = I2 and H(b)1v = 0. (4)
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In view of (2)–(4), then L must satisfy

LL′ = 3−(n−1)I2, L13 = 0. (5)

Even though a matrix L satisfying (5) is non-unique, our results do not depend on the particular
choice of L as long as (5) is satisfied.

Turning now to the natural contrasts introduced in Section 1, let

P =

 −1√
2

0 1√
2

1√
6
−2√

6
1√
6

 . (6)

The two rows of P , say p′1 and p′2, correspond to the linear and quadratic components of any
three-level factor and, as a result, natural contrasts belonging to the factorial effect F1 × F2 ×
· · · × Fg are of the form c′τ , where

c = c1 ⊗ c2 ⊗ · · · ⊗ cg ⊗ 13 ⊗ · · · ⊗ 13. (7)

In (7), each ci equals either p1 or p2 (i.e., the transpose of a row of P ), ⊗ denotes Kronecker
product, and 13 appears n − g times (cf. Gupta and Mukerjee (1989, Ch. 2)). For instance,
if n = 3 then c′τ , with c = p1 ⊗ p2 ⊗ 13, is the linear × quadratic contrast belonging to the
interaction F1 × F2.

We now have the following result which has been proved in the appendix.

Theorem 1. If H(b) and c are as given by (3) and (7), then

c′H(b)′H(b)c
c′c

=
1

2g−1
.

Theorem 1 will play a crucial role in studying the efficiency factors for the natural contrasts
in a partially confounded 3n factorial design. Such a neat result does not hold for general
s(> 3)-level factorials, where the counterpart of the ratio considered in Theorem 1 depends
on the specific factorial effect component F1F

b2
2 · · ·F

bg
g and the specific natural contrast c′τ .

Remark A.1 in the appendix explains where the arguments leading to Theorem 1 break down
for general s > 3.

3. Efficiency factors for natural contrasts

With reference to a partially confounded 3n factorial design, consider any particular factorial
effect, say F1×F2×· · ·×Fg, as represented by the 2g−1 components F1F

b2
2 · · ·F

bg
g , where bi = 1

or 2 for each i, 2 ≤ i ≤ g. For notational simplicity, let q = 2g−1 and denote these components
by C1, . . . , Cq. Let Hj denote the H(b) matrix (see (3)) for Cj , so that Hjτ gives a complete
set of orthonormal treatment contrasts belonging to Cj , 1 ≤ j ≤ q. Thus, for example, the
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interaction F1×F2×F3 is represented by q = 4 components, C1 = F1F2F3, C2 = F1F2F
2
3 , C3 =

F1F
2
2F3 and C4 = F1F

2
2F

2
3 , and H1, . . . ,H4 are the H(b) matrices for C1, . . . , C4, respectively.

In view of (4) and the fact that treatment contrasts belonging to different components are
mutually orthogonal, we have

HjH
′
j = I2, HjH

′
k = 0, 1 ≤ j, k ≤ q, j 6= k. (8)

Now, suppose the partially confounded factorial design is laid out in r replicates. Let the
components C1, . . . , Cq of the factorial effect F1×F2×· · ·×Fg be confounded in r1, . . . , rq (≥ 0)
replicates, respectively. The possibility of more than one of C1, . . . , Cq being confounded in the
same replicate is allowed here. However, we assume that rj < r, 1 ≤ j ≤ q, so as to ensure
that none of C1, . . . , Cq is completely confounded; otherwise, not all contrasts belonging to
F1×· · ·×Fg remain estimable, which is unwarranted if this factorial effect is of interest. Then,
writing Hj τ̂ for the best linear unbiased estimator (BLUE) of Hjτ , standard arguments yield

Disp(Hj τ̂ ) =
σ2

r − rj
I2, Cov(Hj τ̂ , Hkτ̂ ) = 0, 1 ≤ j, k ≤ q, j 6= k, (9)

where σ2 is the constant error variance, Disp(·) stands for the dispersion matrix and Cov ( , )
denotes the covariance. The truth of (9) is evident from (8) noting that Hj τ̂ is the mean of the
corresponding observational contrasts from the r − rj replicates where component Cj remains
unconfounded. We are now in a position to present the main result of this paper.

Theorem 2. Let c′τ be any natural contrast belonging to the factorial effect F1 × · · · × Fg,
where c is given by (7). Then the efficiency factor for c′τ is given by

Eff(c) =

1
q

q∑
j=1

r

r − rj

−1

.

Proof. Define the matrix H, with 2q rows, as

H = (H ′1 H
′
2 · · ·H ′q)′.

Since H incorporates the matrix Hj corresponding to every component Cj of F1 × · · · × Fg,
the rows of H span the coefficient vectors of all treatment contrasts belonging to this factorial
effect. In particular, for the natural contrast c′τ under consideration here, c′ = ξ′H for some
vector ξ. As HH ′ = I2q by (8), this implies that c′H ′ = ξ′, i.e., c′ = c′H ′H =

∑q
j=1 c

′H ′jHj ,
so that the BLUE of c′τ is given by c′τ̂ =

∑q
j=1 c

′H ′jHj τ̂ . Consequently, by (9) and Theorem
1, the variance of this BLUE is

Var(c′τ̂ ) = σ2
q∑

j=1

1
r − rj

c′H ′jHjc = σ2 c
′c

q

q∑
j=1

1
r − rj

, (10)
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because q = 2g−1 and each Hj equals some H(b).
On the other hand, for an unconfounded (complete block) 3n factorial design in r replicates,

Var(c′τ̂ ) = σ2
1(c′c)/r, where σ2

1 is the error variance in such a complete block design. The result
now follows from (10). 2

Remark 1. Clearly, the efficiency factor for any treatment contrast belonging to the component
Cj of the factorial effect F1×· · ·×Fg equals (r−rj)/r, i.e., the proportion of replicates where Cj

remains unconfounded. Theorem 2 shows that the efficiency factor for every natural contrast
belonging to this factorial effect equals the simple harmonic mean of these component-wise
efficiency factors. Thus given r and r1 + · · · + rq, the efficiency factors for all such natural
contrasts are simultaneously maximized if and only if r1, . . . , rq are as nearly equal as possible,
i.e., if and only if no two of r1, . . . , rq differ by more than unity. It will be seen in the next
section that this kind of simultaneous maximization of efficiency factors for all natural contrasts
belonging to the same factorial effect is not possible for s(> 3)-level factorials. 2

Example 1. Consider a partially confounded 33 factorial design such that every replicate
consists of nine blocks, each of size three. The confounding pattern is one in which there are
(i) r1 replicates where the components F1F

2
2 , F1F

2
3 , F2F

2
3 , F1F2F3 are confounded,

(ii) r2 replicates where the components F1F
2
2 , F1F3, F2F3, F1F2F

2
3 are confounded,

(iii) r3 replicates where the components F1F2, F1F
2
3 , F2F3, F1F

2
2F3 are confounded,

(iv) r4 replicates where the components F1F2, F1F3, F2F
2
3 , F1F

2
2F

2
3 are confounded.

The total number of replicates is r = r1 + · · · + r4. Clearly, each main effect contrast has
efficiency factor 1, while by Theorem 2, the efficiency factor for any natural contrast belonging
to an interaction equals, say,

Eff12 =
[

1
2

(
r

r1 + r2
+

r

r3 + r4

)]−1

, Eff13 =
[

1
2

(
r

r1 + r3
+

r

r2 + r4

)]−1

,

Eff23 =
[

1
2

(
r

r1 + r4
+

r

r2 + r3

)]−1

, Eff123 =

1
4

4∑
j=1

r

r − rj

−1

,

according as whether the contrast belongs to F1 × F2, F1 × F3, F2 × F3 or F1 × F2 × F3,
respectively. As noted in Remark 1, all natural contrasts belonging to the same interaction
have the same efficiency factor. Note that, given r = r1 + · · ·+ r4, the necessary and sufficient
conditions for the maximization of Eff12,Eff13,Eff23 and Eff123 are given respectively, by
(a) |r1 + r2 − r3 − r4| ≤ 1,
(b) |r1 + r3 − r2 − r4| ≤ 1,
(c) |r1 + r4 − r2 − r3| ≤ 1, and
(d) |rj − rk| ≤ 1 for every j 6= k.
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For instance, with r = 3, these conditions are all met if r1 = r2 = r3 = 1, r4 = 0, while with
r = 4 or 5, the same happens if r1 = · · · = r4 = 1 or r1 = r2 = r3 = 1, r4 = 2, respectively. 2

4. Case of s(> 3)-level factorials

For a general s-level factorial design, where s is a prime or prime power, it is well-known
(Bose, 1947) that any factorial effect, say F1×F2× . . .×Fg, can be represented via (s− 1)g−1

components or pencils, each carrying s− 1 independent treatment contrasts. As in Section 3,
denote these components by C1, . . . , Cq, and let Hjτ represent a complete set of orthonormal
treatment contrasts belonging to Cj , 1 ≤ j ≤ q, where now q = (s− 1)g−1. Suppose the design
in laid out in r replicates and let Cj be confounded in rj of these. Then for any natural contrast
c′τ belonging to F1 × F2 × · · · × Fg, the first equation in (10) continues to hold as before, i.e.,

Var(c′τ̂ ) = σ2
q∑

j=1

1
r − rj

c′H ′jHjc. (11)

Therefore, as in Theorem 2, the efficiency factor for c′τ equals

Eff(c) =

 q∑
j=1

r

r − rj
W (c, j)

−1

, (12)

where

W (c, j) =
c′H ′jHjc

c′c
, 1 ≤ j ≤ q. (13)

Let H = [H ′1 H
′
2 · · ·H ′q]′. Since c′ = c′H ′H as in Theorem 2, then by (13),

∑q
j=1W (c, j) =

c′H ′Hc/c′c = 1. Hence by (12), Eff(c) is again a harmonic mean of the component-wise
efficiency factors (r − rj)/r. But this harmonic mean is now weighted and, in contrast to
Theorem 1, the weights W (c, j) depend on c′τ and Cj , for s > 3. So, unlike in Theorem 2,
Eff(c) in (12) depends on c. As a result, given r and r1+· · ·+rq, typically no choice of r1, . . . , rq
can simultaneously maximize Eff(c) for all natural contrasts belonging to F1 × F2 × · · · × Fg.
Rather, one has to proceed separately for each such contrast based on explicit calculation of
the W (c, j). We conclude with an example that illustrates these points.

Example 2. Consider a partially confounded 52 factorial design such that every replicate
confounds a component of the two-factor interaction F1 ×F2 and hence consists of five blocks,
each of size five. For 1 ≤ j ≤ 4, suppose there are rj replicates where the component Cj = F1F

j
2

of F1 × F2 is confounded. The total number of replicates is r = r1 + · · ·+ r4.
Clearly, then each main effect contrast has efficiency factor 1. We next consider the natural
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contrasts belonging to F1 × F2. Let

P =


−2√
10

−1√
10

0 1√
10

2√
10

2√
14

−1√
14

−2√
14

−1√
14

2√
14

−1√
10

2√
10

0 −2√
10

1√
10

1√
70

−4√
70

6√
70

−4√
70

1√
70

 .

The four rows of P , say p′1,p
′
2,p
′
3 and p′4, correspond respectively, to the linear, quadratic, cubic

and quartic components of a five-level factor. Hence, as in (7), any natural contrast belonging
to F1 × F2 is of the form c′τ , where c = pk ⊗ pm[= c(km), say], for some 1 ≤ k,m ≤ 4. For
instance, c(11)′τ is the linear × linear contrast, c(32)′τ is the cubic × quadratic contrast, and
so on.

One can now explicitly write down the matrices Hj corresponding to the components Cj(=
F1F

j
2 ) in the same manner as in (3), and then employ (13) to calculate the weights W (c, j), for

every natural contrast c′τ and every j, 1 ≤ j ≤ 4. These weights, shown in Table 1, depend on
c′τ and j. Hence given r = r1 + · · ·+ r4, no choice of r1, r2, r3, r4 can simultaneously maximize
the efficiency factors for all the natural contrasts c(km)′τ . For example, if r = r1 + · · ·+r4 = 4,
then using the W (c, j) values from Table 1 in (12), the optimal choices of (r1, r2, r3, r4) which
uniquely maximize Eff(c) for various c turn out to be as follows:

(i) c = c(11), c(13), c(31), c(33): optimal (r1, r2, r3, r4) = (1, 1, 1, 1).
(ii) c = c(12), c(21), c(22), c(34), c(43), c(44): optimal (r1, r2, r3, r4) = (0, 2, 2, 0).
(iii) c = c(14), c(23), c(24), c(32), c(41), c(42): optimal (r1, r2, r3, r4) = (2, 0, 0, 2).

Table 1: Weights W (c, j) in Example 2

c W (c, 1) W (c, 2) W (c, 3) W (c, 4)

c(11), c(33) 0.3000 0.2000 0.2000 0.3000
c(12), c(21), c(34), c(43) 0.3571 0.1429 0.1429 0.3571

c(13), c(31) 0.2000 0.3000 0.3000 0.2000
c(14), c(23), c(32), c(41) 0.1429 0.3571 0.3571 0.1429

c(22), c(44) 0.4796 0.0204 0.0204 0.4796
c(24), c(42) 0.0204 0.4796 0.4796 0.0204

Thus a clear-cut recommendation about the choice of (r1, r2, r3, r4) is not possible. One may
go by the natural contrasts which are of greater interest than others in a given context – e.g.,
if those in (i) above are of greatest interest, then taking (r1, r2, r3, r4) = (1, 1, 1, 1) is sensible.
However, this may seriously curtail the best achievable efficiency factors for the contrasts in
(ii) and (iii). Thus with (r1, r2, r3, r4) = (1, 1, 1, 1), the efficiency factor for c(km)′τ , where
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k,m ∈ {2, 4}, will be less than that under the corresponding optimal (r1, r2, r3, r4) by as much
as about 22%.

Other approaches include choosing (r1, r2, r3, r4) so as to maximize the average or minimum
efficiency factor over all natural contrasts, even though the results so obtained will not be as
strong as those discussed earlier for three-level designs. 2
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Appendix: Proof of Theorem 1

By (6), PP ′ = I2 and P13 = 0. Since each ci in (7) equals the transpose of a row of P , we
get

c′ici = 1, c′i13 = 0, 1 ≤ i ≤ g. (A.1)

We will now prove Theorem 1 through a sequence of lemmas. For each i, write the 3×1 vector
ci explicitly as ci = (ci(0), ci(1), ci(2))′.

Lemma A.1. For 1 ≤ i ≤ g and any fixed integers j0, j1, j2 ∈ {0, 1, 2}, j0 6= 0,

2∑
j=0

ci((j − j1)/j0)ci((j − j2)/j0) = 1, if j1 = j2,

= −1
2
, otherwise,

where (j − j1)/j0 and (j − j2)/j0 are reduced mod 3.

Proof. As j equals 0, 1 and 2, so does each of (j− j1)/j0 and (j− j2)/j0 (mod 3), possibly in a
different order. Hence if j1 = j2, then the sum under consideration equals c′ici and the result
follows from (A.1). On the other hand, for any j1 6= j2 and j0 6= 0, one can check that

2∑
j=0

ci((j − j1)/j0)ci((j − j2)/j0) = ci(0)ci(1) + ci(0)ci(2) + ci(1)ci(2) (A.2)

= 1
2{(c

′
i13)2 − c′ici} = −1

2 ,

using (A.1) again. 2

With reference to the factorial effect component F1F
b2
2 . . . F

bg
g considered in Theorem 1,

write b1 = 1. For 1 ≤ u ≤ g, j ∈ {0, 1, 2}, let

Ω(u) = {x(u) = x1 . . . xu : xi = 0, 1 or 2, 1 ≤ i ≤ u}, (A.3)
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Γ(u, j) = {x(u) = x1 . . . xu : x(u) ∈ Ω(u) and b1x1 + · · ·+ buxu = j (mod 3)}, (A.4)

and

φu =
2∑

j=0

 ∑
x(u)∈ Γ(u, j)

{
u∏

i=1

ci(xi)

}
2

, (A.5)

where the second sum in (A.5) is over x(u) ∈ Γ(u, j). Then the following lemma holds.

Lemma A.2. For 1 ≤ u ≤ g, φu = (3/2)u−1.

Proof. For u = 1, the result is evident from (A.1), (A.4), (A.5) and the fact that b1 = 1. Next
let u ≥ 2. As bu 6= 0, then by (A.3) and (A.4), Γ(u, j) consists of u-tuples x(u)(= x1 . . . xu)
satisfying

x(u− 1)(= x1 . . . xu−1) ∈ Ω(u− 1) and xu = (j − b[x(u− 1)])/bu mod 3,

where
b[x(u− 1)] = b1x1 + · · ·+ bu−1xu−1 mod 3. (A.6)

Therefore, by (A.5),

φu =
2∑

j=0

 ∑
x(u− 1)∈ Ω(u− 1)

{
u−1∏
i=1

ci(xi)

}
cu((j − b[x(u− 1)])/bu)


2

. (A.7)

But by (A.3), (A.4), Ω(u−1) is the union of Γ(u−1, k), k ∈ {0, 1, 2}, and by (A.6), b[x(u−1)] = k

for x(u− 1) ∈ Γ(u− 1, k). Hence (A.7) yields

φu =
2∑

j=0

 2∑
k=0

∑
x(u− 1)∈ Γ(u− 1, k)

{
u−1∏
i=1

ci(xi)
}
cu((j − k)/bu)

2

=
2∑

j=0

2∑
k=0

2∑
m=0

∑
x(u− 1)∈ Γ(u− 1, k)

∑
y(u− 1)∈ Γ(u− 1,m)

{
u−1∏
i=1

ci(xi)ci(yi)
}
×

cu((j − k)/bu)cu((j −m)/bu),

(A.8)

where the sum over y(u−1)(= y1 . . . yu−1) is analogous to that over x(u−1). Since by Lemma
A.1,

2∑
j=0

cu((j − k)/bu)cu((j −m)/bu) =
3
2
δkm −

1
2
,
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where δkm equals 1 if k = m, and 0 otherwise, from (A.8) we get

φu =
2∑

k=0

2∑
m=0

∑
x(u− 1)∈ Γ(u− 1, k)

∑
y(u− 1)∈ Γ(u− 1,m)

{
u−1∏
i=1

ci(xi)ci(yi)
}
×(

3
2δkm − 1

2

)

= 3
2

2∑
k=0

∑
x(u− 1)∈ Γ(u− 1, k)

∑
y(u− 1)∈ Γ(u− 1, k)

{
u−1∏
i=1

ci(xi)ci(yi)
}

−1
2

2∑
k=0

2∑
m=0

∑
x(u− 1)∈ Γ(u− 1, k)

∑
y(u− 1)∈ Γ(u− 1,m)

{
u−1∏
i=1

ci(xi)ci(yi)
}

= 3
2

2∑
k=0

 ∑
x(u− 1)∈ Γ(u− 1, k)

{
u−1∏
i=1

ci(xi)
}2

−1
2

 2∑
k=0

∑
x(u− 1)∈ Γ(u− 1, k)

{
u−1∏
i=1

ci(xi)
}2

= 3
2φu−1 − 1

2

 ∑
x(u− 1)∈ Ω(u− 1)

{
u−1∏
i=1

ci(xi)
}2

,

(A.9)

recalling (A.5) and the fact that the union of Γ(u− 1, k), k ∈ {0, 1, 2}, equals Ω(u− 1). Now,
by (A.1) and (A.3),

∑
x(u− 1)∈ Ω(u− 1)

{
u−1∏
i=1

ci(xi)

}
=

2∑
x1=0

· · ·
2∑

xu−1=0

{
u−1∏
i=1

ci(xi)

}
=

u−1∏
i=1

(c′i13) = 0.

Therefore, (A.9) yields φu = 3
2φu−1, for u ≥ 2. Since φ1 = 1, the result now follows using a

recursive argument. 2

Lemma A.3. If A(b) is as defined in Section 2 and c is given by (7), then

c′A(b)′A(b)c = 32(n−g)(3/2)g−1.

Proof. By (1) and (A.4), the set Vj(b) consists of n-tuples x(= x1 . . . xn) such that x(g)(=
x1 . . . xg) ∈ Γ(g, j) and xi ∈ {0, 1, 2}, g+ 1 ≤ i ≤ n. Hence from (7) and the definition of A(b),
the jth element of A(b)c is given by

∑
x∈ Vj(b)

{ g∏
i=1

ci(xi)

}
= 3n−g

∑
x(g)∈ Γ(g, j)

{ g∏
i=1

ci(xi)

}
, j = 0, 1, 2.

Thus recalling (A.5), c′A(b)′A(b)c = 32(n−g)φg, and the result follows invoking Lemma A.2. 2
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Proof of Theorem 1. By (7) and (A.1),

c′c = 3n−g, c′1v = 0. (A.10)

Also, by (5), the 3× 3 matrix [
3−1/21′3

3(n−1)/2L

]

is orthogonal. Therefore, L′L = 3−(n−1)(I3 − 1
3131′3). Consequently, by (2) and (3),

H(b)′H(b) = 3−(n−1){A(b)′A(b)− 1
31v1′v}. Hence invoking (A.10) and Lemma A.3,

c′H(b)′H(b)c = 3−(n−1)c′A(b)′A(b)c = 3n−g/2g−1 = 2−(g−1)(c′c),

and the result follows. 2

Remark A.1. Theorem 1 cannot be extended to general s-level factorials, where s > 3 is a
prime or prime or prime power, because Lemma A.1, which is crucial in proving this theorem,
allows no such extension. To see this, take for example, s = 5 and consider the vector

c̃ = (c̃(0), c̃(1), . . . , c̃(4))′ =
1√
10

(−2,−1, 0, 1, 2),

which corresponds to the normalized linear component of a five-level factor. As in (A.1), c̃′c̃ = 1
and c̃′15 = 0. But unlike in Lemma 1, the value of the sum

∑4
j=0 c̃((j − j1)/j0)c̃((j − j2)/j0),

where j0, j1, j2 ∈ {0, 1, 2, 3, 4}, j0 6= 0 and (j − j1)/j0 and (j − j2)/j0 are reduced mod 5,
depends on the specific choice of j1 and j2 when j1 6= j2; e.g., with j0 = 1, this sum equals 0
for j1 = 0 and j2 = 1, and −1

2 for j1 = 0 and j2 = 2. This happens because a counterpart of
(A.2) cannot hold in general for s > 3, since the two sides of such a counterpart would involve
s and s(s− 1)/2 terms, while s < s(s− 1)/2 for s > 3. 2
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