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ESTIMATION OF PARAMETERS OF TWO-DIMENSIONAL

SINUSOIDAL SIGNAL IN HEAVY-TAILED ERRORS

SWAGATA NANDI

Abstract. In this paper, we consider a two-dimensional sinusoidal model observed

in a additive random field. The proposed model has wide applications in statistical

signal processing. The additive noise has mean zero but the variance may not be

finite. We propose the least squares estimators to estimate the unknown parameters.

It is observed that the least squares estimators are strongly consistent. We obtain the

asymptotic distribution of the least squares estimators under the assumption that the

additive errors are from a symmetric stable distribution. Some numerical experiments

are performed to see how the results work for finite samples.

1. Introduction

Estimation of the unknown parameters of a parametric model is a central problem.

In this paper, we address the problem of estimation of parameters in the following two-

dimensional (2-D) model;

y(m, n) =

p∑

k=1

[
Ak cos(mλk + nµk) + Bk sin(mλk + nµk)

]
+ǫ(m, n). (1)

Here y(m, n); m = 1, . . . , M ; n = 1, . . . N are observed values at equidistant points on

the (m, n) plane; Ak and Bk, k = 1, . . . , p are unknown real numbers called amplitudes;

λk and µk are unknown frequencies such that λk, µk ∈ (0, π), k = 1, . . . , p; {ǫ(m, n)} is

a 2-D sequence of independent and identically distributed (i.i.d.) random variables with

mean zero, but they may not have finite variance; p is the number of frequency pair

present in the signal y(m, n) and we assume that p is known in advance. The problem is

to extract the unknown parameters, given a sample of size M×N , having some desirable
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properties. In the present set-up, we allow the case when the second moment of ǫ(m, n)

is not finite.

Zhang and Mandrekar (2001), Kundu and Gupta (1998), considered model (1) without

the sine term, that is, Bk = 0, k = 1, . . . , p. It is observed in Zhang and Mandrekar

(2001) that 2-D sinusoidal model can be used quite effectively to model textures. In

Model (1), ǫ(m, n) is a random field and first term in y(m, n) corresponds to the regular

deterministic textures, known as the signal component. The estimation and detection of

the signal component in presence of additive noise is an important problem is statistical

signal processing.

Zhang and Mandrekar (2001) discussed the consistent estimation of λk’s and µk’s,

but their amplitude estimators are not consistent. Kundu and Gupta (1998) considered

model (1) with Bk = 0 under the assumption that ǫ(m, n)’s are i.i.d. random variables

with mean zero and finite variance. Kundu and Nandi (2003) discussed the strong con-

sistency and asymptotic normality of the least squares estimators (LSEs) of the unknown

parameters when ǫ(m, n)’s are from a stationary random field.

The problem is of interest in spectrography and is studied by Malliavan (1994a, 1994b)

using group-theoretic methods. This is a basic model in many fields, such as antenna

array processing, geophysical perception, biomedical spectral analysis, etc. See for ex-

ample the work of Barbieri and Barone (1992), Cabrera and Bose (1993), Chun and

Bose (1995), Hua(1992), Kundu and Gupta (1998) and Lang and McClellan (1982) for

the different estimation procedures and for their properties. In an recent paper, Nandi,

Prasad and Kundu (2010) propose an efficient algorithm which produces estimators of

the unknown parameters of model (1) with the same rate of convergence as the LSEs.

The main aim of this paper is to consider the case when the error random variables have

heavier tails. A heavy tailed distribution is one whose extreme probabilities approach

zero relatively slowly. An important criterion of heavy tail distribution is the non-

existence of second moment, pointed out by Mandelbrot (1963). We are using the same

definition of Mandelbrot (1963), that is, a distribution is heavy tailed, if and only if the

variance is infinite. It has been shown that under the assumption E|ǫ(m, n)|1+δ < ∞, for

some δ > 0, the LSEs of the unknown parameters are strongly consistent. Additionally,

if we assume that ǫ(m, n)’s are from a symmetric α stable distribution, the asymptotic

distribution of the LSEs is multivariate symmetric stable.
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The rest of the paper is organized as follows. In section 2, we introduce the LSEs

and state the assumptions required for model (1) when p = 1. The strong consistency

of the LSEs is discussed in section 3 and asymptotic distribution is provided in section

4. The case of general p is discussed in section 5. Some numerical experiment results

are discussed in section 6. Finally we conclude the paper in section 7. The proof of the

consistency is given in Appendix.

2. Estimating the unknown parameters

In this section, we study the properties of the LSEs of the unknown parameters and the

one obtained by maximizing the 2-D periodogram function. The second one is termed as

the approximate LSE (ALSE) in the context of one-dimension (1-D) model and in some

works of 2-D frequency model (see Walker (1969); Hannan (1971); Kundu and Nandi

(2003) etc.). For simplicity of notation, we first assume that p = 1 in this section and

next section. The model is

y(m, n) = A cos(mλ + nµ) + B sin(mλ + nµ) + ǫ(m, n). (2)

For model (2), the LSE of θ = (A, B, λ, µ), say θ̂ = (Â, B̂, λ̂, µ̂) minimizes

Q(θ) =

M∑

m=1

N∑

n=1

[
y(m, n) − A cos(mλ + nµ) − B sin(mλ + nµ)

]2

(3)

with respect to A, B, λ, µ. We write θ0 = (A0, B0, λ0, µ0) as the true value of θ.

The ALSE of λ and µ can be obtained by maximizing the 2-D periodogram function

I(λ, µ) =
∣∣∣

M∑

m=1

N∑

n=1

y(m, n)e−i(mλ+nµ)
∣∣∣
2

, i =
√
−1 (4)

with respect to λ and µ. Let λ̃ and µ̃ denote the ALSE of λ and µ, then the ALSEs of

A and B, say Ã and B̃ are obtained as

Ã =
2

MN

M∑

m=1

N∑

n=1

y(m, n) cos(mλ̃+nµ̃), B̃ =
2

MN

M∑

m=1

N∑

n=1

y(m, n) sin(mλ̃+nµ̃). (5)

Alternatively, once the non-linear parameters are estimated, the linear parameters can

be estimated by using the simple linear regression technique. The 2-D periodogram

function defined in (4) is a simple extension of the periodogram function for 1-D data to

2-D data. For motivation of using ALSE, see Walker (1969) or Hannan (1971), where the
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authors used ALSE in a similar 1-D model as an equivalent estimator of LSE. Basically

in ALSE, A and B are profiled out.

In the following, we state the definition of the symmetric α-stable (SαS) distribution

and state some assumption which are required in subsequent sections.

Definition 1. (Samorodnitsky and Taqqu (1994)) A symmetric random variable

X, symmetric around 0, is said to have the symmetric α stable (SαS) distribution with

scale parameter σ and stability index α, if the characteristic function of X is

EeitX = e−σα|t|α.

The SαS distribution is a special case of general Stable distribution with non-zero

shift and skewness parameters. For different properties of Stable and SαS distributions,

see Samorodnitsky and Taqqu (1994).

Assumption 1. The 2-D noise ǫ(m, n) are i.i.d. random variables with mean zero and

E|ǫ(m, n)|1+δ < ∞ for some 0 < δ < 1.

Assumption 2. The 2-D noise ǫ(m, n) are independent with mean zero and identically

distributed as SαS, defined above.

Assumption 3. A0 and B0 are not identically equal to zero.

Under Assumption 1, the second moment does not exist, whereas the mean does.

Assumption 3 ensures the presence of the frequency pair (λ, µ) in the data so that

y(m, n) are not pure noise. In the next section , we prove the consistency of the LSEs of

the unknown parameters of model (2) under Assumptions 1 and 3 and in section 4, we

develop the asymptotic distribution under assumptions 2 and 4, stated in section 5.

3. Strong Consistency of LSEs

In this section, we discuss the consistency properties of the LSEs. The following two

lemmas are required to prove the results. Lemma 1 gives a sufficient condition for the

strong consistency of the LSEs and Lemma 2 will be used to verify the condition in

Lemma 1 under the moment condition given in Assumption 1.
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Lemma 1. If {ǫ(m, n), m, n ∈ Z}, Z the set of positive integers, are i.i.d. random

variables with mean zero and E|ǫ(m, n)|1+δ < ∞, 0 < δ < 1, then

sup
α,β

∣∣∣∣∣
1

MN

M∑

m=1

N∑

n=1

ǫ(m, n) cos(mα) cos(nβ)

∣∣∣∣∣ → 0 a.s.

as min{M, N} → ∞.

Corollary of Lemma 1:

sup
α,β

∣∣∣∣∣
1

Mk+1N l+1

M∑

m=1

N∑

n=1

mknlǫ(m, n) cos(mα) cos(nβ)

∣∣∣∣∣ → 0 a.s., for k, l = 0, 1, 2 . . .

The result is true for all combination of cosine and sine functions.

Proof of Lemma 1: See the Appendix.

Lemma 2. Write

Sc,K = {θ : θ = (A, B, λ, µ), |θ − θ0| ≥ 4c, |A| ≤ K, |B| ≤ K}.

If for any c > 0 and for some K < ∞,

lim inf
θ∈Sc,K

1

MN

[
Q(θ) − Q(θ0)

]
> 0 a.s., (6)

then θ̂, the LSE of θ0, is a strongly consistent estimator of θ0.

Proof of Lemma 2: It follows from Lemma 1 of Wu (1981).

Lemma 1 is a strong result. It generalizes some of the 1-D results, see Hannan(1971),

Kundu (1993), Kundu and Mitra (1996), Nandi, Iyer and Kundu (2002) and the 2-D

results given in Kundu and Gupta (1998). The following theorem states the consistency

result.

Theorem 3.1. Under Assumptions 1 and 3, the LSEs of the parameters of model (2)

are strongly consistent.

Proof of Theorem 3.1: See the Appendix.
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4. Asymptotic Distribution of LSEs

In this section, we obtain the asymptotic distributions of the LSEs of the unknown

parameters of model (2) under Assumptions 2 and 3. Now, the error random variables

are from a SαS distribution. Then Assumption 1 is also satisfied with 1 + δ < α < 2.

Hence, from now on, we take 1 + δ < α < 2.

Write Q′(θ) and Q′′(θ) as the vector of first derivatives and the matrix of second

derivatives of orders 1× 4 and 4× 4, respectively. Suppose D1 and D2 are two diagonal

matrices of order 4 × 4 defined as follows:

D1 = diag

{
1

M
1
α N

1
α

,
1

M
1
α N

1
α

,
1

M
1+α

α N
1
α

,
1

M
1
α N

1+α
α

,

}
,

D2 = diag

{
1

M
α−1

α N
α−1

α

,
1

M
α−1

α N
α−1

α

,
1

M
2α−1

α N
α−1

α

,
1

M
α−1

α N
2α−1

α

}
.

Expanding Q′(θ) at θ̂, the LSE of θ, around the true value θ0 using multivariate Taylor

series, we have

Q′(θ̂) − Q′(θ0) = (θ̂ − θ0)Q′′(θ∗), (7)

where θ∗ is a point on the line joining θ̂ and θ0.

It follows that θ̂ converges a.s. to θ0 from Theorem 3.1 and Q′′(θ) is a continuous

function of θ. Therefore, it can be seen that

lim
M,N→∞

D2Q
′′(θ∗)D1 = lim

M,N→∞
D2Q

′′(θ0)D1 =




1 0 1
2
B0 1

2
B0

0 1 −1
2
A0 −1

2
A0

1
2
B0 −1

2
A0 1

3
(A02

+ B02
) 1

4
(A02

+ B02
)

1
2
B0 −1

2
A0 1

4
(A02

+ B02
) 1

3
(A02

+ B02
)


 ,

and

lim
M,N→∞

[D2Q
′′(θ∗)D1]

−1
=




A02
+ 7B02 −6A0B0 −6B0 −6B0

−6A0B0 7A02
+ B02

6A0 6A0

−6B0 6A0 12 0

−6B0 6A0 0 12


 = Σ−1 (say).

Since Q′(θ̂) = 0, and D2Q
′′(θ∗)D1 is an invertible matrix a.e. for large M and N , (7)

can be written as

(θ̂ − θ0)D2
−1 = −

[
Q′(θ0)D1

]
[D2Q

′′(θ∗)D1]
−1

.
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In order to show that Q′(θ0)D1 converges to a multivariate stable distribution, we write

Q′(θ0) = (X1
MN , X2

MN , X3
MN , X4

MN), where

X1
MN = − 2

M
1
α N

1
α

M∑

m=1

N∑

n=1

ǫ(m, n) cos(mλ0 + nµ0),

X2
MN = − 2

M
1
α N

1
α

M∑

m=1

N∑

n=1

ǫ(m, n) sin(mλ0 + nµ0),

X3
MN =

2

M
1+α

α N
1
α

M∑

m=1

N∑

n=1

mǫ(m, n)g(θ0), X4
MN =

2

M
1
α N

1+α
α

M∑

m=1

N∑

n=1

nǫ(m, n)g(θ0),

where g(θ0) = A0 sin(mλ0 +nµ0)−B0 cos(mλ0 +nµ0). The trigonometric function g(θ)

depends on m and n also, but we do not make it explicit. Then the joint characteristic

function of (X1
MN , X2

MN , X3
MN , X4

MN) is

φMN(t) = E exp{i(t1X1
MN + t2X

2
MN + t3X

3
MN + t4X

4
MN)}, t = (t1, t2, t3, t4),

= E exp
{
i

2

M
1
α N

1
α

M∑

m=1

N∑

n=1

ǫ(m, n)Kt(m, n)
}
,

where

Kt(m, n) = −t1 cos(mλ0 + nµ0) − t2 sin(mλ0 + nµ0) +
mt3
M

g(θ0) +
nt4
N

g(θ0). (8)

Because ǫ(m, n) are independent, we have

φMN(t) =

M∏

m=1

N∏

n=1

E exp
{
i

2

M1/αN1/α
ǫ(m, n)Kt(m, n)

}

= exp
{
−2ασα 1

MN

M∑

m=1

N∑

n=1

|Kt(m, n)|α
}

.

We could not prove theoretically that the sequence
1

MN

M∑

m=1

N∑

n=1

|Kt(m, n)|α converges

but extensive simulation suggests that it converges as M, N increase. If we assume

that as M, N → ∞,
1

MN

M∑

m=1

N∑

n=1

|Kt(m, n)|α converges, then it can be shown that it

converges to a non-zero limit for t 6= 0. Note that for t 6= 0

|Kt(m, n)| ≤ |t1| + |t2| + (|t3| + |t4|)(A0 + B0) = S, (say),
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for all m, M and n, N ; 1 ≤ m ≤ M , 1 ≤ n ≤ N ; M, N = 1, 2, . . .. Therefore,

|Kt(m, n)/S| ≤ 1 and

|Kt(m, n)|α ≥ Sα

S2
|Kt(m, n)|2, 0 < α ≤ 2 and for all M, N = 1, 2, . . . .

Hence,

lim
M,N→∞

1

MN

M∑

m=1

N∑

n=1

|Kt(m, n)|α ≥ lim
M,N→∞

Sα−2

MN

M∑

m=1

N∑

n=1

|Kt(m, n)|2.

Using

lim
M,N→∞

1

MN

M∑

m=1

N∑

n=1

cos2(mλ + nµ) =
1

2
, lim

M,N→∞

1

MN

M∑

m=1

N∑

n=1

cos(mλ + nµ) = 0,

and similar results involving sine functions, it follows that

lim
M,N→∞

1

MN

M∑

m=1

N∑

n=1

|Kt(m, n)|α > 0.

From now on we assume that
1

MN

M∑

m=1

N∑

n=1

|Kt(m, n)|α converges to a non-zero limit as

M, N → ∞ and let

lim
M,N→∞

1

MN

M∑

m=1

N∑

n=1

|Kt(m, n)|α = τt(A
0, B0, λ0, µ0, α). (9)

This implies

lim
M,N→∞

φMN(t) = e−2ασατt(A0,B0,λ0,µ0,α). (10)

This limiting characteristic function (10), indicates that even if M, N → ∞, any linear

combination of X1
MN , X2

MN , X3
MN and X4

MN , follows a SαS distribution.

Now consider

[
Q′(θ0)D1

]
[D2Q

′′(θ)D1]
−1

= − 2

M
1
α N

1
α




∑M
m=1

∑N
n=1 ǫ(m, n)UA(m, n)∑M

m=1

∑N
n=1 ǫ((m, n)UB(m, n)∑M

m=1

∑N
n=1 ǫ(m, n)Uλ(m, n)∑M

m=1

∑N
n=1 ǫ(m, n)Uµ(m, n)




T

, (11)
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where

UA(m, n) =
1

A02 + B02

[
(A02

+ 7B02
) cos(mλ0 + nµ0) − 6A0B0 sin(mλ0 + nµ0)

− 6mB0

M
g(θ0) − 6nB0

N
g(θ0)

]
,

UB(m, n) =
1

A02 + B02

[
(−6A0B0 cos(mλ0 + nµ0) + (7A02

+ B02
) sin(mλ0 + nµ0)

+
6mA0

M
g(θ0) +

6nA0

N
g(θ0)

]
,

Uλ(m, n) =
1

A02 + B02

[
(−6B0 cos(mλ0 + nµ0) + 6A0 sin(mλ0 + nµ0) +

12m

M
g(θ0)

]
,

Uµ(m, n) =
1

A02 + B02

[
(−6B0 cos(mλ0 + nµ0) + 6A0 sin(mλ0 + nµ0) +

12n

N
g(θ0)

]
.

Note that each element of [Q′(θ0)D1] [D2Q
′′(θ)D1]

−1 is a linear combination of X1
MN ,

X2
MN , X3

MN and X4
MN and hence distributed as symmetric α-stable distribution. There-

fore, using Theorem 2.1.5 of Samorodnitsky and Taqqu (1994) that a random vector is

symmetric in R
d, if and only if any linear combination is symmetric stable in R

1, where

d is the order of the vector, it follows that

lim
M,N→∞

[
Q′(θ0)D1

]
[D2Q

′′(θ∗)D1]
−1

,

converges to a symmetric stable random vector in R
4 which has the characteristic function

Φ(t) = e−2ασατv(A0,B0,λ0,µ0,α). (12)

Here τ v is defined as in (9), t replaced by v = (v1, v2, v3, v4), with

v1(t1, t2, t3, t4, A
0, B0) =

1

A02 + B02

[
(A02

+ 7B02
)t1 − 6A0B0t2 − 6B0t3 − 6B0t4

]
,

v2(t1, t2, t3, t4, A
0, B0) =

1

A02 + B02

[
−6A0B0t1 + (A02

+ 7B02
)t2 + 6A0t3 − 6A0t4

]
,

v3(t1, t2, t3, t4, A
0, B0) =

1

A02 + B02

[
−6B0t1 + 6A0t2 + 12t3

]
= v4(t1, t2, t3, t4, A

0, B0).

Therefore, we have the following theorem;

Theorem 4.1. In model (2), if ǫ(m, n) satisfy Assumptions 2 and 3, then (θ̂−θ0)D2
−1

=
(
M

α−1
α N

α−1
α (Â−A0), M

α−1
α N

α−1
α (B̂−B0), M

2α−1
α N

α−1
α (λ̂−λ0), M

α−1
α N

2α−1
α (µ̂−µ0)

)
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converges to a multivariate symmetric stable distribution in R
4 having characteristic

function as defined in (12).

5. Consistency and Asymptotic Distributions for General Model

In this section, we provide the asymptotic results of the LSEs of the unknown param-

eters for model (1). Write ξk = (Ak, Bk, λk, µk), k = 1, . . . , p and ξ = (ξ1, . . . , ξp) as the

parameter vector. Let ξ0 and ξ̂ denote the true value and the LSE of ξ, respectively.

The LSE of ξ is obtained by minimizing the residual sum of squares for model (1), say

R(ξ), defined similarly as Q(θ) in (3). The following assumption is required instead of

Assumption 3 in this section.

Assumption 4. A0
1, . . . , A

0
p and B0

1 , . . . , B
0
p are arbitrary real numbers such that both A0

j

and B0
j are not simultaneously equal to zero for all j.

The consistency of ξ̂ follows similarly as the consistency of θ̂. We discuss the asymp-

totic distribution of ξ̂ here.

Let R′(ξ) and R′′(ξ) be the vector and the matrix of the first and the second derivatives

of orders (1 × 4p) and (4p × 4p) respectively, as was defined in section 4. Define two

diagonal matrices of order 4p × 4p using D1 and D2

Γ1 =




D1 0 · · · 0

0 D1 · · · 0
...

...
...

...

0 0 · · · D1




, Γ2 =




D2 0 · · · 0

0 D2 · · · 0
...

...
...

...

0 0 · · · D2




,

where D1 and D2 are defined in previous section. Along the same lines as in section 4,

using multivariate Taylor series expansion and R′(ξ0) = 0, we have

(ξ̂ − ξ0)Γ−1
2 = −

[
R′(ξ0)Γ1

]
[Γ2R

′′(ξ∗)Γ1]
−1

,

because [Γ2R
′′(ξ∗)Γ1] is an invertible matrix for large M and N . Similarly as in case of

model (2), it can be shown that

lim
M,N→∞

[Γ2R
′′(ξ∗)Γ1] = lim

M,N→∞
[Γ2R

′′(ξ0)Γ1] =




Σ1 0 · · · 0

0 Σ2 · · · 0
...

...
...

...

0 0 · · · Σp




= ∆, (say)
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where Σk is a 4 × 4 matrix obtained from Σ by replacing A0 and B0 by A0
k and B0

k ,

respectively. Consider t = (t1, . . . , tp), tj = (t1j , t2j, t3j , t4j) and write R′(ξ)Γ2 =

(X1, . . . ,Xp), Xj = (X1j
MN , X2j

MN , X3j
MN , X4j

MN). Here Xkj
MN , k = 1, . . . , 4 are defined

similarly as Xk
MN , k = 1, . . . , 4; A0, B0, λ0 and µ0 are replaced by A0

j , B0
j , λ0

j and µ0
j .

Then the joint characteristic function of the elements of R′(ξ)Γ2 is

φp
MN(t) = E exp

{
i

2

M1/αN1/α

M∑

m=1

N∑

n=1

ǫ(m, n)Kp
t (m, n)

}
, Kp

t (m, n) =

p∑

j=1

Ktj(m, n).

For j = 1, , . . . , p, Ktj(m, n) is Kt(m, n) with A0, B0, λ0 and µ0, replaced by A0
j , B0

j , λ0
j

and µ0
j , respectively. This form enables us to write

φp
MN(t) =

p∏

j=1

M∏

m=1

N∏

n=1

E exp
{
i

2

M
1
α N

1
α

ǫ(m, n)Ktj(m, n)
}

=

p∏

j=1

M∏

m=1

N∏

n=1

exp
{
−2ασα

MN
|Ktj(m, n)|α

}

=

p∏

j=1

exp
{
−2ασα

MN

M∑

m=1

N∑

n=1

|Ktj(m, n)|α
}
.

Taking limit as M, N → ∞, we obtain

lim
M,N→∞

φp
MN(t) =

p∏

j=1

exp
{
−2ασατtj(A

0
j , B

0
j , λ

0
j , µ

0
j , α)

}

=

p∏

j=1

{
joint characteristic function of X1j

MN , X2j
MN , X3j

MN , X4j
MN

}
.

This implies that X1j
MN , X2j

MN , X3j
MN , X4j

MN and X1k
MN , X2k

MN , X3k
MN , X4k

MN , j 6= k are asymp-

totically independently distributed.

Now considering linear combinations similarly as in section 4, we find that as M, N →
∞, (ξ̂ − ξ0)Γ−1

2 =
(
(ξ̂1 − ξ0

1)D2
−1, . . . , ξ̂p − ξ0

p)D2
−1

)
converges to a symmetric stable

random vector in R
4p having the following characteristic function

Φp
t = exp

{
−2ασα

p∑

j=1

τwj
(A0

j , B
0
j , λ

0
j , µ

0
j , α)

}
, (13)

wj = (w1j(t1j , t2j, t3j , t4j), w2j(t1j , t2j , t3j, t4j), w3j(t1j , t2j , t3j , t4j), w4j(t1j , t2j, t3j , t4j)),

wkj(t1j , t2j , t3j, t4j) = vk(t1j , t2j , t3j, t4j , A
0
j , B

0
j ), k = 1, . . . , 4; j = 1, . . . , p. (14)
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Therefore, we have the following theorem regarding the asymptotic distribution of the

LSEs of the unknown parameters, present in model (1).

Theorem 5.1. In model (1), if ǫ(m, n)’s satisfy Assumption 2 and amplitudes A0
j ’s and

B0
j ’s satisfy Assumption 4, then for j = 1, . . . , p, (ξ̂j−ξ0

j )D2
−1 converges to a multivariate

stable distribution in R
4 whose characteristic function is given by exp

{
−2ασατwj

(A0
j , B

0
j , λ

0
j , µ

0
j , α)

}
;

wkj’s are defined in (14); (ξ̂j − ξ0
j )D2

−1 and (ξ̂k − ξ0
k)D2

−1, j 6= k are asymptotically

independently distributed.

According to Theorems 4.1 and 5.1, the LSEs of the frequencies λj and µj are of order

Op(M
− 2α−1

α N−α−1
α ) and Op(M

−α−1
α N− 2α−1

α ), respectively, whereas the linear parameters

Ai and Bi are of order Op(M
−α−1

α N−α−1
α ). These orders depends on the unknown stability

index α of the stable error process, which needs to be estimated.

Ideally Theorems 4.1 and 5.1 can be used for interval estimation by inverting the

asymptotic joint characteristic function but is not very easy in practice. The distribution

depends on limiting quantities like τt(A
0, B0, λ0, µ0, α) which are functions of the true

parameters and the unknown stability index. Also for a moderate sample size, the

approximation of τt(A
0, B0, λ0, µ0, α) will not be a good one. One can aim to obtain the

marginal distributions of the estimators by inverting the corresponding characteristic

functions. Otherwise some established bootstrap method, say percentile bootstrap or

bootstrap-t can be used.

6. Numerical Experiment

In this section, we provide results of some numerical experiments based on simulation

to see how the proposed estimator works for finite samples. We consider the following

model;

y(m, n) = A cos(mλ + nµ) + B sin(mλ + nµ) + ǫ(m, n), (15)

with A = B = 1.0, λ = .5 and µ = .25. ǫ(m, n)’s are i.i.d. random variables distributed

as symmetric SαS with mean zero, scale parameter σ = 1.0 and stability index 1 <

α < 2. The error random variables ǫ(m, n)’s are generated using the stable random

number generator of Samorodnitsky and Taqqu (1994). The subroutines of Press et al.

(1993) are used for optimization. Different values of the stability index α are used. We

have written α = 1 + δ and for simulation δ = .2(.9)(.1) are considered. Therefore,

α = 1.2(1.9)(.1) which is according to the assumption 1 < α < 2. The sample size is
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fixed at (M, N) = (20, 20) and (30, 30). For each choice of (α, M, N), we generate a

sample of size M ×N and compute the LSEs of the unknown parameters, namely, A, B,

λ and µ by minimizing the residual sum of squares defined in (3). We note that using

linear separation technique, minimization takes place in two dimension. We replicate the

procedure 1000 time and obtain the average estimates (AVEST) and the mean absolute

deviations (MAD) of the LSEs of the unknown parameters over these replications. The

results are reported in Tables 1 and 2 for different stability index α and sample sizes.

In section 4, we have obtained the asymptotic distribution of the LSEs as multivariate

symmetric stable and ideally that can be used in interval estimation of the unknown

parameters. But due to the complexity involved in the distribution, these are hard to

implement in practice. The asymptotic distribution involves τt(A
0, B0, λ0, µ0, α) which is

defined as M, N → ∞ and for a finite sample size, say (20×20) or (30×30), the estimate

τ̂t(Â, B̂, λ̂, µ̂, α) is quite unstable and in many cases very large values of M and N are

required for convergence of
1

MN

M∑

m=1

N∑

n=1

|Kt(m, n)|α. For this reason, we have used per-

centile bootstrap method for interval estimation of the different parameters as suggested

by Nandi and Kundu (2010). In each replication of our experiment, we generate 1000

bootstrap resamples using the estimated parameters and then the bootstrap confidence

intervals using the bootstrap quantiles at the 95% nominal level are obtained. As a

result, we have 1000 intervals for each parameter from the replicated experiment. We

estimate the 95% bootstrap coverage probability by calculating the proportion covering

the true parameter value. We report them as COVP in Tables 1 and 2. We also report

the average length of the bootstrap confidence interval as B-AVEL. So, in each table,

we report the average estimate, the mean absolute deviation, and the 95% bootstrap

coverage probability and the average length of the intervals.

We observe that the average estimates are quite good as they are quite close to the

true parameter values. The mean absolute deviations are reasonably small and as the

sample size increases, the mean absolute deviations of all the parameter estimator de-

crease. This has been observed in case of all parameter estimators. For a fixed sample

size, as α increases, the bias and MAD decrease in general. Typically, the same trend

has been observed in case of average length of bootstrap confidence intervals. When

(M, N) = (20, 20), in most of the cases, the bootstrap coverage probabilities do no at-

tain the nominal level 95%. Whereas when the sample size increases to (30, 30), the

coverage probabilities are close to the nominal value except µ with α close to one. The
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asymptotic distribution suggests that rates of convergence of Â, B̂, λ̂ and µ̂ are of orders

M−α−1
α N−α−1

α , M−α−1
α N−α−1

α , M− 2α−1
α N−α−1

α , and M−α−1
α N− 2α−1

α respectively. These

are reflected in the bootstrap intervals to some extent. Moreover, the order of the MADs

approximately match the order given in the asymptotic distribution of the LSEs as ex-

pected for finite samples of moderate size.

Table 1. LSE, corresponding MAD, average length and coverage proba-

bility of the bootstrap percentile method for Model 1 when σ = 1.0 and

α = 1.2, 1.3, 1.4, and 1.5.

α = 1.2 α = 1.3 α = 1.4 α = 1.5

(M, N) (20, 20) (30, 30) (20, 20) (30, 30) (20, 20) (30, 30) (20, 20) (30, 30)

A

AVEST .9701 1.0111 .9476 .9832 1.0124 .9879 1.0328 .9975

MAD .2592 .1616 .2690 .1579 .2273 .1403 .2222 .1323

AVLEN 1.1723 .8006 1.1930 .8172 1.0674 .7828 1.0028 .7156

COVP .881 .936 .901 .958 .898 .967 .885 .956

B

AVEST .9407 .9688 .9789 .9867 .9335 .9964 .9170 .9858

MAD .2805 .1484 .2631 .1458 .2411 .1233 .2514 .1098

AVLEN 1.1885 .8149 1.1803 .8026 1.1574 .7736 1.1265 .7224

COVP .901 .970 .921 .967 .929 .989 .917 .987

λ

AVEST .4957 .4988 .4954 .4996 .4945 .5001 .4940 .4998

MAD 1.8692e-2 7.2754e-3 2.1294e-2 7.0024e-3 1.9069e-2 6.8101e-3 1.9192e-2 6.6807e-3

AVLEN 7.1492e-2 3.2557e-2 8.0903e-2 3.2721e-2 6.6625e-2 3.1440e-2 6.3071e-2 2.9172e-2

COVP .887 .940 .872 .938 .864 .943 .847 .930

µ

AVEST .2519 .2496 .2558 .2502 .2509 .2503 .2492 .2501

MAD 1.8420e-2 5.6380e-3 1.7533e-2 6.6717e-3 1.4476e-2 5.6091e-3 1.4016e-2 4.9893e-3

AVLEN 7.2552e-2 3.2483e-2 8.3907e-2 3.2661e-2 6.8435e-2 3.1465e-2 6.6091e-2 2.9137e-2

COVP .817 .962 .840 .939 .854 .978 .859 .973

We have analysed a single data set. The data was generated using the model given

in (15) with the same values of the parameters used in simulation study. We consider

the case when α = 1.9, σ = 1.0. The 2-D image plot of the generated data without the

additive error is given in Figure 1 as the first plot. The middle one in Figure 1 is the

image plot of the contaminated data observed in presence of additive error. The last one

in Figure 1 is the image plot of the fitted values. We observe that first plot and the last

plot matches quite well. Therefore, we can infer that the proposed method extract the

signal satisfactorily from the contaminated one.
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Table 2. LSE, corresponding MAD, average length and coverage proba-

bility of the bootstrap percentile method for Model 1 when σ = 1.0 and

α = 1.6, 1.7, 1.8, and 1.9.

α = 1.6 α = 1.7 α = 1.8 α = 1.9

(M, N) (20, 20) (30, 30) (20, 20) (30, 30) (20, 20) (30, 30) (20, 20) (30, 30)

A

AVEST 1.0448 1.0108 1.0458 1.0064 1.0357 1.0004 1.0391 1.0035

MAD 0.2024 .1291 .1875 .1136 .1749 .1133 .1678 .1079

AVLEN .9103 .6527 .8406 .6106 .8119 .5752 .7696 .5575

COVP .873 .948 .879 .949 .887 .941 .881 .946

B

AVEST .9188 .9730 .9256 .9823 .9403 .9846 .9333 .9875

MAD .2305 .1131 .2087 .1013 .1876 9.9479e-2 .1870 8.8188e-2

AVLEN 1.0387 .6764 .9620 .6231 .9037 .5817 .8614 .5639

COVP .913 .984 .916 .990 .922 .979 .909 .982

λ

AVEST .4946 .4996 .4952 .4999 .4964 .5000 .4955 .4999

MAD 1.7363e-2 6.4321e-3 1.5443e-2 5.6697e-3 1.4177e-2 5.6021e-3 1.3700e-2 5.7263e-3

AVLEN 5.7447e-2 2.6975e-2 5.3149e-2 2.4945e-2 5.0745e-2 2.3350e-2 4.8467e-2 2.2639e-2

COVP .841 .921 .844 .918 .847 .904 .848 .890

µ

AVEST .2485 .2496 .2482 .2496 .2483 .2498 .2485 .2498

MAD 1.2266e-2 4.7976e-3 1.1010e-2 4.2126e-3 1.0295e-2 3.9837e-3 1.0352e-2 3.5485e-3

AVLEN 5.9131e-2 2.6979e-2 5.4703e-2 2.4912e- 5.2096e-2 2.3368e-2 4.9569e-2 2.2594e-2

COVP .866 .972 .871 .982 .860 .984 .859 .991

Figure 1. Image plots of the data without error (left), data with error

(middle) and fitted values (right).

7. Concluding Remarks

In this paper, we consider the 2-D frequency model under the assumption of additive

i.i.d. errors which are heavy tailed. We propose the LSEs and prove the strong consis-

tency. Any distributional assumption is not required to prove the consistency. We obtain

the asymptotic distribution as multivariate symmetric stable when the errors are from a
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symmetric stable distribution. Due to the involvement of complicated limiting quanti-

ties in the asymptotic distribution, we have propose the percentile bootstrap method for

interval estimation. Although we address the problem when errors are i.i.d., the results

can be extended when the errors are 2-D moving average type. Another important point

is that we have not considered the problem of estimation of p. We may need to use some

cross validation technique or information theoretic criterion. Further work is required in

this direction.
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Appendix

Proof of Lemma 1: Define for 1 < p
q

< 1 + δ,

Z(m, n) =

{
ǫ(m, n), if |ǫ(m, n)| < (mn)

p
q(1+δ) ,

0, otherwise.

Then

∞∑

m=1

∞∑

n=1

P [Z(m, n) 6= ǫ(m, n)] =

∞∑

m=1

∞∑

n=1

P
[
|ǫ(m, n)| > (mn)

p
q(1+δ)

]

≤
∞∑

t=1

∑

2t−1≤r<2t

P
[
|ǫ(m, n)| ≥ r

p
q(1+δ)

]

≤
∞∑

t=1

t2t E|ǫ(1, 1)|1+δ

2
p
q
(t−1)

≤ C

∞∑

t=1

t

2(p
q
−1)t

< ∞.

Here C is a constant. Hence, ǫ(m, n) and Z(m, n) are equivalent sequences.

Let U(m, n) = Z(m, n) − E(Z(m, n)), then for large M and N ,

sup
α,β

∣∣∣∣∣
1

MN

M∑

m=1

N∑

n=1

E(Z(m, n)) cos(mα) cos(nβ)

∣∣∣∣∣ ≤
1

MN

M∑

m=1

N∑

n=1

|E(Z(m, n)| → 0.
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Thus, we only need to show that sup
α,β

∣∣∣∣∣
1

MN

M∑

m=1

N∑

n=1

U(m, n) cos(mα) cos(nβ)

∣∣∣∣∣ → 0 a.s.

Now for fixed ǫ > 0, −π < α, β < π and 0 < h ≤ 1

2(MN)
p

q(1+δ)
,

P

[∣∣∣∣∣
1

MN

M∑

m=1

N∑

n=1

U(m, n) cos(mα) cos(nβ)

∣∣∣∣∣ ≥ ǫ

]
≤ 2e−hMNǫ

M∏

m=1

N∏

n=1

(1 + 2Ch1+δ),

since |hU(m, n) cos(mα) cos(nβ)| ≤ 1
2
, ex ≤ 1+x+2|x|1+δ for |x| ≤ 1

2
and E|U(m, n)|1+δ <

C, for some C > 0. Hence

2e−hMNǫ

M∏

m=1

N∏

n=1

(1 + 2Ch1+δ) = 2e−hMNǫ(1 + 2Ch1+δ)MN ≤ 2e−hMNǫ+2CMNh1+δ

.

Now choose h = (2(MN)
p

q(1+δ) )−1 and write p
q

= 1 + k < 1 + δ, then for large M and N ,

P

[∣∣∣∣∣
1

MN

M∑

m=1

N∑

n=1

U(m, n) cos(mα) cos(nβ)

∣∣∣∣∣ ≥ ǫ

]

≤ 2e

 

− ǫ
2
(MN)

1−
p

q(1+δ) + 2C

(MN)
p
q −1

!

≤ 2e

(
− ǫ

2
(MN)

δ−k
1−δ

)

,

Let r = M2N2, choose r points θ1 = (α1, β1), θ2 = (α2, β2), . . ., θr = (αr, βr) such that

for each point θ = (α, β) ∈ (0, π) × (0, π), we have a point θj = (αj, βj), satisfying

|αj − α| + |βj − β| ≤ 2π

M2N2
.

Note that

∣∣∣∣∣
1

MN

M∑

m=1

N∑

n=1

U(m, n) {cos(mα) cos(nβ) − cos(mαj) cos(nβj)}
∣∣∣∣∣

≤ C
1

MN

M∑

m=1

N∑

n=1

(MN)
p

q(1+δ)
1

M2N2
[m + n] → 0 as M, N → ∞.

Therefore, for large M and N , we have

P

{
sup
α,β

∣∣∣∣∣
1

MN

M∑

m=1

N∑

n=1

U(m, n) cos(mα) cos(nβ)

∣∣∣∣∣ ≥ 2ǫ

}

≤ P

{
max

j≤M2N2

∣∣∣∣∣
1

MN

M∑

m=1

N∑

n=1

U(m, n) cos(mαj) cos(nβj)

∣∣∣∣∣ ≥ ǫ

}
≤ CM2N2e−

ǫ
2
(MN)

δ−k
1−δ

.

Since
∑∞

t=1 t2e−
ǫ
2
t

δ−k
1−δ

< ∞, using Borel Cantelli Lemma, the result follows

Proof of Theorem 3.1: In this proof, we denote θ̂ by θ̂MN to make it clear that θ̂

depends on M and N . If θ̂MN is not consistent for θ0, then either
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Case I: for all sub-sequences {Mk, Nk} of {M, N}, |ÂMN |+ |B̂MN | → ∞. which implies
1

MkNk

[
Q(θ̂MkNk

)−Q(θ0)
]
→ ∞. At the same time, θ̂MkNk

is the LSE of θ0 at (M, N) =

(Mk, Nk), hence Q(θ̂MkNk
) − Q(θ0) < 0. This indicates to a contradiction.

Case II:for at least one sub-sequence {Mk, Nk} of {M, N}, θ̂MkNk
∈ Sc,K for some c > 0

and a 0 < K < ∞. Write
1

MN

[
Q(θ) − Q(θ0)

]
= f1(θ) + f2(θ), where

f1(θ) =
1

MN

M∑

m=1

N∑

n=1

[
A0 cos(mλ0 + nµ0) − A cos(mλk + nµk)

+B0 sin(mλ0 + nµ0) − B sin(mλk + nµk)
]2

,

f2(θ) =
1

MN

M∑

m=1

N∑

n=1

ǫ(m, n)
[
A0 cos(mλ0 + nµ0) − A cos(mλk + nµk)

+B0 sin(mλ0 + nµ0) − B sin(mλk + nµk)
]
.

Define sets Sj
c,K, j = 1, . . . , 4 as follows: Sj

c,K = {θ : |θj − θ0
j | > c, |A| ≤ K, |B| ≤ K},

where θj , j = 1, . . . , 4 are elements of θ, that is, A, B, λ and µ and θ0
j is the corresponding

true value. Then Sc,K ⊂ ∪4
j=1S

j
c,K = S, say and

lim inf
M,N→∞

inf
Sc,K

1

MN

[
Q(θ) − Q(θ0)

]
≥ lim inf

M,N→∞
inf
S

1

MN

[
Q(θ) − Q(θ0)

]
.

Using Lemma 1, we have lim
M,N→∞

sup
θ∈Sc,K

f2(θ) = 0, a.s. Now we show in the following

that

lim inf
M,N→∞

inf
Sj

c,K

1

MN

[
Q(θ) − Q(θ0)

]
= lim inf

M,N→∞
inf
Sj

c,K

f1(θ) > 0 a.s. for j = 1, . . . , 4,



20 SWAGATA NANDI

and this would imply that lim inf
M,N→∞

inf
Sc,K

1

MN

[
Q(θ) − Q(θ0)

]
> 0 a.s. For j = 1,

lim inf
M,N→∞

inf
Sj

c,K

f1(θ)

= lim inf
M,N→∞

inf
|A−A0|>c

1

MN

M∑

m=1

N∑

n=1

[{
A0 cos(mλ0 + nµ0) − A cos(mλk + nµk)

}2

+
{
B0 sin(mλ0 + nµ0) − B sin(mλk + nµk)

}2

+ 2
{
A0 cos(mλ0 + nµ0) −

A cos(mλk + nµk)
}{

B0 sin(mλ0 + nµ0) − B sin(mλk + nµk)
}]

= lim inf
M,N→∞

inf
|A−A0|>c

1

MN

M∑

m=1

N∑

n=1

[{
A0 cos(mλ0 + nµ0) − A cos(mλk + nµk)

}2

>
1

2
c2 > 0 a.s.

Similarly, the inequality holds for other i and hence, the theorem is proved.
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