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Abstract

For connectivity of random geometric graphs, where there is no density for underlying
distribution of the vertices, we consider n i.i.d. Cantor distributed points on [0, 1]. We
show that for this random geometric graph, the connectivity threshold Rn, converges al-
most surely to a constant 1−2φ where 0 < φ < 1/2, which for standard Cantor distribution
is 1/3. We also show that ‖Rn − (1− 2φ)‖1 ∼ 2C (φ) n−1/dφ where C (φ) > 0 is a constant
and dφ := −log 2/log φ is a the Hausdorff dimension of the generalized Cantor set with
parameter φ.
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1 Introduction

1.1 Background and motivation

A random geometric graph consists of a set of vertices, distributed randomly over some metric
space, in which two distinct such vertices are joined by an edge, if the distance between them is
sufficiently small. More preciously, let Vn be a set of n points in Rd, distributed independently
according to some distribution F on Rd. Let r be a fixed positive real number. Then, random
geometric graph G = G(Vn, r) is a graph with vertex set Vn where two vertices v = (v1, . . . , vd)
and u = (u1, . . . , ud) in Vn are adjacent if and only if ‖v − u‖2 ≤ r where ‖.‖2 is a standard
Euclidean distance.

A considerable amount of work has been done on the connectivity threshold defined as

Rn = inf
{
r > 0

∣∣∣G(Vn, r) is connected
}
. (1)

The case when the vertices are assumed to be uniformly distributed in [0, 1]d, Appel and
Russo [1] showed that with probability one

lim
n→∞

n

log n
Rdn =

{
1 for d = 1,
1
2d for d ≥ 2

.

Penrose [2] considered the case when the distribution F has a continuous density f with respect
to the Lebesgue measure which remain bounded away from 0 on the support of F . Under certain
technical assumption such as smooth boundary for the support he showed that with probability
one,

lim
n→∞

n

log n
Rdn = C

where C is an explicit constant which depends on the dimension d and essential infimum of
f and its value on the boundary of the support. Recently, Sarkar and Saurabh [3] [personal
communication], studied a case when the density f of underlying the distribution may have
minimum zero. They in particular, proved that when the support of f is [0, 1] and f is bounded
below on any compact subset not containing zero but it is regularly varying at the origin, then
Rn/F

−1(1/n) has a weak limit.
In this paper we study the connectivity of random geometric graphs where the underlying

distribution of the vertices has no mass but is singular with respect to the Lebesgue measure,
that is, it has no density. For that, we consider the generalized Cantor distribution with
parameter φ denoted by Cantor(φ) as the underlying distribution of veritices of the graph.

1.2 Preliminaries

In this subsection, we discuss the Cantor set and Cantor distribution which is defined on it.
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1.2.1 Cantor Set

The Cantor set was first discovered by Smith [4] but became popular after Cantor [5]. The
Standard Cantor set is constructed on the interval [0, 1] as follows. One successively removes
the open middle third of each subinterval of the previous set. More precisely, starting with
C0 := [0, 1], we inductively define

Cn+1 :=
2n⋃
k=1

([
an,k, an,k +

bn,k − an,k
3

]
∪
[
bn,k −

bn,k − an,k
3

, bn,k

])

where Cn :=
2n

∪
k=1

[an,k, bn,k]. The Standard Cantor set is then defined as C =
⋂∞
n=oCn. It is

known that the Hausdorff dimension of the standard Cantor set is log 2
log 3 (see Theorem 2.1 of

Chapter 7 of [6]).
For constructing the generalized Cantor set, we start with unit interval [0, 1] and at first

stage we delete the interval (φ, 1 − φ) where 0 < φ < 1/2. Then, this procedure is reiterated
with the two segments [0, φ] and [1−φ, 1]. We continue ad infinitum. The Hausdorff dimension
of this set is given by dφ := − log 2

log φ (see Exercise 8 of Chapter 7 of [6]). Note that the standard
Cantor set is a special case when φ = 1/3.

1.2.2 Cantor distribution

The Cantor distribution with parameter φ where 0 < φ < 1/2 is the distribution of a random
variable X defined by

X =
∞∑
i=1

φi−1Zi (2)

where Zi are i.i.d. with P[Zi = 0] = P[Zi = 1 − φ] = 1/2. If a random variable X admits a
representation of the form (2) then we will say that X has a Cantor distribution with parameter
φ, and write X ∼ Cantor(φ). Observe that Cantor (φ) is self-similar, in the sense that,

X
d=

{
φX with probability 1/2
φX + 1− φ with probability 1/2

(3)

This follows easily by conditioning on Z1.
Note that for φ = 1/3 we obtain the standard Cantor distribution.

2 Main results

Let X1, X2, . . . , Xn be independent and identical distribution from Cantor(φ) on [0, 1]. Given
graph G = G(Vn, r), where Vn = {X1, X2, . . . , Xn}, let Rn be defined as in (1).
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Theorem 1. For any 0 < φ < 1/2, as n −→∞ we have

Rn −→ 1− 2φ a.s. (4)

Our next theorem gives finer asymptotics but before we state the theorem we provide here
some basic notations and facts. Let X1:n := min{X1, X2, . . . , Xn}. Using (3) we get

X1:n
d=

{
φX1:k with probability 2−n

(
n
k

)
for k = 1, 2, ..., n

φX1:n + 1− φ with probability 2−n
(5)

Let an := E[X1:n]. Using (5) Hosking [7] derived the following recursion formulae for the
sequence (an)

(2n − 2φ) an = 1− φ+ φ
n−1∑
k=1

(
n

k

)
ak, n ≥ 1 (6)

Moreover Knopfmacher and Prodinger [8] showed that whenever 0 < φ < 1/2 then as n→∞,

an

n
− 1
dφ

−→ C (φ) , (7)

where
C (φ) :=

(1− φ)(1− 2φ)
φ log 2

Γ(− log2 φ)ζ(− log2 φ) , (8)

and dφ = − log 2
log φ is the Hausdorff dimension of the generalized Cantor set. Here Γ(·) and ζ(·)

are the Gamma and Riemann zeta functions, respectively.
Our next theorem gives the rate convergence of Rn to (1− 2φ) in terms of the L1 norm.

Theorem 2. For any 0 < φ < 1/2, as n −→∞ we have

‖Rn − (1− 2φ)‖1
n
− 1
dφ

−→ 2C (φ) , (9)

where C (φ) is as in equation (8) and ‖·‖1 is the L1 norm.

3 Proof of the theorems

3.1 Proof of Theorem 1

We draw a sample of size n from Cantor(φ) on [0, 1]. Therefore this sample will be divided
with Nn elements falling in the subinterval [0, φ] and n− k in [1−φ, 1]. From the construction
Nn ∼ Bin

(
n, 1

2

)
. In selecting this sample of size n, there are three cases which may happen.

Some of these points may fall in interval [0, φ] and rest in interval [1 − φ, 1]. That means
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Nn /∈ {0, n}. In this case the distance between the points in [0, φ] and [1 − φ, 1] is at least
φ. The other cases are when all points fall in [0, φ] or all fall in [1 − φ, 1] , which in this case
Nn = n or Nn = 0. Let mn = min

1≤i≤n
Xi, Mn = max

1≤i≤n
Xi and we define

Ln := max {Xi| 1 ≤ i ≤ n and Xi ∈ [0, φ]} (10)

and
Un := min {Xi| 1 ≤ i ≤ n and Xi ∈ [1− φ, 1]} . (11)

We will take Ln = 0 (and similarly Un = 0) if the corresponding set is empty. Now we can
write

Rn = (Un − Ln) 1 (Nn /∈ {0, n}) +R∗n1(Nn ∈ {0, n}) (12)

where R∗n
d= φRn.

Observe that condition on Nn = k where 1 ≤ k ≤ n− 1, we have Un
d= 1− φ+ φmn−k and

Ln
d= φMk. More generally

((Ln, Un) , Nn)n≥1
d= ((φMNn , 1− φ+ φmn−Nn) , Nn)n≥1 . (13)

Note that to be technically correct we define M0 = m0 = 0.
Now it is easy to see that mn −→ 0 and Mn −→ 1 a.s. But by SLLN, Nn/n −→ 1/2 a.s.,

thus 1(Nn ∈ {0, n}) −→ 0 a.s., moreover both (Nn) and (n−Nn) are two subsequences which
are converging to infinity a.s. Finally observing that 0 ≤ R∗n ≤ φ a.s. we get from equation
(12) and (13)

Rn −→ (1− 2φ) .

�

3.2 Proof of Theorem 2

Recall that an = E[mn]. From (12) we have

E[Rn] = (1− 2φ)(1− 1
2n−1

) +
φ

2n

n−1∑
k=1

(
n

k

)
(an−k + ak) + E[R∗n1(Nn ∈ {0, n})]

= (1− 2φ)(1− 1
2n−1

) +
2φ
2n

(
2n − 2φ

φ
an −

1− φ
φ

) + E[R∗n1(Nn ∈ {0, n})] .

The last equality follows from (6). Therefore

E[Rn − (1− 2φ)]
an

=
−1

an2n−1
+

2n − φ
2n−1

− 1− φ
an2n−1

+
E[R∗n1(Nn ∈ {0, n})]

an
. (14)

Now observe that
0 ≤ E[R∗n1(Nn ∈ {0, n})]

an
≤ φ

an2n−1
,
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and by equation (7) we get that an2n−1 −→∞ as n→∞, so using (14) we conclude that

E[Rn − (1− 2φ)]
an

−→ 2 as n −→∞

Finally note that by definition of Rn, almost surely Rn ≥ 1− 2φ. Using (7) this completes the
proof. �
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