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NORM INEQUALITIES RELATED TO THE MATRIX GEOMETRIC MEAN

RAJENDRA BHATIA AND PRIYANKA GROVER

ABSTRACT. Inequalities for norms of different versions of the geometric mean of two positive
definite matrices are presented.

1. INTRODUCTION

The geometric mean of positive numbers a and b is the number
√
ab, and it satisfies the

equations

√
ab = e

1
2 (log a+log b) = lim

p→0

(
ap + bp

2

)1/p
. (1)

The quantity

f(p) =
(
ap + bp

2

)1/p
, −∞ < p <∞, (2)

is called the binomial mean, or the power mean, and is an increasing function of p on (−∞,∞).

Replacing a and b by positive definite matrices A and B, let

F (p) =
(
Ap +Bp

2

)1/p
. (3)

In [7] Bhagwat and Subramanian showed that

lim
p→0

F (p) = e
1
2 (logA+logB). (4)

They also showed that the matrix function F (p) is monotone with respect to p, on the intervals

(−∞,−1] and [1,∞) but not on (−1, 1). (The order X ≤ Y on the space P of n × n positive

definite matrices is defined to mean Y −X is a positive semidefinite matrix.)
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The entity in (4) is called the “log Euclidean mean” of A and B. However it has some

drawbacks, and the accepted definition of the geometric mean of A and B is

A#1/2B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2. (5)

It is of interest to have various comparisons between the quantities in (3), (4) and (5), and

that is the question discussed in this note.

Generalising (5) various authors have considered for 0 ≤ t ≤ 1

A#tB = A1/2
(
A−1/2BA−1/2

)t
A1/2, (6)

and called it t-geometric mean, or t-power mean. In recent years there has been added interest

in this object because of its connections with Riemannian geometry [9]. The space P has a

natural Riemannian metric, with respect to which there is a unique geodesic joining any two

points A,B of P. This geodesic can be parametrised as (6).

The linear path

(1− t)A+ tB, 0 ≤ t ≤ 1, (7)

is another path in P joining A and B. It is well known [9, Exercise 6.5.6] that

A#tB ≤ (1− t)A+ tB for all 0 ≤ t ≤ 1. (8)

The special case t = 1/2 of this is the matrix arithmetic-geometric mean inequality, first proved

by Ando [1].

For 0 ≤ t ≤ 1 let

Ft(p) = ((1− t)Ap + tBp)1/p . (9)

For t = 1/2 this is the F defined in (3). It follows from the work in [7] that

lim
p→0

Ft(p) = e(1−t) logA+t logB, (10)

and that Ft(p) is monotone with respect to p on (−∞,−1] and [1,∞) but not on (−1, 1). We

denote by λj(X), 1 ≤ j ≤ n, the decreasingly ordered eigenvalues of a Hermitian matrix

X, and by ||| · ||| any unitarily invariant norm on the space M of n × n matrices. Our first
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observation is that while the matrix function Ft(p) defined in (9) is not monotone on the whole

line (−∞,∞), the real functions λj(Ft(p)) are:

Theorem 1. Given positive definite matrices A and B, let Ft(p) be as defined in (9). Then for

1 ≤ j ≤ n the function λj(Ft(p)) is an increasing function of p on (−∞,∞).

As a corollary |||Ft(p)||| is an increasing function of p on (−∞,∞). In contrast to this, Hiai

and Zhan [18] have shown that the function ||| (Ap +Bp)1/p ||| is decreasing on (0, 1] (but not

necessarily so on (1,∞)). A several variable version of both our Theorem 1 and this result of

Hiai and Zhan can be established (see Remark 1).

Combining Theorem 1 with a result of Ando and Hiai [3] we obtain a comparison of norms

of the means (3), (4), (5), and their t-generalisations:

Corollary 2. Let A and B be two positive definite matrices. Then for p > 0

|||A#tB||| ≤ |||e(1−t) logA+t logB||| ≤ ||| ((1− t)Ap + tBp)1/p |||. (11)

The first inequality in (11) is proved in [3] as a complement to the famous Golden-Thompson

inequality: for Hermitian matrices H,K we have |||eH+K ||| ≤ |||eHeK |||. Stronger versions of

this inequality due to Araki [6] and Ando-Hiai [3] can be used to obtain a refinement of (11).

We have for 0 ≤ t ≤ 1

|||A#tB||| ≤ |||e(1−t) logA+t logB|||

≤ |||(B tp
2 A(1−t)pB

tp
2 )1/p|||

≤ |||((1− t)Ap + tBp)1/p|||. (12)

We draw special attention to the case p = 1 for which further refinements are possible.
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Theorem 3. Let A and B be positive definite matrices. Then

|||A#tB||| ≤ |||e(1−t) logA+t logB|||

≤ |||B t
2A1−tB

t
2 |||

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣
1
2
(
A1−tBt +BtA1−t

)∣∣∣∣
∣∣∣∣
∣∣∣∣

≤ |||A1−tBt|||

≤ |||(1− t)A+ tB|||. (13)

For convenience we have stated these results as inequalities for unitarily invariant norms.

Many of these inequalities have stronger versions (with log majorisations instead of weak ma-

jorisations). This is explained along with the proofs in Section 2. For the special case t = 1/2

we provide an alternative special proof for a part of Theorem 3, and supplement it with other

inequalities. Section 3 contains remarks and comparisons with known results, some of which

are very recent.

2. PROOFS

Proof of Theorem 1 Let 0 < p < p′. Then the map f(t) = tp/p
′

on [0,∞) is matrix concave;

see [8, Chapter V]. Hence

(1− t)Ap + tBp ≤
(
(1− t)Ap′ + tBp′

)p/p′
.

This implies that

λj ((1− t)Ap + tBp) ≤ λj
(
(1− t)Ap′ + tBp′

)p/p′
.

Taking pth roots of both sides, we obtain

λj ((1− t)Ap + tBp)1/p ≤ λj
(
(1− t)Ap′ + tBp′

)1/p′
. (14)

Next consider the case p < p′ < 0. Then 0 < p′/p < 1. Arguing as above we obtain

λj
(
(1− t)Ap′ + tBp′

)
≤ λj ((1− t)Ap + tBp)p

′/p .
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Take p′th roots of both sides. Since p′ < 0, the inequality is reversed and we get the inequality

(14) in this case too. Now let p be any positive real number. Using the matrix convexity of the

function f(t) = t−1 we see that

(
(1− t)A−p + tB−p

)−1 ≤ (1− t)Ap + tBp.

From this we get an inequality for the jth eigenvalues, and then for their pth roots; i.e.,

λj
(
(1− t)A−p + tB−p

)−1/p ≤ λj ((1− t)Ap + tBp)1/p .

It follows from the above cases that for any p < 0 < p′

λj ((1− t)Ap + tBp)1/p ≤ λj
(
(1− t)Ap′ + tBp′

)1/p′
. (15)

Taking limit as p′ → 0 and using (10) we get

λj ((1− t)Ap + tBp)1/p ≤ λj
(
e(1−t) logA+t logB

)

i.e., for any p < 0 we have λj (F (p)) ≤ λj (F (0)) . For the case p > 0 a similar argument shows

that λj (F (p)) ≥ λj (F (0)) .

Proof of Theorem 3 The first inequality in (13) follows from a more general result of

Ando and Hiai [3]. They showed that for Hermitian matrices H and K, |||
(
epH#t e

pK
)1/p |||

increases to |||e(1−t)H+tK ||| as p ↓ 0. Choosing H = logA, K = logB, and p = 1, we obtain the

first inequality in (13). The Golden-Thompson inequality generalised to all unitarily invariant

norms (see [8, p. 261] says that |||eH+K ||| ≤ |||eK/2eHeK/2|||. Using this we obtain the second

inequality in (13). (We remark here that it was shown in [10] that the generalised Golden

Thompson inequality follows from a generalised exponential metric increasing property. The

latter is related to the metric geometry of the manifold P. So its use in the present context seems

natural.) Given a matrix X we denote by ReX the matrix 1
2(X +X∗). By Proposition IX.1.2 in

[8] if a product XY is Hermitian, then |||XY ||| ≤ |||Re(Y X)|||. Using this we obtain the third

inequality in (13). The fourth inequality follows from the general fact |||ReX||| ≤ |||X||| for
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all X. The last inequality in (13) is a consequence of the matrix Young inequality proved by T.

Ando [2].

For Hermitian matrices H,K let λ1(H) ≥ · · · ≥ λn(H) and λ1(K) ≥ · · · ≥ λn(K) be the

eigenvalues of H and K respectively. Then the weak majorisation λ(H) ≺w λ(K) means that

k∑

i=1
λi(H) ≤

k∑

i=1
λi(K), k = 1, 2, . . . , n.

If in addition for k = n there is equality here, then we say λ(H) ≺ λ(K). For A,B ≥ 0 we write

λ(A) ≺log λ(B)

if
k∏

i=1
λi(A) ≤

k∏

i=1
λi(B), k = 1, . . . , n− 1 (16)

and
n∏

i=1
λi(A) =

n∏

i=1
λi(B), that is detA = detB.

We refer to it as log majorisation. We say A is weakly log majorised by B, in symbols λ(A) ≺wlog

λ(B), if (16) is fulfilled. It is known that

λ(A) ≺wlog λ(B) implies λ(A) ≺w λ(B),

so that |||A||| ≤ |||B||| for any unitarily invariant norm. (See [8] for facts on majorisation used

here.)

There are stronger versions of some of the inequalities in (12). We have for p > 0

λ(A#tB) ≺log λ(e(1−t) logA+t logB)

≺log λ
(
Btp/2A(1−t)pBtp/2

)1/p

= λ
(
A(1−t)pBtp

)1/p

≺wlog λ ((1− t)Ap + tBp)1/p . (17)
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The first inequality is a result by Ando and Hiai [3]. The second inequality follows from a result

by Araki [6]. The last inequality above follows from the matrix version of Young’s inequality

by Ando [2].

A further strengthening of the first inequality in (17) replacing log majorisation by pointwise

domination is not possible. For t = 1/2 this would have said

λj(A#1/2B) ≤ λj
(
e

logA+logB
2

)
.

This is refuted by the example A =
[

2 0
0 1

]
, B =

[
3 3
3 9/2

]
. A calculation shows that

λ2(A#1/2B) = 1 and λ2(e
logA+logB

2 ) ≈ 0.9806.

The case t = 1/2, p = 1 is special. Following an idea of Lee [20] we present a different proof

of the majorisation

λ
(
A#1/2B

)
≺log λ

(
B1/4A1/2B1/4

)
. (18)

The geometric mean A#1/2B satisfies the equation A#1/2B = A1/2UB1/2 for some unitary U.

See [8, p.109]. Therefore for the operator norm ‖ · ‖ we have

‖A#1/2B‖ = ‖A1/2UB1/2‖

= ‖A1/4A1/4UB1/4B1/4‖

≤ ‖A1/4UB1/4B1/4A1/4‖

≤ ‖A1/4UB1/4‖‖B1/4A1/4‖. (19)

Here the first inequality is a consequence of the fact that if XY is Hermitian, then ‖XY ‖ ≤

‖Y X‖. Next note that

‖A1/4UB1/4‖2 = ‖A1/4UB1/2U∗A1/4‖

≤ ‖A1/2UB1/2U∗‖

= ‖A1/2UB1/2‖ = ‖A#1/2B‖. (20)
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Again, to derive the inequality above we have used the fact that ‖XY ‖ ≤ ‖Y X‖ if XY is

Hermitian. From (19) and (20) we see that

‖A#1/2B‖1/2 ≤ ‖B1/4A1/4‖,

and hence

‖A#1/2B‖ ≤ ‖B1/4A1/4‖2 = ‖B1/4A1/2B1/4‖. (21)

This is the same as saying that

λ1
(
A#1/2B

)
≤ λ1

(
B1/4A1/2B1/4

)
. (22)

If ∧k(X), 1 ≤ k ≤ n, denotes the kth antisymmetric tensor power of X, then

∧k
(
A#1/2B

)
= ∧k(A)#1/2 ∧k (B).

So from (22) we obtain

λ1
(
∧k
(
A#1/2B

))
≤ λ1

(
∧k(B)1/4 ∧k (A)1/2 ∧k (B)1/4

)
.

This is the same as saying

k∏

j=1
λj
(
A#1/2B

)
≤

k∏

j=1
λj
(
B1/4A1/2B1/4

)
, 1 ≤ k ≤ n. (23)

For k = n there is equality here because

det
(
A#1/2B

)
= det

(
A1/2B1/2

)
.

From (23) we have the corollary

λ
(
A#1/2B

)
≺w λ

(
B1/4A1/2B1/4

)
. (24)

Included in this is the trace inequality

tr
(
A#1/2B

)
≤ trA1/2B1/2.

This has been noted in [20].
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3. REMARKS

1. Let A1, . . . , Am be positive definite matrices and let α1, . . . , αm ≥ 0 be such that
∑
αj =

1. Let

F (p) = (α1A
p
1 + · · ·+ αmA

p
m)1/p

. (25)

Then by the same argument as in the proof of Theorem 1, λj(F (p)) is increasing in p

on (−∞,∞). In particular for α1 = · · · = αm = 1/m the function λj
((

Ap1+···+Apm
m

)1/p)

is an increasing function of p on (−∞,∞). Therefore
∣∣∣∣
∣∣∣∣
∣∣∣∣
(
Ap1+···+Apm

m

)1/p∣∣∣∣
∣∣∣∣
∣∣∣∣ is an increasing function of p on (−∞,∞). In contrast, it can be

shown that
∣∣∣
∣∣∣
∣∣∣(Ap1 + · · ·+Apm)1/p

∣∣∣
∣∣∣
∣∣∣ is a decreasing function of p on (0, 1]. For m = 2

Hiai and Zhan have shown this using the following result of Ando and Zhan [5]. For

positive operators A,B and r ≥ 1

|||(A+B)r||| ≥ |||Ar +Br|||.

A several variable version of this follows from [14, Theorem 5 (ii)] of Bhatia and

Kittaneh:

|||(A1 + · · ·+Am)r||| ≥ |||Ar1 + · · ·+Arm||| for r ≥ 1.

By imitating the argument in [18] one can show
∣∣∣
∣∣∣
∣∣∣(Ap1 + · · ·+Apm)1/p

∣∣∣
∣∣∣
∣∣∣ is a decreasing

function of p on (0, 1].

2. In [7] Bhagwat and Subramanian showed that for positive definite matricesA1, . . . , Am

and α1, . . . , αm ≥ 0 such that
∑
αj = 1

lim
p→0

(α1A
p
1 + · · ·+ αmA

p
m)1/p = eα1 logA1+···+αm logAm .

It follows from Remark 1 that

|||eα1 logA1+···+αm logAm ||| ≤ ||| (α1A
p
1 + · · ·+ αmA

p
m)1/p ||| for p > 0.
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3. Recently several versions of geometric mean for more than two positive definite matri-

ces have been considered by various authors. (See [4], [12] and [16].) For positive

definite matrices A1, . . . , Am let G(A1, . . . , Am) denote any of these geometric means.

Our discussion in Corollary 2 and Remark 2 raises the question whether

|||G(A1, . . . , Am)||| ≤ |||e logA1+···+logAm
m |||.

4. By Ando’s characterisation of the geometric mean if X is a Hermitian matrix and
[
A X

X B

]
≥ 0, then X ≤ A#B.

Since
[

A −X
−X B

]
=
[
I 0
0 −I

] [
A X

X B

] [
I 0
0 −I

]

we have
[

A −X
−X B

]
≥ 0 if

[
A X

X B

]
≥ 0.

Hence ±X ≤ A#B. Then by [15, Lemma 2.1], |||X||| ≤ |||A#B|||. In contrast to this,

we do have that
[

A A1/2B1/2

B1/2A1/2 B

]
=
[
A1/2 0
B1/2 0

] [
A1/2 B1/2

0 0

]
≥ 0

but we have the opposite inequality |||A#B||| ≤ |||A1/2B1/2|||.

5. Among the several matrix versions of the arithmetic-geometric mean inequality proved

by Bhatia and Kittaneh [13] one says that 4|||AB||| ≤ |||(A + B)2|||. Using this and

Theorem 1 we have

|||A1/2B1/2||| ≤
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

(
A1/2 +B1/2

2

)2
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
(
Ap +Bp

2

)1/p
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ for p ≥ 1/2. (26)

For t = 1/2 this extends the chain of inequalities (13) in another direction.

6. In a recent paper [21] Matharu and Aujla have shown that

λ (A#tB) ≺log λ
(
A1−tBt

)
. (27)



NORM INEQUALITIES RELATED TO THE MATRIX GEOMETRIC MEAN 11

For their proof they use the Furuta inequality. The inequality (18) follows from this.

As a corollary these authors observe that

|||A#1/2B||| ≤ |||(B1/2AB1/2)1/2|||. (28)

In fact, from (27) one can deduce the stronger inequality (24). By IX.2.10 in [8] we

have for A,B positive definite and 0 ≤ t ≤ 1

|||BtAtBt||| ≤ |||(BAB)t|||.

So, the inequality (24) is stronger than (28). In turn, the latter inequality is stronger

than one proved by T. Kosem [19] who showed

|||(A#1/2B)2||| ≤ |||B1/2AB1/2|||.

This follows from (28) because the majorisation x ≺w y for positive vectors implies

x2 ≺w y2.

7. The third inequality in (13) can be derived from the arithmetic-geometric mean in-

equality of Bhatia-Davis [11]

|||A1/2XA1/2||| ≤
∣∣∣∣
∣∣∣∣
∣∣∣∣
1
2(AX +XA)

∣∣∣∣
∣∣∣∣
∣∣∣∣

valid for all X and positive definite A. There are several refinements of this inequality,

some of which involve different means (Heinz means, logarithmic means, etc.) Each

such result can be used to further refine (13).
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