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TRIVOLUTIONS

M. FILALI, M. SANGANI MONFARED, AND AJIT IQBAL SINGH

Abstract. We define a trivolution on a complex algebra A as a conjugate-linear, anti-

homomorphism τ on A, which is its own generalized inverse, that is, τ3 = τ . We

give several characterizations of trivolutions and show with examples that they appear

naturally on many Banach algebras, particularly those arising from group algebras. We

give several results on the existence or non-existence of involutions on the dual of a

topologically introverted space. We investigate conditions under which the dual of a

topologically introverted space admit trivolutions.

1. Introduction and preliminaries

By a well-known result of Civin and Yood [8, Theorem 6.2], if A is a Banach algebra

with an involution ρ : A −→ A, then the second (conjugate-linear) adjoint ρ∗∗ : A∗∗ −→
A∗∗ is an involution on A∗∗ (with respect to either of the Arens products) if and only if A

is Arens regular; when this is the case, ρ∗∗ is called the canonical extension of ρ. Grosser

[22, Theorem 1] has shown that if A has a bounded right [left] approximate identity, then

a necessary condition for the existence of an involution on A∗∗ with respect to the first

[second] Arens product is that A∗ ·A = A∗ [A ·A∗ = A∗]. The above results applied to the

group algebra L1(G) imply that a necessary condition for L1(G)∗∗ to have an involution

(with respect to either of the Arens products) is that G is discrete (Grosser [22, Theorem

2]), and the natural involution of L1(G) has a canonical extension to L1(G)∗∗ if and only

if G is finite (Young [33]).

In general, since A is not norm dense in A∗∗, an involution on A may have extensions

to A∗∗ which are different from the canonical extension. A necessary and sufficient

condition for the existence of such extensions does not seem to be known. However,

for the special case of the group algebra L1(G), Farhadi and Ghahramani [15, Theorem

3.2(a)] have shown that if a locally compact group G has an infinite amenable subgroup,

then L1(G)∗∗ does not have any involution extending the natural involution of L1(G).

(See also the related paper by Neufang [30], answering a question raised in [15].)

In Singh [32], the third author introduced the concept of α-amenability for a locally

compact group G. Given a cardinal α, a group G is called α-amenable if there exists

a subset F ⊂ L1(G)∗∗ containing a mean M (not necessarily left invariant) such that
1
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|F| ≤ α and the linear span of F is a left ideal of L1(G)∗∗. The group G is called

subamenable if G is α-amenable for some cardinal 1 ≤ α < 22
κ(G)

, where κ(G) denotes

the compact covering number of G (that is, the least cardinality of a compact covering

of G). It follows that 1-amenability of G is equivalent to the amenability of G, and α-

amenability implies β-amenability for every β ≥ α. IfG is a non-compact locally compact

group, then every non-trivial right ideal in L1(G)∗∗ or in LUC(G)∗ has a (vector space)

dimension of at least 22
κ(G)

(Filali–Pym [18, Theorem 5], and, Filali –Salmi [19, Theorem

6]). It follows from this lower bound that if G is a subamenable, non-compact, locally

compact group, then L1(G)∗∗ has no involution (Singh [32, Theorem 2.2]). Singh [32,

Theorem 2.9(i)] also showed that every discrete group G is a subgroup of a subamenable

discrete group Gσ with |Gσ| ≤ 2|G|. It is not known whether there exists any non-

subamenable group, and in particular, it remains an open question whether the free

group on 2 generators is subamenable.

All the above results show that the existence of involutions on second dual Banach

algebras impose strong conditions on A. So it seems natural to consider involution-

like operators on Banach algebras and their second duals. In this paper, we relax the

condition of bijectivity on an involution ρ and of ρ being its own inverse to that of ρ being

a generalized inverse of itself, namely, ρ3 = ρ, and call them trivolutions (Definition 2.1)

following the terminology of J. W. Degen [12]. It follows from the definition that every

involution is a trivolution, but as we shall show later there are many naturally arising

trivolutions which are not involutions.

In section 2 we start with a general study of trivolutions on algebras and we give

several characterizations of trivolutions in Theorem 2.3. In Theorem 2.9 we show that,

unlike involutions, a trivolution can have various extensions to the unitized algebra A],

and we give a complete characterization of all such extensions. We show concepts such

as hermitian, normal, and unitary elements, usually associated with involutions, can be

naturally defined in the context of trivoluted algebras. In section 3, we study involutions

on the dual of topologically introverted spaces. In Theorem 3.1 we extend the result

of Civin and Yood (discussed above) to the dual of a topologically introverted space,

and obtain the result of Farhadi and Ghahramani [15, Theorem 3.2(a)] as a corollary.

In Theorem 3.3 we investigate the relationship between the existence of topologically

invariant elements and the existence of involutions on the dual of a topologically intro-

verted space. As a corollary we show that under fairly general conditions, neither of the

Banach algebras PMp(G)∗ and UCp(G)∗, 1 < p < ∞, have involutions (for the definition

of these spaces see below as well as the discussion prior to Corollary 3.4). In section 4

we give some sufficient conditions under which a second dual Banach algebra A∗∗ admits
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trivolutions (Theorem 4.1). In Theorem 4.3 we show that for G non-discrete, L1(G)∗∗

does not admit any trivolutions with range L∞
0 (G)∗. However, the space L∞

0 (G)∗ itself

always admits trivolutions (Theorem 4.6).

We close this section with a few preliminary definitions and notation. Given a Banach

algebra A, the dual space A∗ can be viewed as a Banach A-bimodule with the canonical

operations:

〈λ · a, b〉 = 〈λ, ab〉, 〈a · λ, b〉 = 〈λ, ba〉,

where λ ∈ A∗ and a, b ∈ A. Let X be a norm closed A-submodule of A∗. Then given

Ψ ∈ X∗, λ ∈ X, we may define Ψ · λ ∈ A∗ by 〈Ψ · λ, a〉 = 〈Ψ, λ · a〉. If Ψ · λ ∈ X for all

choices of Ψ ∈ X∗ and λ ∈ X, then X is called a left topologically introverted subspace

of A∗. The dual of a left topologically introverted subspace X can be turned into a

Banach algebra if, for all Φ,Ψ ∈ X∗, we define Φ2Ψ ∈ X∗ by 〈Φ2Ψ, λ〉 = 〈Φ,Ψ · λ〉.
In particular, by taking X = A∗, we obtain the first (or the left) Arens product on

A∗∗, defined by Arens [1, 2]. The space X∗ can be identified with the quotient algebra

A∗∗/X◦, where X◦ = {Φ ∈ A∗∗ : Φ|X = 0}. If X is faithful (that is, a = 0 whenever

λ(a) = 0 for all λ ∈ X), then the natural map of A into X∗ is an embedding, and we will

regard A as a subalgebra of (X∗,2). The space X∗ has a canonical A-bimodule structure

defined by 〈a · Φ, λ〉 = 〈Φ, λ · a〉, 〈Φ · a, λ〉 = 〈Φ, a · λ〉 (Φ ∈ X∗, λ ∈ X, a ∈ A). One can

then verify that a · Φ = a2Φ, Φ · a = Φ2a for each a ∈ A and Φ ∈ X∗. We assume X∗

is equipped with the w∗-topology σ(X∗, X). In this topology, for each Φ ∈ X∗, the map

Ψ 7→ Ψ2Φ, X∗ −→ X∗, is w∗-continuous.

Right topologically introverted subspaces of A∗ are defined similarly; for these spaces

the second (or the right) Arens product on X∗ will be denoted by Φ3Ψ. A space which is

both left and right topologically introverted is called topologically introverted. When A is

commutative there will be no distinction between left and right topologically introverted

spaces.

Let A be a Banach algebra. The space of [weakly] almost periodic functionals on A,

denoted by [WAP (A)] AP (A), is defined as the set of all λ ∈ A∗ such that the linear

map A −→ A∗, a 7→ a · λ, is [weakly] compact. The spaces A∗, WAP (A), and AP (A)

are examples of topologically introverted spaces. The space of left uniformly continuous

functionals on A defined by LUC(A) = lin (A∗ · A) (the closure is in norm topology), is

an example of a left topologically introverted space. If G is a locally compact group, then

LUC(L1(G)) coincides with LUC(G), the space of left uniformly continuous functions

on G (cf. Lau [27]). For more information and additional examples one may consult

[10, 11, 13, 20, 26].
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If f : X −→ X is a map on a set X, for simplicity and when no confusion arises, we

write fn to denote the n-times composition of f with itself, that is, fn := f ◦ · · · ◦ f

(n-times). Also when no confusion arises, we write ΦΨ to denote the first Arens product

Φ2Ψ.

2. Trivolutions

Definition 2.1. A trivolution on a complex algebra A is a conjugate linear, anti-

homomorphism τ : A −→ A, such that τ 3 = τ . When A is a normed algebra, we

shall assume that ‖τ‖ ≤ 1. The pair (A, τ) is called a trivoluted algebra.

Remarks 2.2. (i) It follows from the definition that every involution is a trivolution. If

(A, τ) is a trivoluted normed algebra, then ‖τ(x)‖ ≤ ‖x‖ for every x ∈ A; in particular,

when τ is an involution, we have ‖τ(x)‖ = ‖x‖ for every x.

(ii) If (A, τ) is a trivoluted normed algebra, then τ(A) is closed subalgebra of A: if

(xn) is a sequence such that τ(xn) → x for some x ∈ A, then τ 3(xn) = τ(xn) → τ 2(x),

and hence x = τ 2(x) ∈ τ(A).

The next result gives several characterizations of trivolutions.

Theorem 2.3. Let A be a complex algebra, τ : A −→ A a map, and B := τ(A). Let IB

denote the set of all involutions on B. Then the following statements are equivalent.

(i) τ is a trivolution.

(ii) τ is a conjugate-linear, anti-homomorphism, and τ |B ∈ IB.

(iii) B is a subalgebra of A and there exists a surjective homomorphism p : A −→ B,

with p2 = p, and an involution ρ ∈ IB such that τ = ρ ◦ p.
(iv) B is a sublagebra of A, IB is non-empty, and for each ρ2 ∈ IB, there is a surjective

homomorphism ρ1 : A −→ B that satisfies τ = ρ2 ◦ ρ1 and ρ1 ◦ ρ2 ∈ IB.

The statements (i)–(iv) remain equivalent if A is a normed algebra provided that B is

assumed to be closed in A and the maps in (i)–(iv) are assumed to be contractive.

Proof. (i)=⇒ (ii): Since τ is a conjugate-linear, anti-homomorphism, it follows that B is

a subalgebra of A; moreover, the identity τ 3 = τ implies that (τ |B )2 is the identity map

on B, and therefore τ |B ∈ IB.

(ii) =⇒ (iii): B is a subalgebra of A since τ is a conjugate-linear anti-homomorphism.

Let ρ := τ |B and p := τ ◦ τ : A −→ B. We leave it for the reader to verify the easy facts

that τ = ρ ◦ p, and p and ρ satisfy the requirements in (iii).

(iii) =⇒ (iv): The first two statements of (iv) are immediate consequences of (iii). Let

ρ2 ∈ IB be given and define ρ1 := ρ2 ◦ τ. Then ρ1 is a surjective homomorphism from A
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to B and furthermore, ρ2◦ρ1 = ρ2◦ρ2◦τ = IB ◦τ = τ . Since ρ1◦ρ2 is a conjugate-linear,

anti-homomorphism on B, it remains to show that (ρ1 ◦ ρ2)2 = IB. To this end, we note

that from (iii) we have, for a in A,

τ 3(a) = ρ ◦ (p ◦ ρ) ◦ (p ◦ ρ) ◦ p(a) = ρ ◦ IB ◦ p(a) = τ(a), (1)

and therefore, (τ |B )2 = IB. From the last identity and the fact that ρ2 ∈ IB, it follows

that

(ρ1 ◦ ρ2)2 = ρ1 ◦ ρ2 ◦ ρ1 ◦ ρ2
= ρ2 ◦ τ ◦ ρ2 ◦ ρ2 ◦ τ ◦ ρ2
= ρ2 ◦ τ ◦ τ ◦ ρ2
= ρ2 ◦ ρ2 = IB,

completing the proof that ρ1 ◦ ρ2 ∈ IB.

(iv)=⇒ (i): Since τ = ρ2 ◦ ρ1, with ρ1, ρ2 as in (iv), it follows that τ is a surjective,

conjugate-linear anti-homomorphism. An argument similar to the proof of (1), shows

that τ 3 = τ ; hence τ is a trivolution. �

The following corollary follows from the definition of a trivolution and the equivalence

of (i) and (ii) in the above theorem.

Corollary 2.4. Let A be an algebra and τ be a trivolution on A. Then the following are

equivalent.

(i) τ is an involution;

(ii) τ is injective;

(iii) τ is surjective.

Corollary 2.5. Let A be a [normed] algebra and τ : A −→ A a map with B = τ(A).

Then τ is a trivolution if and only if there exist a [continuous] projection p of A onto B,

with p an algebra homomorphism, a [closed] two-sided ideal I of A, and an involution ρ

on B such that

A = I ⊕B, τ = ρ ◦ p. (2)

The vector space direct sum A = I ⊕ B is a topological direct sum if A is a Banach

algebra.

Proof. The corollary follows immediately from the equivalence of (i) and (iii) in Theorem

2.3 if we let I = ker p. The assertion that the direct sum A = I ⊕B is topological if A is

a Banach algebra follows from the fact that if p is a continuous projection then B = p(A)

is a closed subspace of A (cf. Conway [9, Section III.13]). �
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Next, we give a few examples of trivolutions.

Examples 2.6. (a) Let (X,µ) be a measurable space andK ⊂ X be a measurable subset

of X. Let L∞
K (X,µ) be the subalgebra of L∞(X,µ) consisting of all those functions which

vanish locally almost everywhere on X − K. Let χK be the characteristic function of

K and p : L∞(X,µ) −→ L∞
K (X,µ) be the homomorphism f 7→ χKf . If ρ is the usual

complex conjugation on L∞
K (X,µ), then p ◦ ρ = ρ, and hence by Corollary 2.5, the map

τ(f) := ρ ◦ p(f) = χKf defines a trivolution on L∞(X,µ).

(b) Let H be a Hilbert space, X a closed subspace of H, and P be the orthogonal

projection on X. Let M be a von Neumann algebra on H such that P ∈ M ′, where

M ′ is the commutant of M . Let N be the von Neumann subalgebra of M defined by

N = {PT : T ∈ M}. Let p : M −→ N , be defined by p(T ) = PT , and let ρ be the natural

adjoint map on N . In that case, p ◦ ρ = ρ, and by Corollary 2.5, τ(T ) := ρ ◦ p(T ) = PT ∗

defines a trivolution on M .

(c) Let A be a complex [normed] algebra, B a [closed] subalgebra of A, and I a

[closed] two-sided ideal of A, such that A is the vector space direct sum A = I ⊕B. Let

p : A −→ B be the natural projection on B, and let τ ′ : B −→ B be a trivolution. In

that case, τ := τ ′ ◦ p is a trivolution on A, since:

τ 3 = τ ′ ◦ (p ◦ τ ′)2 ◦ p = τ ′ ◦ τ ′2 ◦ p = τ ′ ◦ p = τ.

(d) Let τ be a trivolution on a Banach algebra A, X be a closed subalgebra of A∗∗.

Let τ ∗ : A∗ −→ A∗, be the conjugate-linear adjoint of τ defined by 〈τ ∗(f), a〉 = 〈f, τ(a)〉.
If X is invariant under τ ∗∗ and the two Arens products of A∗∗ agree on X, then τ ∗∗|X is

a trivolution on X. In particular, if A is Arens regular, then τ ∗∗ is a trivolution on A∗∗.

(e) The quotient of a trivoluted [normed] algebra by a two-sided [closed] ideal which

is invariant under the trivolution, is a trivoluted [normed] algebra. Finite products

of trivoluted [normed] algebras, the completion of a trivoluted normed algebra, and the

opposite of a trivoluted [normed] algebra, are all trivoluted [normed] algebras in canonical

ways.

Theorem 2.7. Let τ be an anti-homomorphism on an algebra A and let B = τ(A).

(i) If e ∈ B is a right identity of A, then τ(e) = e and e is the identity of B.

(ii) The set B can contain at most one right identity of A.

(iii) Let A be a subalgebra of an algebra C of the form eC with e being a right identity

of C. If τ is a trivolution on A, and if `e denotes the left multiplication map by e

on C, then τ1 := τ ◦ `e is a trivolution on C and τ1(C) = τ(A) = B.



7

Proof. (i) If a ∈ A, then a = ae and hence τ(a) = τ(e)τ(a), which shows that τ(e) is a

left identity for B. Since e ∈ B, e = τ(e)e = τ(e), proving that e = τ(e) and e is the

identity for B.

(ii) This is an immediate consequence of (i).

(iii) Since e is a right identity of C and B ⊂ A = eC, it follows that `e|B is the

identity map on B: in fact, given b ∈ B, we can write b = ec for some c ∈ C, and hence

`e(b) = e(ec) = ec = b. It follows that `e ◦ τ = τ , and hence

τ 31 = (τ ◦ `e)3 = τ ◦ (`e ◦ τ) ◦ (`e ◦ τ) ◦ `e = τ 3 ◦ `e = τ ◦ `e = τ1.

In addition, since e is a right identity of C, we have e(c1c2) = (ec1)(ec2), for all c1, c2 ∈ C.

Hence `e is a homomorphism on C which implies that τ1 = τ ◦ `e is a conjugate-linear,

anti-homomorphism, completing the proof that τ1 is a trivolution on C. The fact that

τ1(C) = B is now immediate. �

Remarks 2.8. (i) Similar results hold if a right identity is replaced by a left identity in

Theorem 2.7; we leave the formulation of the results and their proofs for the readers.

(ii) Let τ be a trivolution on A and let B = τ(A). If A has the identity e, then τ(e) is

the identity of B, which we may denote by eB. Clearly e = eB if and only if e ∈ B. This

however may not always be the case: let A = C2, B = C× {0}, and τ(z1, z2) = (z1, 0);

then e = (1, 1) but eB = (1, 0).

Next we consider the problem of extending a trivolution to the unitized algebra A] =

C× A. Let (A, τ) be a trivoluted algebra and τ ] : A] −→ A] be a trivolution extending

τ , namely, τ ](0, x) = (0, τ(x)), for all x ∈ A. If τ ](1, 0) = (λ0, x0), then, from conjugate

linearity of τ ] we obtain:

τ ](λ, x) = τ ](λ(1, 0) + (0, x)) = (λλ0, λx0 + τ(x)). (3)

If (λ0, x0) = (1, 0), then τ ](λ, x) = (λ, τ(x)). We call this map the canonical extension

of τ to A]. We note that by Theorem 2.7(i), the condition τ ](1, 0) = (1, 0) is equivalent

to (1, 0) being in the range of τ ], and the latter condition can be shown to be equivalent

to λ0 6= 0 and x0 ∈ τ(A).

While every involution has only the canonical extension to an involution on the unitized

algebra, the situation is different for trivolutions, as the following theorem shows.

Theorem 2.9. Let τ be a trivolution on a complex algebra A. The map τ ] in (3) is a

trivolution extending τ if and only if either of the following conditions hold:

(i) τ ](λ, x) = (λ, λx0 + τ(x)), where x0 ∈ A is such that

x2
0 = −x0, x0τ(A) = τ(A)x0 = {0}, τ(x0) = 0. (4)
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(ii) τ ](λ, x) = (0, λx0 + τ(x)), where x0 ∈ τ(A) is the identity of τ(A).

Proof. The proof, that both (i) and (ii) define trivolutions on A] extending τ , is routine

and is left for the reader. We prove the necessity part of the theorem. Using the

idempotence of (1, 0) we get

(λ0, x0) = τ ](1, 0) = τ ](1, 0)2 = (λ2
0, 2λ0x0 + x2

0),

which implies that either λ0 = 1 and x2
0 = −x0; or λ0 = 0 and x2

0 = x0. We consider

these two cases.

Case I: λ0 = 1 and x2
0 = −x0. In this case τ ](λ, x) = (λ, λx0 + τ(x)). Applying τ ] to

the identity (1, 0)(0, x) = (0, x), we obtain

(0, τ(x) + τ(x)x0) = (0, τ(x)),

which implies that τ(x)x0 = 0 for all x ∈ A. Similarly, starting from the identity

(0, x)(1, 0) = (0, x) we can show that x0τ(x) = 0 for all x ∈ A. Moreover it follows from

(τ ])3(1, 0) = τ ](1, 0), that

(1, x0 + τ(x0) + τ 2(x0)) = (1, x0),

which is equivalent to τ(x0) + τ 2(x0) = 0. Therefore

0 = x0τ(x0) = τ 2(x0)τ(x0) = −τ(x0)
2 = −τ(x2

0) = τ(x0).

Thus x0 satisfies all the conditions in (4).

Case II: λ0 = 0. In this case τ ](λ, x) = (0, λx0 + τ(x)). Applying τ ] to the identities

(1, 0)(0, x) = (0, x) and (0, x)(1, 0) = (0, x), we obtain respectively, τ(x)x0 = τ(x),

x0τ(x) = τ(x), for all x ∈ A. Moreover, from (τ ])3(1, 0) = τ ](1, 0), it follows that

x0 = τ 2(x0) ∈ τ(A). Thus x0 is the identity of τ(A). �

Corollary 2.10. Let (A, τ) be a trivoluted normed algebra and A] be the unitized algebra

with the norm ‖(λ, x)‖ = |λ| + ‖x‖. A map τ ] : A] −→ A], is a trivolution extending τ

if and only if either of the following conditions hold:

(i) τ ](λ, x) = (λ, τ(x));

(ii) τ ](λ, x) = (0, λx0 + τ(x)), where x0 ∈ τ(A) is the identity of τ(A) with ‖x0‖ = 1.

Proof. If τ ] is of the form given in Theorem 2.9(i), then τ ](λ, 0) = (λ, λx0) for all λ ∈ C.

Since we must have ‖τ ]‖ ≤ 1, we obtain |λ|+ |λ|‖x0‖ ≤ |λ|, implying that x0 = 0.

If however τ ] is of the form given in Theorem 2.9(ii), then τ ](λ, 0) = (0, λx0), for

all λ ∈ C. Hence the condition ‖τ ]‖ ≤ 1, implies that |λ|‖x0‖ ≤ |λ|, and therefore

‖x0‖ ≤ 1. �
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Remark 2.11. Let τ be an involution on a complex algebra A. Then τ(A) = A, and

hence any extension of τ of the form given in Theorem 2.9(i), is necessarily equal to

τ ](λ, τ(x)) = (λ, τ(x)), since x0τ(A) = 0 implies that x2
0 = 0 and hence x0 = 0 (as

x2
0 = −x0). It should be noted that if A has no identity, then τ has no extension of the

form given in Theorem 2.9(ii).

We can define the concepts of normality, hermiticity, and positivity for elements of

trivoluted algebras.

Definition 2.12. Let (A, τ) be a trivoluted algebra and let x ∈ A. Then x is called

(i) hermitian if τ(x) = x;

(ii) normal if xτ(x) = τ(x)x and xτ 2(x) = τ 2(x)x;

(iii) projection if x is hermitian and x2 = x;

(iv) unitary if A is unital with identity e and xτ(x) = τ(x)x = e;

(v) positive if x is hermitian and x = τ(y)y for some y ∈ A.

We denote the set of all hermitian (respectively, unitary, positive) elements of A, by

Ah (respectively, Au, A
+). It follows that Ah is a real vector subspace of A, and Au, is a

group under multiplication (the unitary group of A). It follows from the definition that if

x is hermitian, then x ∈ A+ if and only if x = zτ(z) for some z ∈ A. It should be noted

that for trivoluted algebras in general, A+ may not form a positive cone. Definition

of normality is designed to have the τ -invariant algebra generated by x (and therefore,

containing both τ(x) and τ 2(x)) commutative (since τ(x)τ 2(x) = τ(τ(x)x) = τ(xτ(x)) =

τ 2(x)τ(x)). If x is unitary in A, then by letting B = τ(A) and eB = τ(e), we see that

τ 2(x) is the inverse of τ(x) in B, and x ∈ B implies that e ∈ B (and e = eB). Thus,

e ∈ B if and only if B contains at least one unitary element.

Let (A, τ) be a trivoluted algebra and τ ∗ be the conjugate-linear adjoint of τ defined

in Example 2.6(d). If f : A −→ C is a linear functional on A, then f τ := τ ∗(f), is also a

linear functional on A. One can easily check that the map f −→ f τ , is conjugate-linear

and in general f τττ = f τ . If (A, τ) is normed, then ‖f τ‖ ≤ ‖f‖. We call f hermitian if

f τ = f . Clearly if χ is a character on A, then χτ is also a character on A.

We close this section by stating the following two results whose straightforward proofs

are omitted for briefness.

Theorem 2.13. Let (A, τ) be a unital trivoluted algebra and B = τ(A). Let x ∈ A.

(i) If x is invertible in A, then τ(x) is invertible in B and τ(x)−1 = τ(x−1).

(ii) If τ(x) is invertible in A, then τ(x) is invertible in B.

(iii) SpB(τ(x)) ⊂ SpA(x) (where the bar denotes the complex conjugate).
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Theorem 2.14. Let (A, τ) be a trivoluted algebra.

(i) x ∈ A can be written uniquely in the form x = x1 + ix2, with x1, x2 hermitian, if

and only if x ∈ τ(A).

(ii) f ∈ A∗ can be written uniquely in the form f = f1 + if2, with f1, f2 hermitian, if

and only if f ∈ τ ∗(A∗).

(iii) A linear functional f is hermitian if and only if f is real valued on Ah and it

vanishes on ker τ .

(iv) The map f −→ f |Ah
, is an isomorphism between the real vector space of all her-

mitian linear functionals and the dual vector space of the real space Ah.

3. Involutions on the dual of a topologically introverted space

The following theorem is an extension of a result of Civin and Yood [8, Theorem 6.2]

to the dual of a topologically introverted space.

Theorem 3.1. Let A be a Banach algebra and X, a faithful, topologically (left and right)

introverted subspace of A∗.

(i) If there is a w∗-continuous, injective, anti-homomorphism (with respect to either

of the Arens products) Θ: X∗ −→ X∗ such that Θ(A) ⊂ A, then the two Arens

products coincide on X∗.

(ii) Let θ : A −→ A be an involution on A and let θ∗ : A∗ −→ A∗ be its conjugate-

linear adjoint. If θ∗(X) ⊂ X and if the two Arens products coincide on X∗, then

Θ = (θ∗|X )∗ : X∗ −→ X∗, is an involution on X∗, extending θ.

Proof. (i) Let µ, ν ∈ X∗, and let (aα), (bβ) be two nets in A such that aα → µ, bβ → ν,

in the w∗-topology. Let us assume Θ is an anti-homomorphism with respect to the first

Arens product. Then Θ(αα) → Θ(µ), and Θ(bβ) → Θ(ν). Hence

Θ(µ2ν) = Θ(ν)2Θ(µ)

= w∗- lim
β

Θ(bβ)2Θ(µ)

= w∗- lim
β
(w∗- lim

α
Θ(bβ)2Θ(aα))

= w∗- lim
β
(w∗- lim

α
Θ(bβ)Θ(aα))

= w∗- lim
β
(w∗- lim

α
Θ(aαbβ))

= w∗- lim
β

Θ(µ3bβ)

= Θ(µ3ν).
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Since Θ is injective, µ2ν = µ3ν, which is we wanted to show.

The claim in (ii) follows by a similar argument as in (i). �

It is well known that the two Arens products coincide on WAP (A∗)∗ and AP (A∗)∗

(Dales–Lau [11, Proposition 3.11]). It is also straight forward to check that both of these

spaces are invariant under the conjugate-linear adjoint of any involution of A. Therefore

if either of these spaces is faithful (which is the case, for example, if the spectrum of

A separates the points of A; see Dales–Lau [11, p. 32]), then its dual has an involution

extending that of A. Hence as a corollary of the above theorem we obtain the following

result due to Farhadi and Ghaharamani ([15, Theorem 3.5]).

Corollary 3.2. Suppose that A is an involutive Banach algebra and X is either of the

topologically introverted spaces AP (A∗),WAP (A∗). If X is faithful, then X∗ has an

involution extending the involution of A.

Let X ⊂ A∗ be a faithful, topologically left introverted subspace of A∗. Let σ(A)

denote the spectrum of A and let ϕ ∈ σ(A) ∩ X. We call an element m ∈ X∗ a ϕ-

topological invariant mean (ϕ-TIM) if 〈m,ϕ〉 = 1 and a · m = m · a = ϕ(a)m for all

a ∈ A.

The following theorem is an extension of a result of Farhadi and Ghahramani [15,

Theorem 3.2(a)] (see the introduction) to the dual of topologically left introverted spaces.

Theorem 3.3. Let A be a Banach algebra and X ⊂ A∗ be a faithful, topologically left

introverted subspace of A∗. Let ϕ ∈ σ(A)∩X. If X∗ contains at least two ϕ-TIMs, then

X∗ cannot have an involution ∗ such that ϕ(a∗) = ϕ(a) for every a ∈ A,ϕ ∈ σ(A).

Proof. Let us suppose that X∗ has an involution as in the statement of the theorem. Let

m ∈ X∗ be an arbitrary ϕ-TIM. Then we have

a ·m∗ = m∗ · a = ϕ(a)m∗, (a ∈ A). (5)

To prove the above identities, we note that for every a ∈ A:

a ·m∗ = (m · a∗)∗ = (ϕ(a∗)m)∗ = (ϕ(a)m)∗ = ϕ(a)m∗.

The other identity in (5) is proved similarly. Using the w∗-continuity of the product

n2m on the variable n, it follows from (5) that

n2m∗ = 〈n, ϕ〉m∗, (n ∈ X∗). (6)

Thus using (6) and the fact that 〈m,ϕ〉 = 1, we get

m = (m∗)∗ = (m2m∗)∗ = m2m∗ = 〈m,ϕ〉m∗ = m∗. (7)
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Now if m1,m2 are two distinct ϕ-TIMs, then using (6) and (7), we have

m1 = m22m1 = (m22m1)
∗ = m∗

12m
∗
2 = m12m2 = m2;

which is a contradiction. �

To state a corollary of the above theorem, we first recall a few definitions. Let G

be a locally compact group, 1 < p < ∞, and L (Lp(G)) be the space of continuous

linear operators on Lp(G). Let λp : M(G) −→ L (Lp(G)), λp(µ)(g) = µ ∗ g, where

µ ∗ g(x) =
∫
G
g(y−1x) dµ(y), be the left regular representation of M(G) on Lp(G). The

space PMp(G) is the w∗-closure of λp(M(G)) in L (Lp(G)). This space is the dual of the

Herz–Figà-Talamanca algebra Ap(G), consisting of all functions u ∈ C0(G), such that

u =
∑∞

i=1 gi ∗ f̌i, where fi ∈ Lp(G), gi ∈ Lq(G), 1/p+1/q = 1, and
∑∞

i=1 ‖fi‖p‖gi‖q < ∞
(Herz [24]). When p = 2, A2(G) and PM2(G) coincide respectively, with the Fourier

algebra A(G) and the group von Neumann algebra V N(G) studied by Eymard in [14]. In

the following, for simplicity of notation, we denote UC(Ap(G)) by UCp(G); when p = 2,

this space is also denoted by UC(Ĝ) in the literature.

Corollary 3.4. Let 1 < p < ∞, G be a non-discrete locally compact group, and X =

PMp(G) or X = UCp(G). Then X∗ does not have any involution ∗ such that ϕ(u∗) =

ϕ(u) for every u ∈ Ap(G), ϕ ∈ σ(Ap(G)).

Proof. Let e ∈ G be the identity ofG, and ϕe ∈ σ(Ap(G))∩X be the evaluation functional

at e. Let TIM(X∗) denote the set of all ϕe-TIMs on X∗. Granirer [21, Theorem, p. 3400]

has shown that if G is non-discrete, then |TIM(X∗)| ≥ 2c, where c is the cardinality of

real numbers. Therefore our result follows from Theorem 3.3. �

Remark 3.5. For p = 2, the cardinality of TIM(PM2(G)) was determined for second

countable groups by Chou [7], and in full generality by Hu [25].

Let G be a locally compact group and LUC(G) the space of all left uniformly contin-

uous functions on G. It is known, and easy to verify, that the natural restriction map

π : L∞(G)∗ −→ LUC(G)∗ is a continuous algebra homomorphism (with respect to the

first Arens product). Using this fact we can prove the following analogue of Singh’s result

[32, Theorem 2.2] for the non-existence of involutions on LUC(G)∗. Our result extends

Farhadi–Ghahramani [15, Theorem 3.2(b)], from amenable to subamenable groups.

Theorem 3.6. If G is a non-compact subamenable group, then LUC(G)∗ has no invo-

lutions.
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Proof. Since G is subamenable, there exists a subset F of L∞(G)∗ containing a mean

m such that |F| < 22
κ(G)

, and the linear span of F is a left ideal J of L∞(G)∗. Since

π : L∞(G)∗ −→ LUC(G)∗ (defined above) is a continuous homomorphism, it follows that

π(J) is a non-trivial left ideal in LUC(G)∗ (π(J) is non-trivial since π(m) 6= 0). Since the

dimension of π(J) is less than or equal to the dimension of J , it follows that LUC(G)∗

has a non-trivial left ideal of dimension less that 22
κ(G)

. By Filali–Pym [18, Theorem 5],

if G is a non-compact locally compact group, every non-trivial right ideal of LUC(G)∗

has dimension at least 22
κ(G)

. It follows that for non-compact subamenable groups G,

LUC(G)∗ cannot have any involutions. �

4. Trivolutions on the duals of introverted spaces

In Corollary 3.4 and Theorem 3.6 we saw several examples of topologically left in-

troverted spaces X for which there can be no involution on X∗. Our objective in this

section is to consider some cases for which A∗∗ or X∗ admits trivolutions.

Theorem 4.1. Let A be Banach algebra with an involution θ. Then under each of the

following conditions, A∗∗ admits a trivolution.

(i) There exists a topologically introverted, faithful subspace X ⊂ A∗, such that the two

Arens products coincide on X∗, θ∗(X) ⊂ X, and A∗∗ = X◦ ⊕X∗.

(ii) A is a dual Banach algebra.

(iii) A has a bounded two-sided approximate identity and is a right ideal in (A∗∗,2).

Proof. (i) This follows from Theorem 3.1(ii) and Corollary 2.5.

(ii) Let A∗ be a predual of A, and consider the canonical Banach space decomposition

A∗∗ = (A∗)
◦ ⊕ A (cf. Dales [10, p. 241]). It is easy to verify that A∗ is a topologically

introverted subspace of A∗, and clearly the two Arens products coincide on (A∗)
∗ = A.

Hence (ii) follows from Corollary 2.5.

(iii) Since A has a bounded two-sided approximate identity we have the decomposition

A∗∗ ∼= (A∗ · A)◦ ⊕ (A∗ · A)∗; and since A is a right ideal in its second dual, we have

WAP (A∗) = A∗ ·A (cf. [3, Corollary 1.2, Theorem 1.5]). Therefore, A∗∗ ∼= WAP (A∗)◦⊕
WAP (A∗)∗. It is easy to check that under these conditions, WAP (A∗) is faithful, and

therefore our result follows by Corollaries 3.2 and 2.5 �

Next we study trivolutions on the Banach algebra L∞(G)∗, equipped with its first

Arens product 2. For simplicity of notation, in the following we shall denote E2F

by EF , whenever E,F ∈ L∞(G)∗. Let G be a locally compact group. If K ⊂ G is
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measurable and f ∈ L∞(G), let

‖f‖K = ess sup {|f(x)| : x ∈ K},

and let L∞
0 (G) be the closed ideal of L∞(G) consisting of all f ∈ L∞(G) such that for

given ε > 0, there exists a compact set K ⊂ G such that ‖f‖G\K < ε.

In [29, Theorems 2.7 and 2.8], Lau and Pym showed that L∞
0 (G) is a faithful, topo-

logically introverted subspace of L∞(G) and L∞(G)∗ is the Banach space direct sum

L∞(G)∗ = L∞
0 (G)◦ ⊕ L∞

0 (G)∗. (8)

In this decomposition L∞
0 (G)∗ is identified with the closed subalgebra of L∞(G)∗ defined

as the norm closure of elements in L∞(G)∗ with compact carriers (F ∈ L∞(G)∗ has

compact carrier if for some compact set K, F (f) = F (χKf) for every f ∈ L∞(G)). In

addition, Lau and Pym showed that if π : L∞(G)∗ −→ LUC(G)∗ is the natural restriction

map, then π(L∞
0 (G)∗) = M(G). Lau and Pym [29] make a case for the study of L∞

0 (G)∗

for general G (in place of L1(G)∗∗). In [31], the third named author has expressed L∞
0 (G)∗

as the second dual of L1(G) with a locally convex topology similar to the strict topology

(see also [23]). Let E (G) denote the set of all right identities of L∞(G)∗, and E1(G) the

set of those with norm one. In L∞(G)∗ when G is not discrete, there is an abundance of

such right identities, a fact noted and well-utilized in ([22], [29], [31], [15]), for instance.

For the convenience of our readers, we shall now state the following result of Lau and

Pym ([29], Theorems 2.3 and 2.11) which will be needed repeatedly in what follows. In

the following results all products are with respect to the first Arens product.

Theorem 4.2 (Lau–Pym). Let G be a locally compact group and let the map π : L∞(G)∗ −→
LUC(G)∗ be the natural restriction map. Then

(i) E1(G) ⊂ L∞
0 (G)∗.

(ii) For each E ∈ E (G), π
∣∣
EL∞(G)∗ is a continuous isomorphism from EL∞(G)∗ to

LUC(G)∗, and if ‖E‖ = 1, the isomorphism is an isometry.

(iii) For each E ∈ E1(G), L∞
0 (G)∗ = EL∞

0 (G)∗ + (kerπ ∩ L∞
0 (G)∗), and the algebra

EL∞
0 (G)∗ is isometrically isomorphic with M(G) via π.

Theorem 4.3. Let G be a non-discrete locally compact group and X and Y be subalgebras

of L∞(G)∗ with L∞
0 (G)∗ ⊂ Y ⊂ X. Then there are no trivolutions of X onto Y . In

particular, L∞(G)∗ has no trivolutions with range L∞
0 (G)∗.

Proof. If G is compact, then X = Y = L∞(G)∗, and hence any trivolution of X onto

Y is an involution on L∞(G)∗ (Corollary 2.4). Such an involution does not exist if G is

non-discrete by Grosser [22, Theorem 2].
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Let G be non-compact. To obtain a contradiction, let ρ be a trivolution from X onto

Y . By Theorem 4.2(i), E1(G) ⊂ Y . By Theorem 2.7(i), each E in E1(G) is the identity

for Y , and therefore, also the identity for L∞
0 (G)∗. But the identity for L∞

0 (G)∗ is clearly

in the topological centre of L∞
0 (G)∗ and so it belongs to L1(G) (cf. Budak–Işık–Pym[4,

Proposition 5.4]), which is not possible since G is not discrete. �

Theorem 4.4. The algebra L∞
0 (G)∗ has an involution if and only if G is discrete. Fur-

ther, if G is discrete, L∞(G)∗ has a trivolution with range L1(G), extending the natural

involution on L1(G).

Proof. If G is discrete, then L∞
0 (G)∗ = C0(G)∗ = L1(G) has a natural involution, and

hence by (8) and by Corollary 2.5, L∞(G)∗ has a trivolution with range L1(G), extending

the involution of L1(G)

If G is not discrete, then the result follows from Theorem 4.3 upon taking X = Y =

L∞
0 (G)∗. �

Theorem 4.5. If G is compact, then for each E ∈ E(G), there are trivolutions of L∞(G)∗

onto EL∞(G)∗.

Proof. Let E ∈ E (G). The compactness of G implies that L∞
0 (G) = L∞(G) and

LUC(G)∗ = M(G). Let ρ be any involution on LUC(G)∗ and let π′ = π
∣∣
EL∞(G)∗ .

It follows from Theorem 4.2(iii) that ρ′ := (π′)−1 ◦ ρ ◦ π′ is an involution on EL∞(G)∗.

Let `E : L∞(G)∗ −→ EL∞(G)∗ be the left multiplication by E. Then by Theorem 2.7(iii),

τ := ρ′ ◦ `E is a trivolution of L∞(G)∗ onto EL∞(G)∗, as required. �

Theorem 4.6. Let G be a locally compact group. For each E ∈ E1(G), there exists a

trivolution of L∞
0 (G)∗ onto EL∞

0 (G)∗.

Proof. By Theorem 4.2, E1(G) ⊂ L∞
0 (G)∗, and for each E ∈ E1(G), EL∞

0 (G)∗ ∼= M(G).

If ρ is an involution on M(G), then it is easily checked that ρ′ := (π
∣∣
EL∞

0 (G)∗ )
−1 ◦ ρ ◦

(π
∣∣
EL∞

0 (G)∗ ) is an involution on EL∞
0 (G)∗, and hence by Theorem 2.7(iii), τ := ρ′ ◦ `E is

a trivolution of L∞
0 (G)∗ onto EL∞

0 (G)∗. �

Remark 4.7. If ρ in the proofs of Theorems 4.5 or 4.6 restricts to an involution ρ0
on L1(G), then in view of the fact that π is the identity on L1(G), the trivolution τ

constructed in the respective proofs will be an extension of ρ0.
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