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Abstract

In the present article, a new nonparametric estimator of quantile density func-

tion is defined and its asymptotic properties are studied. The comparison of the

proposed estimator has been made with estimators given by Jones (1992), graphi-

cally and in terms of mean square errors for the uncensored and censored case.
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1 Introduction

In classical statistics, most of distributions are defined in terms of their cumulative

distribution function (cdf) or probability density function (pdf). There are some

distributions which do not have the cdf/pdf in an explicit form but a closed form

of the quantile function is available, for example Generalised Lambda distribution

(GLD) and Skew logistic distribution (Gilchrist (2000)). Karian and Dudewicz

(2000) showed the significance of different Lambda distributions for modelling fail-

ure time data. Quantile measures are less influenced by extreme observations.

Hence the quantile function can also be looked upon as an alternative to the distri-

bution function in lifetime data for heavy tailed distributions. Sometimes for those

distributions whose reliability measures do not have a closed or explicit form, the
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reliability characteristics can be represented through quantile function.

The quantile function approach is a useful tool in statistical analysis. It has been

used in exploratory data analysis, applied statistics, reliability and survival analy-

sis (See, for example, Reid (1981), Slud et al. (1984), Su and Wei (1993), Nair et

al. (2008), Nair and Sankaran (2009) and Sankaran and Nair (2009)). For a unified

study of this concept, one can refer to Parzen (1979), Jones (1992), Friemer et al.

(1998), Gilchrist (2000) and Nair and Sankaran (2009). The concept of quantiles

has been used by Peng and Fine (2007), Jeong and Fine (2009) and Sankaran et

al. (2010) for modelling competing risk models.

Let X be a non-negative continuous random variable that represents the life time of

a unit with cdf F (x), survival function S(x), the density function f(x) and failure

rate function h(x) = f(x)
S(x) . If X is censored by a non-negative random variable C,

then we observe T = min(X,C) and δ = I(X ≤ C) where I(.) is an indicator

function.

A quantile is simply the value that corresponds to a specified proportion of sample

or population (Gilchrist (2000)). Mathematically, it is defined as

Q(u) = F−1(u) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1

=⇒ F (Q(u)) = u.
(1.1)

Parzen (1979) and Jones (1992) defined the quantile density function as the deriva-

tive of Q(u), that is, q(u) = Q′(u). Note that the sum of two quantile density

functions is again a quantile density function.

Differentiating (1.1), we get

q(u) =
1

f(Q(u))
. (1.2)

Nair and Sankaran (2009) defined the hazard quantile function as follows:

H(u) = h(Q(u)) =
f(Q(u))

S(Q(u))
= ((1− u)q(u))−1.

Thus hazard rate of two populations would be equal if and only if their correspond-

ing quantile density functions are equal. This has been used to construct tests for

testing equality of failure rates of two independent samples. The results are being

reported elsewhere.

We propose a kernel type quantile density estimator. The kernel K(.) is a real

valued function satisfying the following properties:

(i) K(u) ≥ 0 for all u;

(ii)
∫∞
−∞K(u)du = 1;
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(iii) K(.) has finite support, that is K(u) = 0 for |u| > c where c > 0 is some

constant;

(iv) K(.) is symmetric about zero;

(v) K(.) satisfies Lipschitz condition, viz there exists a positive constant M such

that |K(u)−K(v)| ≤ M |u− v|.

Let X1, X2, . . . , Xn be independent and identically distributed random variables

from F (x). Jones (1992) proposed two smooth estimators of the quantile density

function. The first estimator was given as

qj1n (u) =
1

fn(Qn(u))
(1.3)

where fn(x) is a kernel density estimator of f(x) and Qn(u) is the empirical esti-

mator of quantile function Q(u).

Note that fn(x) =
1

nh(n)
Σn
i=1K

(x−Xi

h(n)

)
, where h(n) is the bandwidth and

Qn(u) = inf{x : Fn(x) ≥ u}, 0 ≤ u ≤ 1 .

Another estimator of quantile density function given by Jones (1992) is

qj2n (u) = Σn
i=2X(i)

(
Kh(n)(u− i− 1

n
)−Kh(n)(u− i

n
)
)

= Σn
i=2(X(i) −X(i−1))Kh(n)(u− i− 1

n
)−X(n)Kh(n)(u− 1) +X(1)Kh(n)(u)

(1.4)

where X(i) is the ithorder statistic, i=1,2,...,n.

In Section 2, we propose a smooth estimator of the quantile density function and

derive its asymptotic properties. In Section 3, three estimators of q(u) are com-

pared graphically. In Section 4, simulations have been carried out for comparing

the two estimators given by Jones (1992) and the estimator proposed by us.

2 Estimation of quantile density function

Based on data X1, X2, . . . , Xn, we propose a smooth estimator of the quantile

density function as

qn(u) =
1

h(n)

∫ 1

0

K( t−u
h(n))

fn(Qn(t))
dt (2.1)

where K(.) is a kernel and h(n) is the bandwidth sequence.
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(2.1) can also be written as

qn(u) =
1

h(n)

n∑
i=1

1

fn(X(i))

∫ Si

Si−1

K
( t− u

h(n)

)
dt

where Si is the proportion of observations less than or equal to X(i), the ith order

statistic.

In uncensored case, for small Si − Si−1, we use the mean value theorem to get

qn(u) =
1

nh(n)
Σn
i=1

K(Si−u
h(n) )

fn(X(i))
.

In case of censoring, we observe Ti = min(Xi, Ci), where Ci is the censoring vari-

able. For δi = I(Xi ≤ Ci), when data is of the form (Ti, δi), i = 1, 2..., n, the

estimator of quantile density function is given by

qcn(u) =
1

h(n)
Σn
i=1

1

fn(T(i))

∫ Si

Si−1

K
( t− u

h(n)

)
dt (2.2)

where

Si =


0 i = 0,

Fn(T(i)) i = 1, 2, ..., n− 1,

1 i = n,

and T(i) is the ith order statistic. In the presence of censoring, the proposed quan-

tile density estimator takes the form

qcn(u) =
1

h(n)
Σn
i=1

(Si − Si−1)K(Si−u
h(n) )

fn(T(i))
.

The following theorem proves a result that shall be used in the sequel.

Theorem 2.1. Let q(u) be the quantile density function corresponding to a density

function f(x) and qj1n (u) denote the estimator of q(u) given by Jones (1992). Then

supu |q
j1
n (u)− q(u)| → 0 as n → ∞.

Proof. We consider

qj1n (u) =
1

fn(Qn(u))

=
1

fn(Qn(u))− f(Q(u)) + f(Q(u))

=
1

f(Q(u))

[ 1

1 + fn(Qn(u))−f(Q(u))
f(Q(u))

]
.
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Using Binomial theorem,

qj1n (u) =
1

f(Q(u))

[
1− fn(Qn(u))− f(Q(u))

f(Q(u))
+

((fn(Qn(u))− f(Q(u)))2

f2(Q(u))

)
− . . . ]

(2.3)

Hence

qj1n (u)− q(u) =
−fn(Qn(u)) + f(Q(u))

f2(Q(u))
+

(fn(Qn(u))− f(Q(u)))2

f3(Q(u)

)
− ...

Writing Taylor series expansion of fn(Qn(u)) about Q(u), we have

fn(Qn(u)) = fn(Q(u))+(Qn(u)−Q(u))f
′
n(Q(u))+

(Qn(u)−Q(u))2f
′′
n (Q(u))

2!
+ ...,

assuming higher derivatives of fn exist.

Hence fn(Qn(u))− f(Q(u)) =

fn(Q(u))− f(Q(u)) + (Qn(u)−Q(u))f
′
n(Q(u)) +

(Qn(u)−Q(u))2f
′′
n (Q(u))

2!
+ ...

For n → ∞, supt|Qn(t)−Q(t)| → 0 (Serfling (1980)) and supt|fn(t)− f(t)| → 0,

(Prakasa Rao (1983)) which implies that fn(Qn(u))− f(Q(u)) → 0.

Hence supu|qj1n (u)− q(u)| → 0 as n → ∞.

The next thoerem proves consistency of the proposed estimator of the quantile

density function.

Theorem 2.2. For large n, supu|qn(u)− q(u)| → 0 where qn(u) given by (2.1) is

the proposed estimator of q(u), the quantile density function.

Proof. (2.1) gives the estimator of the quantile density function q(u) as

qn(u) =
1

h(n)

∫ 1

0

K( t−u
h(n))

fn(Qn(t))
dt.

Hence

qn(u)− q(u) =
1

h(n)

∫ 1

0

K( t−u
h(n))

fn(Qn(t))
dt− q(u)

=
1

h(n)

∫ 1

0

K( t−u
h(n))

fn(Qn(t))
dt− 1

h(n)

∫ 1

0

K( t−u
h(n))

f(Q(t))
dt+

1

h(n)

∫ 1

0

K( t−u
h(n))

f(Q(t))
dt− 1

f(Q(u))

=
1

h(n)

∫ 1

0
K
( t− u

h(n)

)[ 1

fn(Qn(t))
− 1

f(Q(t))

]
dt+

1

h(n)

∫ 1

0

K( t−u
h(n))

f(Q(t))
dt− 1

f(Q(u))
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=
1

h(n)

∫ 1

0
K
( t− u

h(n)

)[f(Q(t))− fn(Qn(t))

fn(Qn(t))f(Q(t))

]
dt+

1

h(n)

∫ 1

0

K( t−u
h(n))

f(Q(t))
dt− 1

f(Q(u))
.

Using Theorem 2.1, supt|qj1n (t)− q(t)| → 0 as n → ∞. Hence the above expres-

sion asymptotically reduces to

1

h(n)

∫ 1

0
K
( t− u

h(n)

)
[q(t)]2[f(Q(t))− fn(Qn(t))]dt+

1

h(n)

∫ 1

0

K( t−u
h(n))

f(Q(t))
dt− 1

f(Q(u))

=
1

h(n)

∫ 1

0
K
( t− u

h(n)

)
q(t)[f(Q(t))q(t)−fn(Qn(t))qn(t)]dt+

1

h(n)

∫ 1

0

K( t−u
h(n))

f(Q(t))
dt− 1

f(Q(u))
.

Since dF (Q(t)) = f(Q(t))q(t)dt, hence

qn(u)− q(u)

=
1

h(n)

∫ 1

0
K
( t− u

h(n)

)
q(t)[dF (Q(t))−dFn(Qn(t))]+

1

h(n)

∫ 1

0

K( t−u
h(n))

f(Q(t))
dt− 1

f(Q(u))
.

Writing K∗(u, t) = K( t−u
h(n))q(t) and integrating by parts in the first integral, we

get

qn(u)− q(u)

= 1
h(n)(K

∗(u, t))[F (Q(t))− Fn(Qn(t))]|10 − 1
h(n)

∫ 1
0 dK∗(u, t)[F (Q(t))− Fn(Qn(t))]

+
1

h(n)

∫ 1

0

K( t−u
h(n))

f(Q(t))
dt− 1

f(Q(u))
.

Since F (Q(0)) = Fn(Q(0)) and F (Q(1)) = Fn(Qn(1)) , hence the above expression

transforms to

1
h(n)

∫ 1
0 dK∗(u, t)[Fn(Qn(t))− F (Q(t))] +

1

h(n)

∫ 1

0

K( t−u
h(n))

f(Q(t))
dt− 1

f(Q(u))
.

Putting
t− u

h(n)
= v and using (1.2),

1

h(n)

∫ 1

0

K( t−u
h(n))

f(Q(t))
dt− 1

f(Q(u))
=

∫ 1−u
h(n)

−u
h(n)

K(v)q(u+ vh(n))dv − q(u) (2.4)

Using Taylor series expansion, we can write q(u+ vh(n)) = q(u)+ vh(n)q
′
(u)+ ...,

assuming higher derivatives of q(u) exist and are bounded.

Hence (2.4) can be written as

∫ 1−u
h(n)

−u
h(n)

K(v)(q(u)+vh(n)q
′
(u)+...)dv−q(u). (2.5)
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For n → ∞, h(n) → 0 and hence (2.5) converges to∫∞
−∞K(v)q(u)dv − q(u) which equals zero as

∫∞
−∞K(v)dv=1.

This gives

qn(u)− q(u) = 1
h(n)

∫ 1
0 dK∗(u, t)[Fn(Qn(t))− F (Q(t))]dt. (2.6)

Since supt |Fn(Qn(t))F (Q(t))| → 0 as n → ∞, hence supu|qn(u)− q(u)| → 0.

The following theorem proves asymptotic normality of the proposed estimator.

Theorem 2.3.
√
n(qn(u) − q(u)) is asymptotically normal with mean zero and

variance σ2(u) = n
(h(n))2

E(
∫ 1
0 dK∗(u, t)Fn(Qn(t)))

2.

Proof. Using (2.6), we have
√
n(qn(u)− q(u)) =

√
n

h(n)

∫ 1
0 dK∗(u, t)[Fn(Qn(t))− F (Q(t))]dt.

Using the result of Anderson et al. (1993), for 0 < u < 1,
√
n[Qn(u) − Q(u)] is

asymptotically normal with mean 0 and variance σ2
1(u) = (S(u))2

∫ u

0

−dS(t)

S(t)S∗(u)

where S∗(u) is the probability that a unit is alive and uncensored at time t.

Since d
duF (Q(u)) = 1,

√
n[Fn(Qn(u)) − F (Q(u))] is asymptotically normal with

mean zero and variance σ2
1(u).

Using Delta method and Slustky’s theorem (Serfling (1980)), we get that
√
n(qn(u)− q(u)) is asymptotically normal with mean zero and variance

σ2(u) = n
(h(n))2

E(
∫ 1
0 dK∗(u, t)Fn(Qn(t)))

2.

The expression of σ2(u) in the above theorem can’t be simplified analytically

and one can estimate it using bootstrapping.

3 Examples of Quantile Density Estimators

In this section, we consider two distributions Exp(1) and Generalised Lambda

(λ1, λ2, λ3, λ4). The corresponding quantile functions are QE(u) = −log(1 − u)

and QGL(u) = λ1 + (uλ3−(1−u)λ4 )
λ2

, where λ1 and λ2 are location and inverse

scale parameters, respectively and λ3 and λ4 jointly determine the shape (with

λ3 mostly affecting the left tail and λ4 mostly affecting the right tail). Though

the GLD is defined on the entire real line, we consider those choices of param-

eters that give support as (0,∞). For Exp(1), the quantile density function is
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qE(u) =
1

1−u , 0 < u < 1 and for GLD (λ1, λ2, λ3, λ4), the quantile density function

is qGL(u) =
(λ3u

λ3−1 + λ4(1− u)λ4−1)

λ2
, 0 < u < 1.

For finding the estimators, we consider two different types of kernels

(i) Triangular: K(u) = (1− |u|)I(|u| ≤ 1) and

(ii) Epanechnikov: K(u) = .75(1− u2)I(|u| ≤ 1).

Triangular kernel was used by Nair and Sankaran (2009) for studying non-parametric

estimators of the hazard quantile function and Epanechnikov kernel gives the

optimal kernel Prakasa Rao (1983). We are reporting the results for h(n) = .15.

Similar results were found for h(n)=.19 and .25 but are not being reported for

brevity.

The figures (1.1)-(1.4) show the original quantile density function q(u) and three

estimators qn(u), q
j1
n (u), qj2n (u) in uncensored case when the observations are from

Exp(1) and Triangular and Epanechikov kernels are used.

Fig.1.1 Fig.1.2

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5

h(n)=.15,n=50,kernel_Triangular

u

q

q_n(u)
q(u)
q_nj1
q_nj2

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

h(n)=.15,n=200,kernel_Triangular

u

q

q_n(u)
q(u)
q_nj1
q_nj2

Fig.1.3 Fig.1.4
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The figures (2.1)-(2.4) show the original quantile density function q(u) and

three estimators qcn(u), q
j1
n (u), qj2n (u) in censored case when observations follow

Exp(1) and censoring distribution is assumed to be Exp(.25) to ensure 20 percent

censoring.

Fig.2.1 Fig.2.2
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The figures (3.1)-(3.4) show the original quantile density function q(u) and three

estimators qn(u), q
j1
n (u), qj2n (u) in uncensored case when observations are from Gen-

eralised Lambda distribution with parameters λ1 = 1, λ2 = −1, λ3 = −1/8, λ4 =

−1/8 for both kernels.

Fig.3.1 Fig.3.2
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The figures (4.1)-(4.4) display q(u) and qcn(u), q
j1
n (u), qj2n (u) in censored case,

when the observations follow GLD(1,-1,-1/8,-1/8) and censoring distribution is

assumed to be Uniform(0,4.1) so that 20 percent censoring is ensured.
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From all the figures, we conclude that

(i) our newly proposed estimator is closer to the unknown quantile density func-

tion as compared to both estimators qj1n (u) and qj2n (u) proposed by Jones

(1992),

(ii) the choice of kernel is immaterial. Both the kernels give similar looking graphs

of estimators for both exponential and GLD distributions,

(iii) Jones (1992) gave only theoretical study of the estimators. These graphs

show that qj1n (u) is closer to the unknown q(u) as compared to qj2n (u),

(iv) our estimator and those given by Jones are away from the true quantile

density function for large values of u. This means that the estimators need

to be adjusted at the tails. qj2n (u) is observed to be the worst performer.

Some techniques used for correction in tails are mentioned in the concluding

section.

(v) the estimators get closer to the true quantile density function as sample size

increases,

(vi) for Generalised Lambda distribution, the three estimators are relatively close.

There are problems for small values of u,

(vii) even for the censored case, the estimators are closer to the unknown quantile

density function for n=200.

4 Simulation Results

In this section, we carry out simulations for comparing mean square error (MSEs)

of our proposed estimator with those of qj1n (u) and qj2n (u) proposed by Jones (1992).

We calculate the MSEs of these estimators by using bootstrap sampling technique

with 5000 bootstrap samples. The chosen bandwidths are .15, .19 and .25 and

sample size is 200. The Triangular and Epanechnikov kernels are used. The re-

sults are found using R package. For uncensored case, the underlying distribution

is assumed to be Exp(1). For GLD, the choice of parameteric values is as given

in Section 3. This has been done in order to get positive values of the generated

random variable. The validity of the chosen parameters has been checked using

the package fbasics(gld) in R.
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Table 3.1 gives the values of MSEs for Exp(1) distribution for n= 200. The values

in the brackets give MSEs for Epanechnikov kernel and the other values are for

Triangular kernel.

Table 3.1 MSEs for Triangular (Epanechnikov) kernel, n=200, Exp(1)

h(n)

u estimate .15 .19 .25

.2 qn(u) 0.0753(0.0329) 0.0222(0.1828) 0.0226(0.0882)

qj1n (u) 0.1438(0.0341) 0.0453(0.1792) 0.0199(0.0254)

qj2n (u) 0.1221(0.0464) 0.0392(0.1514) 0.0234(0.0536)

.4 qn(u) 0.1219(0.0756) 0.0562(0.0672) 0.0664(0.1730)

qj1n (u) 0.1633(0.1410) 0.0864(0.1367) 0.1537(0.5008)

qj2n (u) 0.1269(0.1099) 0.0558(0.0806) 0.1126(0.2346)

.6 qn(u) 0.1848(0.0968) 0.1458(0.1123) 0.0868(0.5317 )

qj1n (u) 0.6358(0.3375) 0.6659(0.3067) 0.7477(0.5177)

qj2n (u) 0.3395(0.1179) 0.2901(0.1155) 0.1989(0.6395)

.8 qn(u) 0.5504(0.4865) 0.2872(0.3592) 0.2520(4.7515)

qj1n (u) 4.6744(4.2817) 3.2896(2.2621) 4.5683(1.3512 )

qj2n (u) 1.9648(1.5185) 1.0768(0.6908) 3.8116(3.5122)

.9 qn(u) 2.0676(1.4213) 7.2984(5.7775) 8.4150(2.4611)

qj1n (u) 28.8638(33.3130) 27.4051(24.6925) 11.9094(37.637)

qj2n (u) 36.4881(54.2897) 98.48(128.592) 116.281 (149.3)

The following table is for GLD (λ1 = 1, λ2 = −1, λ3 = −1/8, λ4 = −1/8).

Table 3.2 MSEs for Triangular (Epanechnikov) kernel and n=200, GLD(1,-1,-1/8,-1/8)

h(n)

u estimate .15 .19 .25

.2 qn(u) 0.0532(0.0586) 0.0242(0.0237) 0.0304(1.2604)

qj1n (u) 0.1516(0.0960) 0.0374(0.1126) 0.1560(0.2987)

qj2n (u) 0.0522(0.0650) 0.0326(0.0335) 0.0736(0.1510)

.4 qn(u) 1.2049(1.0868) 1.1482(1.0886) 0.9185(1.3451)

qj1n (u) 1.2417(1.1382) 0.4704(1.1483) 0.9710(0.1499)

qj2n (u) 1.2447(1.1835) 1.2701(1.2434) 1.0613(0.1942)

.6 qn(u) 3.7274(3.5064) 3.6923(3.4799) 3.0358(0.0157)

qj1n (u) 3.7833(3.5871) 1.4812(3.5639) 3.1598( 0.2219)

qj2n (u) 3.8205(3.5324) 3.8532(3.6032) 3.1089(0.0314)

.8 qn(u) 16.6397(15.5172) 15.9542(14.694) 10.0711(14.694)

qj1n (u) 17.0570(16.2006) 6.7417(16.22454) 15.3410(8.6574)

qj2n (u) 16.0456(15.0820) 15.1303(13.3583) 21.4279(23.6571)

.9 qn(u) 59.1509(56.6860) 63.2191(50.0144) 52.1443(61.9908)

qj1n (u) 74.0821(69.3978) 28.541( 71.904) 61.213 (63.469)

qj2n (u) 131.776(155.959) 148.514(164.307) 144.773(178.68)
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When the observations follow Exp(1) distribution, we take the censoring distribu-

tion as Exp(.25). This ensures that 20 percent of the data is censored. When the

observations follow Generalised Lambda with parameters λ1 = 1, λ2 = −1, λ3 =

−1/8, λ4 = −1/8, the censoring distribution Uniform(0,4.1) ensures 20 percent cen-

soring. Tables 3.3 and 3.4 report the MSEs of qcn(u), q
j1
n (u) and qj2n (u) for Exp(1)

and GLD distribution respectively

Table 3.3 MSEs for Triangular (Epanechnikov) kernel, n=200

h(n)

u estimate .15 .19 .25

.2 qcn(u) 0.0060(0.1244) 0.00003( 0.011) 0.0006(0.0269)

qj1n (u) 0.0584(0.3152) 0.0810(0.1540) 0.0435(0.0295)

qj2n (u) 0.0480(0.3451) 0.0763(0.1644) 0.0668(0.0518)

.4 qcn(u) 0.0015(0.0354) 0.0622(0.0889) 0.0067(0.0010)

qj1n (u) 0.1145(0.2072) 0.3550(0.3111) 0.2186(0.3305)

qj2n (u) 0.0661(0.0570) 0.3215(0.2633) 0.1527(0.2532)

.6 qcn(u) 0.0002(0.1095) 0.1759(0.0037) 0.0023(0.3975)

qj1n (u) 0.7925(0.5516) 0.7615(0.8331) 0.4849(0.5872)

qj2n (u) 0.2228(0.4045) 0.5524(0.3999) 0.1230(0.1986)

.8 qcn(u) 0.2098(0.2511) 0.0004(0.0010) 0.8528(3.8652)

qj1n (u) 3.4570(3.9458) 5.9596(3.1700) 2.6181(2.7327)

qj2n (u) 0.6548(1.3919) 0.9848(1.0021) 4.7585(3.8531)

.9 qcn(u) 7.5869(14.1619) 8.3516(9.9614) 1.9265(6.1782)

qj1n (u) 28.3032(23.3419) 23.2899(19.6989) 28.4622(18.481)

qj2n (u) 56.2880(71.9684) 99.5988(98.0264) 119.118(112.89)

Table 3.4 MSEs for Triangular (Epanechnikov) kernel, n=200

h(n)

u estimate .15 .19 .25

.2 qcn(u) 0.16186(0.2040) 0.3569(0.3620) 0.8398(1.3901)

qj1n (u) 0.1950( 0.2523) 0.1803(0.2055) 0.1644(0.1669)

qj2n (u) 0.4579(0.3880) 0.5917(0.4799) 0.6309(0.6873)

.4 qcn(u) 0.7828(0.4690) 0.7298(0.4943) 0.6638(0.6296)

qj1n (u) 0.6959(0.6397) 0.6868(0.6491) 0.6632(0.6466)

qj2n (u) 0.6217(0.5623) 0.6145(0.5485) 0.5711(0.5511)

.6 qcn(u) 3.3586(3.5921) 3.2812(3.3630) 3.1353(3.0568)

qj1n (u) 3.2500(3.5421) 3.2020(3.4300) 3.1026(3.0473)

qj2n (u) 3.2002(3.5994) 3.2214(3.5361) 3.1978(3.1878)

.8 qcn(u) 16.875(17.0534) 15.2707(16.2932) 11.2619(9.0418)

qj1n (u) 17.5286(18.3496) 17.2305(18.0225) 16.9206(16.6974)

qj2n (u) 17.0753(17.7818) 15.4134(16.6909) 25.4494(29.2862)

.9 qcn(u) 50.9776(70.1115) 49.8754(73.8416) 52.3556(48.7843)

qj1n (u) 75.8818(78.2903) 75.9366(79.1654) 75.998(75.955)

qj2n (u) 131.485(156.797) 148.0253(164.663) 151.405(159.924)
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From the tables, we conclude that

(i) in majority of the cases, the MSEs for qn(u) and qcn(u) are smaller than those

of qj1n (u) and qj2n (u),

(ii) the MSEs increase with an increase in u for all cases,

(iii) the MSEs decrease as the sample size increases,

(iv) the MSEs for the censored case are more than those in uncensored case,

(v) none of the two kernels give a uniformly better result than the other. For

some cases, the MSE is smaller for the Triangular kernel and for others, it is

smaller for Epanechikov kernel,

(vi) for u in the tails (u=0.9), the MSEs for qj2n (u) are much higher than those of

qj1n (u), qn(u) and qcn(u),

(vii) the estimator is not performing well in the tails.

5 Conclusions

This article proposes a smooth estimator of the quantile density function under

censored and uncensored models. The proposed estimator is consistent and asymp-

totically follows normal distribution. The estimator is compared with those given

by Jones (1992) via graphs and MSEs. For most of the cases, the proposed esti-

mator gives smaller MSEs in censored and uncensored case as compared to Jones

(1992) estimators, when the underlying distributions are Exponential and Gener-

alised Lambda. The figures show that our estimators qn(u) and qcn(u) are closer to

the unknown quantile density function q(u).

The estimator of the quantile density function proposed here is not good at the

tails. Several solutions for correction at tails have already been proposed in litera-

ture. Some of these are reflection method proposed by Silverman (1986) and Cline

and Hart (1991), the boundary kernel method by Gasser, Miller and Mammitzsch

(1985), Jones (1993), Zhang and Karunamuni (2000), the transformation method

by Marron and Ruppert (1994), the local linear method by Loader (1996), Hjort

and Jones (1996) and Wand and Jones (1998). We propose to work on modification

of our estimator at the tails in future.

Parzen (2004) defined the conditional quantile as
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QY/X(u) = inf{x : FY/X(y) ≥ u}, 0 ≤ u ≤ 1, where FY/X(y) is the conditional

distribution function corresponding to the random vector (X,Y ). For functional

data, Ferraty and Vieu (2006) have discussed the estimation of conditional quantile

function. The definition of conditional quantile implies that FY/X(QY/X(u)) = u.

On differentiating partially w.r.t u, we get

fY/X(QY/X(u)) ∂
∂u(QY/X(u)) = 1.

Hence the conditional quantile density function can be written as

qY/X(u) =
∂

∂u
(QY/X(u)) (Ref. Xiang (1995))

=
1

fY/X(QY/X(u))
.

The estimation of the conditional quantile density function can be done on

similar lines as for q(u), the quantile density function.
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