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Abstract

In this paper, we prove a conjecture of Yakubovich regarding limit shapes of

“slices” of two-dimensional (2D) integer partitions and compositions of n when

the number of summands m ∼ Anα for some A > 0 and α < 1
2 . We prove that

the probability that there is a summand of multiplicity j in any randomly chosen

partition or composition of an integer n goes to zero asymptotically with n provided

j is larger than a critical value. As a corollary, we strengthen a result due to Erdös

and Lehner [4] that concerns the relation between the number of integer partitions

and compositions when α = 1
3 .
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1 Introduction

1.1 Integer Partitions

Let n ≥ 1 be any integer and let n = a1 + a2 + .... + am for some m ≥ 1 and some

positive integers {ai}mi=1. We define the set {a1, ..., am} to be a partition of n into m

summands. Let p(n) denote the total number of partitions of n without any restriction

on the number of summands. By the Hardy-Ramanujan asymptotic formula [1] for p(n),

we have that

p(n) ∼ (4n
√
3)−1e

2π√
6

√
n
. (1.1)

Throughout the paper, we write an ∼ bn for two sequences an and bn if limn→∞
an
bn

= 1.

Analogous formulas have been derived in [5] for the number of partitions pm(n) of an

integer n into m summands where m = mA,α is related to n as

m ∼ Anα (1.2)

for some positive constant A and 0 < α < 1
2
. Henceforth, unless otherwise mentioned,

the integer m will always be related to n as in (1.2). The notion of randomness of an

integer partition was first introduced in [4] to study of the multiplicity of summands of

a given partition. Suppose we define the probability space (Ω,F ,Pn,m) where Ω denotes

the set of all partitions of n into m summands, F is the collection of all subsets of Ω and

for ω ∈ Ω, we let Pn,m(ω) =
1

pm(n)
. If B(n,m) denotes the event that there is a repeated

summand in any such randomly chosen partition, then the main result in [4] states that

that Pn,m(B(n,m)) → 0 as n → ∞ for α = 1
3
. In other words, the probability that there

is a summand of multiplicity two or larger in any randomly chosen partition of n into m

summands is very small if m ∼ An
1
3 .

In [6] the above result has been generalized by considering limit shapes of slices of

integer partitions. More precisely, let qk = qk,m,n denote the number of summands of

value k in any integer partition of n into m summands. For a positive integer j and

t ≥ 0, we define

φj(t) =
∑
k>t

11(qk = j) (1.3)

where 11(E) denotes the indicator function of the event E. Thus φj(t) denotes the number

of summands larger than t that have multiplicity j. Our definition of φj(.) differs from [6]

by a factor of j. In (1.2), we let α ≥ 1
3
be such that

jα =
1− α

1− 2α
(1.4)
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is an integer. We have the following result which is the second part of Theorem 2 of [6].

Theorem. [6] Let ε > 0 be fixed. For 1 ≤ j < jα, we have

Pn,m

(∣∣∣∣ nj−1

m2j−1
φj

(
nt

m

)
− e−jt

j

∣∣∣∣ > ε

)
−→0

as n → ∞. For j > 2−α
1−2α

we have that

Pn,m (φj(t) > ε) −→ 0

as n → ∞.

For the range jα ≤ j ≤ 2−α
1−2α

, the limiting behaviour is stated as a conjecture which

we prove as the following theorem.

Theorem 1. Let j ≥ 1 and l ≥ 0 be fixed integers.

(a) If j = jα and s = A2j−1e−jt

j
, then

Pn,m

{
φj

(
nt

m

)
= l

}
−→ sl

l!
e−s

as n → ∞.

(b) If j ≥ jα + 1, then for ε > 0, we have

Pn,m (φj(t) > ε) −→ 0

as n → ∞.

1.2 Integer Compositions

Let n ≥ 1 be any integer and let n = a1 + a2 + .... + am for some m ≥ 1 and some

positive integers {ai}mi=1. We define the m−tuple (a1, ..., am) to be a composition of n

into m summands. Thus (1, 1, 3) and (3, 1, 1) are distinct compositions of the integer 5

into 3 summands. We define random compositions on the probability space (Ω̃, F̃ , P̃n,m)

where Ω̃ denotes the set of all compositions of n into m summands, F̃ is the collection of

all subsets of Ω̃ and P̃n,m(A) denotes the probability of occurrence of event A in the set

of all compositions of n into m summands assuming each composition is equally likely.

Analogous to φj(t) in (1.3), we define

φ̃j(t) =
∑
k>t

11(q̃k = j)
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with q̃k denoting the number of summands of value k in any composition of n into m

summands. Letting jα be as defined in (1.4), we have the following result which is

Theorem 3 of [6].

Theorem. [6] Let ε > 0 be fixed. For 1 ≤ j < jα, we have

P̃n,m

(∣∣∣∣ nj−1

m2j−1
φ̃j

(
nt

m

)
− e−jt

j!j

∣∣∣∣ > ε

)
−→0

as n → ∞. For j > 2−α
1−2α

we have that

P̃n,m

(
φ̃j(t) > ε

)
−→ 0

as n → ∞.

For the range jα ≤ j ≤ 2−α
1−2α

, the limiting behaviour is stated as a conjecture which

we prove as the following theorem.

Theorem 2. Let j ≥ 1 and l ≥ 0 be fixed integers.

(a) If j = jα and s̃ = A2j−1e−jt

j!j
, then

P̃n,m

{
φ̃j

(
nt

m

)
= l

}
−→ e−s̃ s̃

l

l!

as n → ∞.

(b) If j ≥ jα + 1

P̃n,m

(
φ̃j(t) > ε

)
−→ 0

as n → ∞ for every ε > 0.

The paper is organized as follows: In Section 2 we prove Theorem 1 and in Section 3

we prove Theorem 2. Finally, in Section 4, we present our conclusion.

2 Proof of Theorem 1

In what follows, Z denotes the set of integers. For positive integers r and j, define Cr,j

to be the event that the number r occurs exactly j times in the partition of n into m

summands. For any fixed integer k ≥ 1 and a real number t ≥ 0 we define tn = nt
m
,

A(q) = An,k(q) = {(r1, r2, .., rk) ∈ Zk : tn < r1 < r2 < ... < rk ≤ q},
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and

Ã(q) = Ãn,k(q) = {(r1, r2, .., rk) ∈ Zk : tn < r1, r2, ..., rk ≤ q}.

Let

Sk,j = Sk,j(t;n) =
∑
A(n)

Pn,m(∩k
l=1Crl,j). (2.1)

To prove Theorem 1, it suffices to prove the following Proposition.

Proposition 1. For j ≥ jα + 1, we have that

S1,j(0;n) −→ 0 (2.2)

as n → ∞. For j = jα and for any fixed integer k ≥ 1, we have that

Sk,jα(t;n) −→
sk

k!
(2.3)

as n → ∞, where s is as in Theorem 1.

Before we prove Theorem 1, we need the following result. The proof is analogous to

the proof of Corollary 3 (pp. 34) of [3].

Let A1, ..., An be any sequence of events. For a fixed k ≥ 1, let

Tk =
∑

1≤i1<i2<...<ik≤n

Pr(Ai1Ai2 ...Aik).

For any fixed integers l, l′ ≥ 1, we have that

2l′+l−1∑
i=l

(−1)i−l

(
i

l

)
Ti ≤ Pr(exactly l of A1, ..., An occur)

≤
2l′+l∑
i=l

(−1)i−l

(
i

l

)
Ti. (2.4)

Proof of Theorem 1 (assuming Proposition 1): (b) Let j ≥ jα + 1 be fixed. From (1.3)

we get that

Pn,m(φj(0) > 0) = Pn,m(∪n
r=1Cr,j) ≤

n∑
r=1

Pn,m(Cr,j) = S1,j(0;n) −→ 0

as n → ∞. In other words, the probability that a summand of multiplicity larger than

jα occurs in a partition of n into m summands converges to zero as n → ∞.
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(a) Fix two integers l, l′ ≥ 1 and let j = jα. From (1.3) we have that φj(tn) = l if

and only if exactly l of C[tn]+1,j, ..., Cn,j occur. We use (2.4) to obtain that for any n,

2l′+l−1∑
i=l

(−1)i−l

(
i

l

)
Si,j(t;n) ≤ Pn,m(φj(tn) = l) ≤

2l′+l∑
i=l

(−1)i−l

(
i

l

)
Si,j(t;n),

where Si,j(.; .) is as defined in (2.1). Allowing n → ∞, we use Proposition 1 to obtain

that

2l′+l−1∑
i=l

(−1)i−l

(
i

l

)
si

i!
≤ lim inf

n
Pn,m(φj(tn) = l)

≤ lim sup
n

Pn,m(φj(tn) = l) ≤
2l′+l∑
i=l

(−1)i−l

(
i

l

)
si

i!
.

Allowing l′ → ∞, we get that

e−s s
l

l!
≤ lim inf

n
Pn,m(φj(tn) = l) ≤ lim sup

n
Pn,m(φj(tn) = l) ≤ e−s s

l

l!
.

This proves (a) of Theorem 1.

The rest of the section is devoted to the proof of Proposition 1. In what follows,

we let Br,j = Br,j(m,n) to be the event that the number r occurs at least j times in a

partition of n into m summands. Let 1
3
≤ α < 1

2
be as in (1.2) and fix any β ∈ (0, 1)

such that

max
(
3α− 1,

α

2

)
< β < α. (2.5)

and let vn = n1−β,

β1 = β + 1− 3α, β2 = α− β, β3 = 2β − α and β0 = min

(
β1, β2, β3,

1

12

)
. (2.6)

Finally, choose θ < 1−2α
α

so that

m2+θ

n
−→ 0 (2.7)

as n → ∞.

We use the following facts repeatedly in the proofs below. The positive integers

d, {jl}dl=1 and the positive numbers {αi}di=1 are fixed. For all sufficiently large n, the

following relations hold. The proofs are in the Appendix.

6



(A1)
∏d

i=1

(
1 +O

(
1

nαi

))ji = 1 +O
(

1
nα0

)
where α0 = min(α1, α2, ..., αd).

(A2) 1
nβ = O

(
1

nβ0

)
.

(A3) 1
(n−j1r)γ

= 1
nγ

(
1 +O

(
1
nβ

))
= 1

nγ

(
1 +O

(
1

nβ0

))
for any fixed γ > 0 and for all

r ≤ j2vn.

(A4) m
n
= O

(
1
m

)
= O

(
m2

n

)
= O

(
1

n1−2α

)
= O

(
1

nβ0

)
.

(A5) m2jα−1

njα−1 = A2jα−1(1 + o(1)) ≤ 2A2jα−1.

The proof of Proposition 1 follows from the following three lemmas.

Lemma 1. Let j ≥ 1 and k ≥ 1 be any two fixed integers. We have that

0 ≤
∑
A(vn)

Pn,m(∩k
l=1Brl,j)−

∑
A(vn)

Pn,m(∩k
l=1Crl,j) = O

(
m2

n

)k(j−jα)+1

.

Lemma 2. Let j ≥ 1 and k ≥ 1 be any two fixed integers. We have that∑
A(vn)

Pn,m(∩k
l=1Brl,j) =

1

k!

(
e−jt

j

)k (
m2j−1

nj−1

)k (
1 +O

(
1

nβ0

))
.

Lemma 3. Let j ≥ 1 and k ≥ 1 be any two fixed integers. We have that

0 ≤
∑
A(n)

Pn,m(∩k
l=1Brl,j)−

∑
A(vn)

Pn,m(∩k
l=1Brl,j) ≤ e−

A
8
nβ2 .

Proof of Proposition 1 (assuming Lemmas 1-3): To prove (2.2), we let k = 1 and

t = 0. Thus tn = nt
m

= 0 and A(q) = Ã(q) = {r : 1 ≤ r ≤ q} where A(.) and Ã(.) are as

defined in the equation preceding (2.1). Since Cr,j ⊆ Br,j, we have that∑
A(n)

Pn,m(Cr,j) =
∑

1≤r≤n

Pn,m(Cr,j) ≤
∑

1≤r≤n

Pn,m(Br,j) = I1 + I2

where I1 =
∑

1≤r≤vn
Pn,m(Br,j) =

∑
A(vn)

Pn,m(Br,j) and I2 =
∑

vn≤r≤n Pn,m(Br,j) =∑
A(n) Pn,m(Br,j)−

∑
A(vn)

Pn,m(Br,j). From Lemma 2, we have that for sufficiently large

n,

I1 =
e−tj

j

(
m2j−1

nj−1

)(
1 +O

(
1

nβ0

))
≤ 2

e−tj

j

(
m2j−1

nj−1

)
= 2

e−tj

j

(
m2jα−1

njα−1

)(
m2

n

)j−jα

≤ 4
e−tj

j
A2jα−1

(
m2

n

)j−jα

. (2.8)
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In the last inequality above, we have used (A5). Also,
(

m2

n

)j−jα
= O

(
m2

n

)
since j ≥

jα + 1. We therefore have that

I1 = O

(
m2

n

)
−→ 0

as n → ∞. From Lemma 3, we have that

I2 ≤ e−
Anβ2

8 .

From (2.1), we therefore have that

S1,j(0;n) =
∑

1≤r≤n

Pn,m(Cr,j) ≤ I1 + I2 −→ 0

as n → ∞. This proves (2.2).

To prove (2.3), we write Sk,jα =
∑

A(n) Pn,m(∩k
l=1Crl,jα) = S1 − S2 + S3 where S1 =∑

A(vn)
Pn,m(∩k

l=1Brl,jα),

S2 =
∑
A(vn)

Pn,m(∩k
l=1Brl,jα)−

∑
A(vn)

Pn,m(∩k
l=1Crl,jα)

and

S3 =
∑
A(n)

Pn,m(∩k
l=1Crl,jα)−

∑
A(vn)

Pn,m(∩k
l=1Crl,jα).

From Lemma 2 and (A5) we have that

S1 =
1

k!

(
e−jαt

jα

)k (
m2jα−1

njα−1

)k (
1 +O

(
1

nβ0

))
=

1

k!

(
e−jαt

jα

)k (
A2jα−1(1 + o(1))

)k (
1 +O

(
1

nβ0

))
=

sk

k!
(1 + o(1))

(
1 +O

(
1

nβ0

))
−→ sk

k!

as n → ∞ where s is as defined in Theorem 1.

It suffices to show that S2 −→ 0 and S3 −→ 0 as n → ∞. To estimate S3 we use the

fact that Cr,j ⊆ Br,j and have that

S3 =
∑

A(n)\A(vn)

Pn,m(∩k
l=1Crl,j) ≤

∑
A(n)\A(vn)

Pn,m(∩k
l=1Brl,j)

=
∑
A(n)

Pn,m(∩k
l=1Brl,j)−

∑
A(vn)

Pn,m(∩k
l=1Brl,j). (2.9)
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From Lemma 3, we therefore have that S3 ≤ e−
Anβ2

8 −→ 0 as n → ∞. Finally, letting

j = jα in Lemma 1, we have that S2 = O
(

m2

n

)
−→ 0 as n → ∞.

We prove Lemmas 1, 2 and 3 in that order.

Proof of Lemma 1

Let k ≥ 1 and y ≥ 1 be two integers and define Pk(y) to be the number of partitions of

y into less or equal to k parts. We need the following result which is a Theorem in pp.

2 of [2].

Theorem. [2] Let ε > 0 be given. We have that

Pk(y) =
1

2πy
exp

(
y

1
2 g(u) + a(u) +O

(
y−

1
6
+ε +

1

k

))
(2.10)

where u = k√
y
,

g(u) =
2v

u
− u log(1− e−v),

a(u) = log

(
v

u
√
2
(1− e−v − 1

2
u2e−v)−1/2

)
and v = v(u) is determined by

u2 = v2
(∫ v

0

t

et − 1
dt

)−1

.

The proof of Lemma 1 is now obtained in three steps.

Step 1: We obtain a power series expansion for g(.) for small u and derive uniform esti-

mates for the remainder O(.) term for various ranges of y (see (2.13 below).

Step 2: We define a function F (., .) that is related to probability of the event Br,j and

obtain an asymptotic expression for F (r, j) and
∑

r F (r, j) as r varies over a certain

range.

Step 3: We convert sums involving the probabilities of the events Br,j into sums involv-

ing the function F (., .) to complete the proof of Lemma 1.

Step 1: By Comment 7 of [2], we know that there exists an η > 0 such that the function
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v(u) is represented by a convergent power series in the interval (0, η). By definition, we

know that v(.) is a even function of u. Choosing η sufficiently small, we then have that

v(u) =
J∑

k=1

aku
2k +O(u2J+2)

for all 0 < u < η and for some real constants ak and any arbitrary integer J ≥ 1. Also,

by Comment 7 pp. 10 of [2], we have that a1 = 1 and a2 = −1
4
. Thus

2v

u
= 2u− u3

2
+

J∑
k=3

2aku
2k−1 +O(u2J+1) (2.11)

and

e−v =
J∑

i=0

(−1)i
vi

i!
+O(vJ+1)

= 1− u2 +
3u4

4
+

J∑
k=3

bku
2k +O(u2J+2)

for all 0 < u < η and some real constants bk. Using the expansion log(1−t) = −
∑2J

i=1
ti

i
+

O(t2J+1(1 + | log(1− t)|)) for 0 < t < 1, we then get

log(1− e−v) = log

(
u2 − 3u4

4
−

J∑
k=3

bku
2k +O(u2J+2)

)

= 2 log u+ log

(
1− 3u2

4
−

J∑
k=3

bku
2k−2 +O(u2J)

)

= 2 log u− 3u2

4
+

J∑
k=3

cku
2k−2 +O(u2J)

for some real constants ck and for all 0 < u < η. Substituting (2.11) and the above

equation into the exact expression for g(.) given in (2.10), we get that

g(u) = 2u log
( e
u

)
+

u3

4
+

J∑
k=3

dku
2k−1 +O(u2J+1) (2.12)

for some real constants dk and for all 0 < u < η. By Comment 7 of [2] we also have that

a(u) = O(u4) for all 0 < u < η (Our definition of a(u) differs from that of [2] by an

additional term of log 2π).
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To complete Step 1, we have the following result for Pk(y) for k very close to m and

as y varies in distinct ranges.

Let j ≥ 1, l ≥ 0 and J ≥ jα be fixed integers and for θ as in (2.7), let θ0 = min
(
2θ, 2+θ

12
, Jθ − 1

)
.

For ε = 1
12

and m as in (1.2), we have that

Pm−l(y) =
1

2πy
exp

(
(m− l) log

(
ye2

(m− l)2

)
+

J∑
k=2

ak
(m− l)2k−1

yk−1
+R

)
(2.13)

for some real constants ak and

R =


O
(

1
nβ0

)
if n− jvn ≤ y ≤ n

O
(

1
mθ0

)
if m2+θ ≤ y ≤ n− jvn

O
(

m
(logm)J

)
if m2 logm ≤ y ≤ m2+θ

where the O(.) terms are all independent of y.

Proof of (2.13): We prove for l = 0. Let {ei} be any sequence such that m2

en
−→ 0 as

n → ∞. For en ≤ y we have that

u =
m
√
y
≤ m

√
en

−→ 0

as n → ∞. Since u < η for all n sufficiently large, the expansion for g(u) given by (2.12)

holds and a(u) = O(u4). Hence we have that

y
1
2 g(u) + a(u) = m log

(
ye2

m2

)
+

m3

4y
+

J∑
k=3

ak
m2k−1

yk−1
+R1

where R1 = O
(

m2J+1

yJ

)
+O

(
m4

y2

)
. Letting ε = 1

12
in (2.10) we then get that for en ≤ y,

Pm(y) =
1

2πy
exp

(
m log

(
ye2

m2

)
+

J∑
k=2

ak
m2k−1

yk−1
+R

)
(2.14)

where

R = R1 +O

(
1

y1/12
+

1

m

)
= O

(
m2J+1

yJ
+

m4

y2
+

1

y1/12
+

1

m

)
= O

(
R11 +R12 +R13 +

1

m

)
(2.15)

and R11 = m2J+1

eJn
, R12 = m4

e2n
and R13 = 1

e
1/12
n

. In (2.15) and henceforth, any O(.) term is

independent of the variable y. We consider three cases separately.
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Case I: en = n− jvn.

We have that

m2

en
=

m2

n

(
1− jvn

n

)−1

=
m2

n

(
1 +O

(
1

nβ

))
−→ 0

as n → ∞. Hence (2.14) holds and from (A3), we have that

R11 =
m2J+1

(n− jvn)J
=

m2J+1

nJ

(
1 +O

(
1

nβ0

))
.

Since J ≥ jα, we therefore have that

m2J+1

nJ
=

(
m2

n

)J−jα+1
m2jα−1

njα−1
≤ 2A2jα−1

(
m2

n

)J−jα+1

≤ 2A2jα−1

(
m2

n

)
= O

(
m2

n

)
= O

(
1

nβ0

)
for sufficiently large n, where to obtain the first inequality in the first line we use (A5)

and to obtain the last equality in the second line, we use (A4). Thus R11 = O
(

1
nβ0

)
.

Analogously R12 = m4

(n−jvn)2
= O

(
m4

n2

)
= O

(
1

nβ0

)
and R13 = 1

(n−jvn)1/12
= O

(
1

n1/12

)
=

O
(

1
nβ0

)
by our choice of β0 in (2.6). From (A4), we have that 1

m
= O

(
1

nβ0

)
. Hence

R11 + R12 + R13 +
1
m

= O
(

1
nβ0

)
. This implies that R in (2.14) is O

(
1

nβ0

)
. This proves

(2.13) for the case n− jvn ≤ y ≤ n.

Case II: en = m2+θ.

We have that
m2

en
=

1

mθ
−→ 0

as n → ∞. Hence (2.14) holds and we have R11 =
1

mJθ−1 , R12 =
1

m2θ and R13 =
1

m(2+θ)/12 .

Hence R11 + R12 + R13 +
1
m

= O
(

1
mθ0

)
where θ0 = min(1, Jθ − 1, 2θ, 2+θ

12
) = min(Jθ −

1, 2θ, 2+θ
12

) since 2θ < 1. Therefore R = O
(

1
mθ0

)
and this proves (2.13) for the case

m2+θ ≤ y ≤ n− jvn.

Case III: en = m2 logm.

We have that
m2

en
=

1

logm
−→ 0

as n → ∞. Hence (2.14) holds and we have R11 = m
(logm)J

, R12 =
(

1
logm

)2
and R13 =

1
m1/6(logm)1/12

.HenceR11+R12+R13+
1
m

= O
(

m
(logm)J

)
. This implies thatR = O

(
m

(logm)J

)
and this proves (2.13) for the case m2 logm ≤ y ≤ m2+θ.
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Before we proceed to Step 2, we have the following result that is used frequently

below. The proof is in the Appendix.

Let j ≥ 1 and l ≥ 0 be fixed integers. For all r ≤ jvn, we have

Pm−l−1(n− r)

Pm−l(n− r)
=

m2

n

(
1 +O

(
1

nβ0

))
(2.16)

where the O(.) term is independent of r.

Step 2: For positive integers j and r, we define

F (r, j) = Fm,n(r, j) =
pm−j(n− r)

pm(n)
(2.17)

where pm(n) denotes the number of partitions of n into m summands. We state and

prove two results about the function F (r, j) are needed for the proof of Lemma 1.

Let j ≥ 1 and j1 ≥ 1 be any two fixed integers. For n sufficiently large and r ≤ j1vn, we

have

F (r, j) =
(
1− r

n

)m(m2

n

)j (
1 +O

(
1

nβ0

))
. (2.18)

where the O(.) term is independent of r.

Proof of (2.18): If Pm(n) denotes the number of partitions of n into at mostm summands,

we have

pm(n) = Pm(n)− Pm−1(n).

Letting I1 = I1(r) =
Pm(n−r)
Pm(n)

, I2 = I2(r) =
Pm−j(n−r)

Pm(n−r)
and I3 = I3(r) =

(
1−

Pm−j−1(n−r)

Pm−j(n−r)

)
(
1−Pm−1(n)

Pm(n)

) ,

we therefore have from (2.17) that

F (r, j) = I1(r)I2(r)I3(r). (2.19)

We estimate I1, I2 and I3 separately. To estimate I3(r), we have by (2.16) and (A4) that

Pm−1(n)

Pm(n)
=

m2

n

(
1 +O

(
1

nβ0

))
= O

(
1

nβ0

)
(2.20)

and for all r ≤ j1vn that

Pm−j−1(n− r)

Pm−j(n− r)
=

m2

n

(
1 +O

(
1

nβ0

))
= O

(
1

nβ0

)
.

Here and henceforth all O(.) terms are independent of r. Hence for all r ≤ j1vn, we have

that

I3(r) = 1 +O

(
1

nβ0

)
. (2.21)

13



To estimate I2(r), we get from (5.25) that for all r ≤ j1vn,

I2(r) =
Pm−j(n− r)

Pm(n− r)
=

j∏
k=1

Pm−k(n− r)

Pm−k+1(n− r)

=

j∏
k=1

m2

n

(
1 +O

(
1

nβ0

))
=

m2j

nj

(
1 +O

(
1

nβ0

))
. (2.22)

To obtain the last equality, we have used (A1).

We now estimate I1. For all r ≤ j1vn, we have from (2.13) that

I1(r) =
Pm(n− r)

Pm(n)

=
(
1− r

n

)m−1

exp

(
jα∑
k=2

ak

(
m2k−1

(n− r)k−1
− m2k−1

nk−1

)
+O

(
1

nβ0

))
. (2.23)

For k ≥ 2 and all r ≤ j1vn, we have that

m2k−1

(
1

(n− r)k−1
− 1

nk−1

)
≤ m2k−1

(
1

(n− jvn)k−1
− 1

nk−1

)
=

m2k−1

nk−1

(
nk−1

(n− jvn)k−1
− 1

)
=

m2k−1

nk−1
O

(
1

nβ

)
(by (A3)).

Since m2

n
< 1 for sufficiently large n, we have that m2k−1

nk−1 = n
m

(
m2

n

)k
≤ n

m

(
m2

n

)2
= m3

n

for k ≥ 2. Therefore

m2k−1

nk−1
O

(
1

nβ

)
≤ m3

n
O

(
1

nβ

)
= O

(
n3α

n1+β

)
= O

(
1

nβ1

)
.

Since β0 ≤ β1, we have O
(

1
nβ1

)
= O

(
1

nβ0

)
and therefore for all k ≥ 2 and r ≤ j1vn, we

have

m2k−1

(
1

(n− r)k−1
− 1

nk−1

)
= O

(
1

nβ0

)
. (2.24)

14



Substituting the above bound into (2.23), we have that for r ≤ j1vn,

I1(r) =
(
1− r

n

)m−1

exp

(
O

(
1

nβ0

))
=

(
1− r

n

)m (
1 +O

(vn
n

))
exp

(
O

(
1

nβ0

))
=

(
1− r

n

)m(
1 +O

(
1

nβ

))(
1 +O

(
1

nβ0

))
=

(
1− r

n

)m(
1 +O

(
1

nβ0

))
. (2.25)

To obtain the last equality, we use (A1). Substituting (2.25), (2.22) and (2.21) into

(2.19) we have that

F (r, j) =
(
1− r

n

)m m2j

nj

(
1 +O

(
1

nβ0

))3

.

To obtain (2.18) from the above equation, we use (A1).

We complete Step 2 by proving the following result. Let Ã(.) be as defined in the

equation preceding (2.1).

For a fixed integer k ≥ 1, let j1, j2, ..., jk be fixed positive integers and let J =
∑k

l=1 jl.

For all sufficiently large n we have∑
Ã(vn)

F

(
k∑

l=1

rljl, J

)
=

e−Jt∏k
l=1 jl

m2J−k

nJ−k

(
1 +O

(
1

nβ0

))
. (2.26)

Proof of (2.26): If rl ≤ vn for 1 ≤ l ≤ k, we must have that R =
∑k

l=1 rljl ≤ Jvn and

therefore by (2.18), we have that

F

(
k∑

l=1

rljl, J

)
=

(
1− R

n

)m(
m2

n

)J (
1 +O

(
1

nβ0

))
. (2.27)

Here and henceforth, the O(.) terms are independent of ri, 1 ≤ i ≤ k. For R ≤ Jvn, we

have

e−
R
n = 1− R

n
+O

(
v2n
n2

)
= 1− R

n
+O

(
1

n2β

)
.

We therefore have(
1− R

n

)m

=

(
e−

R
n +O

(
1

n2β

))m

= e−
Rm
n

(
1 + e

R
nO

(
1

n2β

))m

= e−
Rm
n

(
1 +O

(
1

n2β

))m
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where in the above equation, we use the fact that e
R
nO
(

1
n2β

)
≤ eJO

(
1

n2β

)
= O

(
1

n2β

)
.

Since 2β > α, we have that
(
1 +O

(
1

n2β

))m
= 1+O

(
m
n2β

)
= 1+O

(
nα

n2β

)
= 1+O

(
1

nβ3

)
.

Thus from (2.27) we have

F

(
k∑

l=1

rljl, J

)
= e−

Rm
n

(
m2

n

)J (
1 +O

(
1

nβ0

))(
1 +O

(
1

nβ3

))

= e−
Rm
n

(
m2

n

)J (
1 +O

(
1

nβ0

))
(by (A1))

=
k∏

l=1

e−
jlrlm

n

(
m2

n

)jl (
1 +O

(
1

nβ0

))
.

For any k ≥ 1 and any set of functions hj(.), 1 ≤ j ≤ k, we have∑
1≤i1,...,ik≤n

h1(i1)h2(i2)...hk(ik) =
∑

1≤i1≤n

∑
1≤i2≤n

...
∑

1≤ik≤n

h1(i1)h2(i2)...hk(ik)

=
∑

1≤i1≤n

h1(i1)
∑

1≤i2≤n

h2(i2)...
∑

1≤ik≤n

hk(ik)

=
k∏

j=1

( ∑
1≤i≤n

hj(i)

)
.

Hence

∑
Ã(vn)

F

(
k∑

l=1

rljl, J

)
=

∑
Ã(vn)

k∏
l=1

e−
jlrlm

n

(
m2

n

)jl (
1 +O

(
1

nβ0

))

=
k∏

l=1

Jl

(
1 +O

(
1

nβ0

))
(2.28)

where Jl =
∑

tn<r≤vn
e−

jlrm

n

(
m2

n

)jl
.
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Using the fact that − jm
nβ − jm

n
< −Dnβ2 for some positive constant D, we have that

Jl =

(
m2

n

)jl e−
jlm

n
(tn+O(1)) − e−

jlm

nβ − jlm

n
+O(m

n )

1− e−
jlm

n

=

(
m2

n

)jl e−jlt +O
(
e−Dnβ2 + m

n

)
1− e−

jlm

n

=

(
m2

n

)jl e−jlt +O
(
e−Dnβ2 + m

n

)
jlm
n

+O
(
m2

n2

)
=

e−jlt

jl

(
m2jl−1

njl−1

)
(1 + ejlt

(
e−Dnβ2 +

m

n

)
)

(
1 +

n

mjl
O

(
m2

n2

))−1

=
e−jlt

jl

(
m2jl−1

njl−1

)(
1 +O

(m
n

))
.

To obtain the last equality, we use

(1 + ejltO(e−Dnβ2 ))

(
1 +

n

mjl
O

(
m2

n2

))−1

= (1 +O(e−Dnβ2 ))
(
1 +O

(m
n

))−1

= (1 +O(e−Dnβ2 ))
(
1 +O

(m
n

))
= 1 +O(e−Dnβ2 ) +O

(m
n

)
= 1 +O

(m
n

)
.

Substituting the above expression for Jl into (2.28), we therefore have that∑
Ã(vn)

F

(
k∑

l=1

rljl, J

)

=
k∏

l=1

e−jlt

jl

(
m2jl−1

njl−1

)(
1 +O

(m
n

))k (
1 +O

(
1

nβ0

))
=

e−Jt∏k
l=1 jl

(
m2J−k

nJ−k

)(
1 +O

(m
n

))k (
1 +O

(
1

nβ0

))
.

To obtain (2.26) from the above equation, we use (A4) and (A1).

Step 3:

Proof of Lemma 1: Let k ≥ 1 be fixed and define

∆n =
∑
A(vn)

Pn,m(∩k
l=1Brl,j)− Pn,m(∩k

l=1Crl,j). (2.29)
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Since Cr,j = Br,j \Br,j+1, we have that

0 ≤ ∆n =
∑
A(vn)

Pn,m(∩k
l=1Brl,j)− Pn,m(∩k

l=1Brl,j ∩ ∩k
l=1(Brl,j+1)

c)

=
∑
A(vn)

Pn,m(∩k
l=1Brl,j ∩ (∪k

w=1Brw,j+1)) ≤
∑
A(vn)

k∑
w=1

Pn,m(∩k
l=1Brl,j ∩Brw,j+1)

=
∑
A(vn)

k∑
w=1

Pn,m(∩k
l=1,l 6=wBrl,j ∩Brw,j+1).

For any fixed integers j1, ..., jk and r1 < r2 < ... < rk, we have that

Pn,m(∩k
l=1Brl,jl) = F

(
k∑

l=1

rljl,

k∑
l=1

jl

)
. (2.30)

Hence

0 ≤ ∆n ≤
∑
A(vn)

k∑
w=1

F

(
k∑

l=1

rlj + rw, kj + 1

)

≤
∑
Ã(vn)

k∑
w=1

F

(
k∑

l=1

rlj + rw, kj + 1

)

= k
∑
Ã(vn)

F

(
k∑

l=1

rlj + r1, kj + 1

)
(2.31)

where the last equality follows by symmetry. From (2.26), we have that

∑
Ã(vn)

F

(
k∑

l=1

rlj + r1, kj + 1

)
= ck,j

m2kj+2−k

nkj+1−k

(
1 +O

(
1

nβ0

))
.

where ck,j =
e−(kj+1)t

jk−1(j+1)
. But, from (A5), we have that

m2kj+2−k

nkj+1−k
=

(
m2j−1

nj−1

)k
m2

n
=

(
m2jα−1

njα−1

)k (
m2

n

)k(j−jα)+1

≤
(
2A2jα−1

)k (m2

n

)k(j−jα)+1

= O

(
m2

n

)k(j−jα)+1

. (2.32)

This completes the proof of Lemma 1.
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Proof of Lemma 2

For fixed integers k ≥ 1 and q ≥ 1, define

D(q) = Dn,k(q) = {(r1, r2, ..., rk) ∈ Zk : tn < r1, r2, ..., rk ≤ q and ri 6= rj if i 6= j}.

Further let F (., .) be as defined in (2.17). We first show that Lemma 2 follows from the

two statements below that are proved later:

∑
A(vn)

Pn,m(∩k
l=1Brl,j) =

1

k!

∑
D(vn)

F

(
k∑

l=1

jrl, kj

)
(2.33)

and ∑
Ã(vn)\D(vn)

F

(
k∑

l=1

jrl, kj

)
=

(
m2j−1

nj−1

)k

O
(m
n

)
. (2.34)

For now we assume that the above two statements hold. From (2.33) we have that

∑
A(vn)

Pn,m(∩k
l=1Brl,j) =

1

k!

∑
Ã(vn)

F

(
k∑

l=1

jrl, kj

)
−

∑
Ã(vn)\D(vn)

F

(
k∑

l=1

jrl, kj

)
We know by (2.26) that

∑
Ã(vn)

F

(
k∑

l=1

jrl, kj

)
=

e−kjt

jk
m2jk−k

njk−k

(
1 +O

(
1

nβ0

))

=

(
e−jt

j

)k (
m2j−1

nj−1

)k (
1 +O

(
1

nβ0

))
.

Hence from (2.34), we have that

∑
A(vn)

Pn,m(∩k
l=1Brl,j) =

1

k!

((
e−jt

j

)k (
m2j−1

nj−1

)k (
1 +O

(
1

nβ0

))

−
(
m2j−1

nj−1

)k

O
(m
n

))

=
1

k!

(
e−jt

j

)k (
m2j−1

nj−1

)k

×R,
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where

R =

(
1 +O

(
1

nβ0

)
−
(

j

e−jt

)k

O
(m
n

))

=

(
1 +O

(
1

nβ0

)
+O

(m
n

))
=

(
1 +O

(
1

nβ0

))
.

In obtaining the last equality we have used (A4). This completes the proof of Lemma 2.

Proof of (2.33): For any two sets V1,V2 ⊆ Ã(n), we have that

∑
V1∪V2

F

(
k∑

l=1

jrl, kj

)
≤
∑
V1

F

(
k∑

l=1

jrl, kj

)
+
∑
V2

F

(
k∑

l=1

jrl, kj

)
(2.35)

with equality if V1 and V2 are disjoint. Letting Pk to be the set of all permutations of

the elements of the set {1, 2, ..., k}, we have that

D(vn) = ∪σ∈Pk
Vσ

where

Vσ = {(r1, r2, ..., rk) : tn < rσ(1) < rσ(2) < ... < rσ(k) ≤ vn}.

Also, if σ, σ′ ∈ Pk and σ 6= σ′, we have that Vσ and Vσ′ are disjoint. Hence from (2.35),

we have that ∑
D(vn)

F

(
k∑

l=1

jrl, kj

)
=
∑
σ∈Pk

∑
Vσ

F

(
k∑

l=1

jrl, kj

)
.

By symmetry, for σ ∈ Pk, we have

∑
Vσ

F

(
k∑

l=1

jrl, kj

)
=
∑
Vσ0

F

(
k∑

l=1

jrl, kj

)

where σ0 is the permutation such that σ0(i) = i for 1 ≤ i ≤ k. But Vσ0 = A(vn) and the

number of elements in Pk is k!. Hence

∑
D(vn)

F

(
k∑

l=1

jrl, kj

)
= k!

∑
A(vn)

F

(
k∑

l=1

jrl, kj

)
. (2.36)

Finally, (2.33) follows from (2.30).

Proof of (2.34): If (r1, ..., rk) ∈ Ã(vn) \ D(vn) then we have that ra = rb for some two
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distinct indices a and b. If E denotes the set of such distinct pairs, then E has cardinality
k(k−1)

2
. For (a, b) ∈ E define Gab = {(r1, ..., rk) : tn < rl ≤ vn, 1 ≤ l ≤ k and ra = rb}.

Hence we have that

Ã(vn) \ D(vn) ⊆ ∪(a,b)∈EGab. (2.37)

Hence from (2.35), we get that

∑
Ã(vn)\D(vn)

F

(
k∑

l=1

jrl, kj

)
≤
∑

(a,b)∈E

∑
Gab

F

(
k∑

l=1

jrl, kj

)
.

By symmetry, we have that

∑
Gab

F

(
k∑

l=1

jrl, kj

)
=
∑
G12

F

(
k∑

l=1

jrl, kj

)
.

Since E has cardinality k(k−1)
2

, we have

∑
Ã(vn)\D(vn)

F

(
k∑

l=1

jrl, kj

)
≤ k(k − 1)

2

∑
G12

F

(
k∑

l=1

jrl, kj

)
. (2.38)

But ∑
G12

F

(
k∑

l=1

jrl, kj

)
=

∑
tn<r1,...,rk−1≤vn

F

(
2jr1 +

k−1∑
l=2

jrl, kj

)
.

From (2.26), we therefore have that

∑
G12

F

(
k∑

l=1

jrl, kj

)
=

e−kjt

2jk−1

m2kj−k+1

nkj−k+1

(
1 +O

(
1

nβ0

))

=

(
m2j−1

nj−1

)k (m
n

) e−kjt

2jk−1

(
1 +O

(
1

nβ0

))
=

(
m2j−1

nj−1

)k

O
(m
n

)
.

This proves (2.34).

Proof of Lemma 3

We first estimate Pn,m(Br,j) for the range r ≥ vn and for a fixed integer j ≥ 1.
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Lemma 4. For all n sufficiently large we have

Pn,m(Br,j) ≤


exp

(
−Anβ2

4

)
if vn ≤ r ≤ n−m2+θ

exp
(
−m

4

)
if n−m2+θ ≤ r ≤ n−m2 logm

exp (−C(α)m logm) if r ≥ n−m2 logm.

(2.39)

where C(α) = 1−2α
8α

.

Proof : We note that the event Br,j is contained in the event Br,1 = Br,1(m,n) that r

occurs as a summand in the partition of n into m parts. We have that for all sufficiently

large n,

Pn,m(Br,j) ≤ Pn,m(Br,1) =
pm−1(n− r)

pm(n)

=
Pm−1(n− r)− Pm−2(n− r)

Pm(n)− Pm−1(n)
≤ Pm−1(n− r)

Pm(n)− Pm−1(n)

=
Pm−1(n− r)

Pm−1(n)

Pm−1(n)

Pm(n)

(
1− Pm−1(n)

Pm(n)

)−1

=
Pm−1(n− r)

Pm−1(n)
O

(
1

nβ0

)(
1−O

(
1

nβ0

))−1

(by (2.20))

=
Pm−1(n− r)

Pm−1(n)
O

(
1

nβ0

)(
1 +O

(
1

nβ0

))
≤ Pm−1(n− r)

Pm−1(n)
. (2.40)

For vn ≤ r ≤ n−m2+θ, we have from (2.13) that for all sufficiently large n,

Pm−1(n− r)

Pm−1(n)
=

n

n− r
exp

(
(m− 1) log

(
n− r

n

)
+ T (n− r)− T (n) +O

(
1

mθ0
+

1

nβ0

))
where T (y) =

∑J
k=2 ak

(m−1)2k−1

yk−1 , θ0 = min(Jθ − 1, 2θ, 2+θ
12

) and θ is as defined in (2.7).

Choosing J large enough so that Jθ ≥ 2, we have that θ0 is positive and therefore

exp
(
O
(

1
mθ0

+ 1
nβ0

))
≤ 2 for all sufficiently large n. Writing

n

n− r
exp

(
(m− 1) log

(
n− r

n

))
= exp

(
(m− 2) log

(
n− r

n

))
,

we therefore have that

Pm−1(n− r)

Pm−1(n)
≤ 2 exp

(
(m− 2) log

(
n− r

n

)
+ T (n− r)− T (n)

)
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for all sufficiently large n. Since

T (n− r)− T (n) =
J∑

k=2

ak

(
(m− 1)2k−1

(n− r)k−1
− (m− 1)2k−1

nk−1

)

≤
J∑

k=2

|ak|
(
(m− 1)2k−1

(n− r)k−1
− (m− 1)2k−1

nk−1

)
, (2.41)

we have
Pm−1(n− r)

Pm−1(n)
≤ 2 exp (W (n− r)−W (n)) (2.42)

where W (y) = (m− 2) log y +
∑J

k=2 |ak|
(m−1)2k−1

yk−1 . We have that

W ′(y) =
1

y

(
m− 2− |a2|

(m− 1)3

y
−

J∑
k=3

|ak|(k − 1)
(m− 1)2k−1

yk−1

)
.

For m2+θ ≤ y ≤ n− vn we have that (m−1)2

y
≤ m2

y
≤ 1

mθ −→ 0 as n → ∞. Hence

J∑
k=3

|ak|(k − 1)
(m− 1)2k−1

yk−1
=

(m− 1)3

y

J∑
k=3

|ak|(k − 1)

(
(m− 1)2

y

)k−2

≤ (m− 1)3

y

J∑
k=3

|ak|(k − 1)

(
1

mθ

)k−2

=
(m− 1)3

y
O

(
1

mθ

)
≤ |a2|

(m− 1)3

2y
(2.43)

for all sufficiently large n. Therefore

W ′(y) ≥ 1

y

(
m− 2− 3|a2|

(m− 1)3

2y

)
for all sufficiently large n. For m2+θ ≤ y ≤ n − vn and n sufficiently large, we therefore

have that

W ′(y) ≥ 1

y

(
m− 2− 3|a2|

(m− 1)3

2m2+θ

)
≥ 1

y

(
m− 2− 3|a2|

2
m1−θ

)
≥ m

2y
.

In obtaining the second inequality in the above equation, we have used (m−1)3

m2+θ ≤ m3

m2+θ =

m1−θ. In obtaining the third inequality, we have used the fact that m1−θ

m
−→ 0 as n → ∞
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and hence 2 + 3|a2|
2

m1−θ ≤ m
2

for sufficiently large n. For all sufficiently large n, we

therefore have that W (y) is an increasing function and hence attains its maximum at

y = n− vn. From (2.42), we therefore have that

Pm−1(n− r)

Pm−1(n)
≤ 2 exp (W (n− vn)−W (n)) .

To estimate W (n − vn) −W (n) we proceed as follows. We write W (n − vn) −W (n) =

W1 +W2 where W1 = (m− 2) log
(
1− vn

n

)
and

W2 =
J∑

k=2

|ak|
(
(m− 1)2k−1

(n− vn)k−1
− (m− 1)2k−1

nk−1

)
.

From (2.24) we have that

W2 =
J∑

k=2

|ak|
(

m2k−1

(n− vn)k−1
− m2k−1

nk−1

)(
m− 1

m

)2k−1

=
J∑

k=2

|ak|O
(

1

nβ0

)(
1− 1

m

)2k−1

=
J∑

k=2

|ak|O
(

1

nβ0

)
= O

(
1

nβ0

)
.

Also using the inequality log(1− x) < −x and the fact that m ∼ Anα, we have

W1 = (m− 2) log
(
1− vn

n

)
< −(m− 2)vn

n
< −A

2
nα−β = −A

2
nβ2

for sufficiently large n. From the above estimates for W1 and W2, we therefore get that

Pm−1(n− r)

Pm−1(n)
≤ 2 exp

(
−A

2
nβ2 +O

(
1

nβ0

))
≤ e−

A
4
nβ2

for all sufficiently large n. This proves (2.39) for vn ≤ r ≤ n−m2+θ.

To estimate Pn,m(Br,j) for n−m2+θ ≤ r ≤ n−m2 logm, we proceed as follows. We

let J = jα and have from (2.13) that

Pm−1(n− r)

Pm−1(n)
= exp

(
(m− 2) log

(
n− r

n

)
+ T (n− r)− T (n)

+ O

(
m

(logm)J

)
+O

(
1

nβ0

))
(2.44)
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where T (y) =
∑J

k=2 ak
(m−1)2k−1

yk−1 . For m2 logm ≤ y ≤ m2+θ, we have that (m−1)2

y
≤ m2

y
≤

1
logm

−→ 0 as n → ∞. Hence as in (2.43), we have that

J∑
k=3

|ak|
(m− 1)2k−1

yk−1
≤ |a2|

(m− 1)3

2y
(2.45)

for all sufficiently large n and for n−m2+θ ≤ r ≤ n−m2 logm, we have

T (n− r)− T (n) ≤
J∑

k=2

|ak|
(
(m− 1)2k−1

(n− r)k−1
− (m− 1)2k−1

nk−1

)
by (2.41)

≤
J∑

k=2

|ak|
(m− 1)2k−1

(n− r)k−1

= |a2|
(m− 1)3

(n− r)
+

J∑
k=3

|ak|
(m− 1)2k−1

(n− r)k−1

≤ |a2|
(m− 1)3

(n− r)
+ |a2|

(m− 1)3

2(n− r)
= 3|a2|

(m− 1)3

2(n− r)
.

From (2.44), we therefore have that for all n sufficiently large and for all n−m2+θ ≤ r ≤
n−m2 logm,

Pm−1(n− r)

Pm−1(n)
≤ exp

(
V (n− r) +O

(
m

(logm)J

)
+O

(
1

nβ0

))
(2.46)

where V (y) = (m−2) log
(
y
n

)
+3|a2| (m−1)3

2y
. We estimate V ′(y) as follows. For m2 logm ≤

y ≤ m2+θ, we have (m−1)3

2y
≤ (m−1)3

2m2 logm
≤ m

2 logm
. Hence

V ′(y) =
1

y

(
m− 2− 3|a2|

(m− 1)3

2y

)
≥ 1

y

(
m− 2− 3|a2|

m

2 logm

)
.

Since
m

logm

m
= 1

logm
−→ 0 as n → ∞, we have that 2 + 3|a2| m

2 logm
≤ m

2
for all sufficiently

large n. Hence V ′(y) ≥ m
2y

for all sufficiently large n. In particular, V (y) is an increasing

function for all sufficiently large n. Hence

V (n− r) ≤ V (m2+θ) = (m− 2) log

(
m2+θ

n

)
+

3|a2|
2

(m− 1)3

m2+θ
.

By our choice of θ in (2.7), we have that log
(

m2+θ

n

)
< −1

2
for all n sufficiently large.

Also (m−1)3

m2+θ ≤ m1−θ < m
8
, for all sufficiently n. We therefore have that

V (n− r) ≤ −(m− 2)

2
+

m

8
= 1− 3m

8
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for all sufficiently large n. Since 1 + O
(

1
nβ0

)
+ O

(
m

(logm)J

)
≤ m

8
for all sufficiently large

n, we have that

V (n− r) + O

(
m

(logm)J

)
+O

(
1

nβ0

)
≤ −3m

8
+ 1 +O

(
m

(logm)J

)
+O

(
1

nβ0

)
≤ −3m

8
+

m

8
= −m

4

for all sufficiently large n. From (2.46), we therefore get (2.39) for n − m2+θ ≤ r ≤
n−m2 logm.

We now consider the range r ≥ n−m2 logm. Since Pm(n) ≤ p(n) where p(.) is given

by (1.1), we have from (2.40) that

Pn,m(Br,j) ≤
Pm−1(n− r)

Pm−1(n)
≤ p(n− r)

Pm−1(n)
.

To bound the numerator, we have from (1.1) that

p(n− r) ≤ D

(n− r)
exp(2c

√
n− r) ≤ D exp(2c

√
n− r)

for some positive constants c and D and for all r ≤ n−1. Hence for all n−r ≤ m2 logm,

we have that

Pn,m(Br,j) ≤
D exp(2c

√
n− r)

Pm−1(n)
≤ D exp(2cm

√
logm)

Pm−1(n)
. (2.47)

To bound the denominator, we let J = jα and have from (2.13) that

Pm−1(n) =
1

2πn
exp

(
(m− 1) log

(
ne2

(m− 1)2

)
+ T (n) +O

(
1

nβ0

))
≥ 1

4πn
exp

(
(m− 1) log

(
ne2

(m− 1)2

)
+ T (n)

)
(2.48)

for all sufficiently large n, where T (.) is as defined in (2.44). Since (m−1)2

n
≤ m2

n
−→ 0 as

n → ∞, we have that (2.45) holds with y = n. Therefore,

|T (n)| =

∣∣∣∣∣
J∑

k=2

ak
(m− 1)2k−1

nk−1

∣∣∣∣∣ ≤
J∑

k=2

|ak|
(m− 1)2k−1

nk−1

= |a2|
(m− 1)3

n
+

J∑
k=3

|ak|
(m− 1)2k−1

nk−1

≤ |a2|
(m− 1)3

n
+ |a2|

(m− 1)3

2n
= 3|a2|

(m− 1)3

2n
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for all sufficiently large n. Since m ∼ m−1 ∼ Anα and α < 1
2
, we have that 1

log
(

ne2

(m−1)2

) ∼

1

log
(

ne2

m2

) ∼ 1
log(n1−2α)

−→ 0 as n → ∞. Also, (m−1)2

n
< m2

n
−→ 0 as n → ∞. Hence

|T (n)|

(m− 1) log
(

ne2

(m−1)2

) ≤
3|a2| (m−1)3

2n

(m− 1) log
(

ne2

(m−1)2

)
=

3|a2|
2

(m− 1)2

n

1

log
(

ne2

(m−1)2

) −→ 0

as n → ∞. In particular,

(m− 1) log

(
ne2

(m− 1)2

)
+ T (n) ≥ (m− 1)

2
log

(
ne2

(m− 1)2

)
for all sufficiently large n. Also, we have that (m−1)

2
log
(

ne2

(m−1)2

)
∼ m

2
log
(

ne2

m2

)
∼ m

2
(1−

2α) log n = 1−2α
2α

m log(nα) ∼ 1−2α
2α

m logm. Hence (m−1)
2

log
(

ne2

(m−1)2

)
≥ 2C(α)m logm for

all sufficiently large n where C(α) = 1−2α
8α

. Consequently,

(m− 1) log

(
ne2

(m− 1)2

)
+ T (n) ≥ 2C(α)m logm

for all sufficiently large n. Substituting the above lower bound into (2.48) we therefore

have that

Pm−1(n) ≥
1

4πn
exp (2C(α)m logm) .

From (2.47), for all r ≥ n−m2 logm, we therefore have that

Pn,m(Br,j) ≤ 4πnD exp
(
2cm

√
logm− 2C(α)m logm

)
≤ exp

(
(2c+ 1)m

√
logm− 2C(α)m logm

)
.

For all sufficiently largem, we have that (2c+1)m
√
logm−2C(α)m logm < −C(α)m logm.

Hence we have that for all r ≥ n−m2 logm,

Pn,m(Br,j) ≤ exp (−C(α)m logm) .

We have proved (2.39) for r ≥ n−m2 logm.
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Proof of Lemma 3: We first have that

∆̃n =
∑
A(n)

Pn,m(∩k
l=1Bri,j)−

∑
A(vn)

Pn,m(∩k
l=1Bri,j)

=
∑

A(n)\A(vn)

Pn,m(∩k
l=1Bri,j) ≥ 0.

Also, if (r1, ..., rk) ∈ A(n) \ A(vn), there exists some i, 1 ≤ i ≤ k, so that ri > vn. By

Lemma 4, we therefore have that

Pn,m(∩k
l=1Bri,j) ≤ Pn,m(Bri,j)

≤ max
(
exp (−C(α)m logm) , e−

m
4 , e−

Anβ2
4

)
.

Since m ∼ Anα, we have that nβ2

m logm
= nα−β

m logm
∼ 1

Anβ logm
→ 0 as n → ∞. Since

β2 = α − β < α, we have that nβ2

m
−→ 0 as n → ∞. Hence the right hand side of

the above equation is bounded above by e−
Anβ2

4 for all n sufficiently large. Since the

cardinality of A(n) \ A(vn) is at most nk, we have that

∆̃n ≤
∑

A(n)\A(vn)

e−
A
4
nβ2 ≤ nke−

A
4
nβ2 ≤ e−

A
8
nβ2 .

This proves Lemma 3.

As a result of the above theorem, we strengthen Lemma 3 of [4].

Corollary 5. If pm(n) denotes the number of partitions of n into m summands, then

pm(n) ∼
1

m!

(
n− 1

m− 1

)

if and only if m = o(n1/3).

3 Proof of Theorem 2

In this section, we let m be as in (1.2) with 1
3
≤ α < 1

2
. We let α be such that jα

defined in (1.4) is an integer. For positive integers r and j, define Cr,j = Cr,j(m,n) to

be the event that the number r occurs exactly j times in the composition of n into m

summands. For any fixed integer k ≥ 1, we define Sk,j = Sk,j(t;n) as in (2.1). We claim

that Theorem 2 follows from the following Proposition.
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Proposition 2. For j ≥ jα + 1, we have that

S1,j(0;n) −→ 0 (3.1)

as n → ∞. For j = jα and for any fixed integer k ≥ 1, we have that

Sk,jα(t;n) −→
s̃k

k!
(3.2)

as n → ∞, where s̃ is as in Theorem 2.

Proof of Theorem 2 (assuming Proposition 2): The proof is analogous to the proof of

Theorem 1.

In the rest of the section, we prove Proposition 2. For a positive integer j, we

define Br,j = Br,j(m,n) to be the event that the number r occurs at least j times in a

composition of n into m summands. Choose δ ∈ (0, 1) such that

α

2
< δ <

1− α

2

and define vn = n1−δ and

δ1 = δ + 1− 2α, δ2 = α− δ, δ3 = 2δ − α and δ0 = min(δ1, δ2, δ3). (3.3)

The relations (A1) and (A5) continue to hold in the case of compositions. Also, for fixed

integers j1, j2 ≥ 1, we have

(B1) 1
nδ = O

(
1

nδ0

)
.

(B2) 1
(n−j1r)γ

= 1
nγ

(
1 +O

(
1
nδ

))
= 1

nγ

(
1 +O

(
1

nδ0

))
for any fixed γ > 0 and for all

r ≤ j2vn.

(B3) m
n
= O

(
1
m

)
= O

(
m2

n

)
= O

(
1

n1−2α

)
= O

(
1

nδ0

)
.

The proofs are analogous to the corresponding proofs for (A2)-(A4).

Let A(.) be as defined in the equation preceding (2.1). As in the case of partitions,

we claim that the proof of Proposition 2 follows from the following three lemmas.

Lemma 6. Let j, k ≥ 1 be any two fixed integers. We have that

0 ≤
∑
A(vn)

P̃n,m(∩k
l=1Brl,j)−

∑
A(vn)

P̃n,m(∩k
l=1Crl,j) = O

(
m2

n

)k(j−jα)+1

.
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Lemma 7. Let j, k ≥ 1 be any two fixed integers. We have that

∑
A(vn)

P̃n,m(∩k
l=1Brl,j) =

1

k!

(
e−jt

j!j

)k (
m2j−1

nj−1

)k (
1 +O

(
1

nδ0

))
.

Lemma 8. Let j, k ≥ 1 be any two fixed integers. We have that

0 ≤
∑
A(n)

P̃n,m(∩k
l=1Brl,j)−

∑
A(vn)

P̃n,m(∩k
l=1Brl,j) ≤ e−

A
8
nδ2 .

Proof of Proposition 2 (assuming Lemmas 6-8): The proof is analogous to the proof

of Proposition 1. To prove (3.1), we let k = 1 and t = 0 in (2.1). Thus tn = nt
m

= 0 and∑
A(n)

P̃n,m(Cr,j) =
∑

1≤r≤n

P̃n,m(Cr,j) ≤ I1 + I2

where I1 and I2 are as defined in the proof of Proposition 1 with Pn,m replaced by P̃n,m.

Analogous to (2.8), we have from Lemma 7 that for sufficiently large n,

I1 =
e−tj

j!j

(
m2j−1

nj−1

)(
1 +O

(
1

nδ0

))
≤ 4

e−tj

j!j
A2jα−1

(
m2

n

)j−jα

.

Since j ≥ jα + 1, we have
(

m2

n

)j−jα
= O

(
m2

n

)
and therefore that

I1 = O

(
m2

n

)
−→ 0

as n → ∞. From Lemma 8, we have that

I2 ≤ e−
Anδ2

8 .

Hence we have that I1 + I2 −→ 0 as n → ∞. This proves (3.1).

To prove (3.2), we write Sk,jα =
∑

An
P̃n,m(∩k

l=1Crl,jα) = S1 − S2 + S3 where S1, S2

and S3 are as defined in the proof of Proposition 1. From Lemma 7 and (A5) we have

that

S1 =
1

k!

(
e−jαt

jα!jα

)k (
m2jα−1

njα−1

)k (
1 +O

(
1

nβ0

))
=

s̃k

k!
(1 + o(1))

(
1 +O

(
1

nβ0

))
−→ s̃k

k!

as n → ∞ where s̃ is as defined in Theorem 2.
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It suffices to show that S2 −→ 0 and S3 −→ 0 as n → ∞. To estimate S3 we use the

fact that Cr,j ⊆ Br,j. Analogous to (2.9), we therefore have that

S3 ≤
∑
A(n)

P̃n,m(∩k
l=1Brl,j)−

∑
A(vn)

P̃n,m(∩k
l=1Brl,j).

From Lemma 8, we therefore have that S3 ≤ e−
Anδ2

8 −→ 0 as n → ∞. Finally, letting

j = jα in Lemma 6, we have that S2 = O
(

m2

n

)
−→ 0 as n → ∞.

We prove Lemmas 6, 7 and 8 in that order.

Proof of Lemma 6

For positive integers j ≥ 1 and j + 1 ≤ r ≤ n− 1, define the quantity Pm,n(r, j) as

P̃n,m(r, j) =

(
1− m

n

) (
1− m+1

n

)
...
(
1− m+r−j−1

n

)(
1− j+1

n

) (
1− j+2

n

)
...
(
1− r

n

)
and define for r ≥ j,

t(r, j) = tn,m(r, j) =

{
Pn,m(r, j)wn,m(j) if r ≥ j + 1

wn,m(j) if r = j.

where wn,m(j) =
∏j

i=1

(
m−i
n−i

)
.

The proof of Lemma 6 is now obtained in three steps.

Step 1: We obtain a relation between P̃n,m and t(., .). and estimate t(r, j) for a suitable

range of r.

Step 2: We obtain a relation between probabilities of the events Br,j and the quantity

t(r, j) and obtain an asymptotic expression for
∑

r t(r, j) as r varies over a certain range.

Step 3: We convert sums involving the probabilities of the events Br,j into sums involv-

ing the function t(., .) to complete the proof of Lemma 6.

Step 1: We have the following relation.

Let k ≥ 1 be any fixed integer and let j0 = 0, j1, ..., jk be fixed integers. Let n =
∑m

i=1 Xi

be a randomly chosen composition of n into m parts. For positive integers ri, 1 ≤ i ≤ k,

let R =
∑k

l=1 rljl and J =
∑k

l=1 jl be such that R ≤ n− 1 and J ≤ m− 1. We have that

P̃n,m(∩k
l=1 ∩

jl−1+jl
i=jl−1+1 Xi = rl) = tn,m(R, J). (3.4)
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Proof of (3.4): Let C(n,m) denote the set of all compositions of n into m parts. We

have (see Andrews (1984)) that

#C(n,m) =

(
n− 1

m− 1

)
.

Suppose that Cr(n,m) denotes the set of all compositions of n intom summands with r ≥
1 being the value of the first summand. The set Cr(n,m) has a one to one correspondence

with the set of all compositions of n− r into m− 1 summands. Therefore we have that

#Cr(n,m) =

(
n− r − 1

m− 2

)
.

Hence for r1 ≥ 2, we have

P̃n,m(X1 = r1) =
#Cr1(n,m)

#C(n,m)
=

(
n− r1 − 1

m− 2

)
(

n− 1

m− 1

) (3.5)

=

(
m− 1

n− 1

)
× P ′

m,n(r1)

where

P ′
m,n(r1) =

(n− r1 − 1)

(n− 2)
...
(n− r1 −m+ 2)

(n−m+ 1)

= (n−m)....(n− r1)
(n− r1 − 1)

(n− 2)
...
(n− r1 −m+ 2)

(n−m+ 1)

1

(n−m)...(n− r1)

=

(
1− m

n

) (
1− m+1

n

)
...
(
1− m+r1−2

n

)(
1− 2

n

) (
1− 3

n

)
...
(
1− r1

n

)
= Pm,n(r1, 1).

For r1 = 1, we have from (3.5) that

P̃n,m(X1 = r1) =
m− 1

n− 1
= wn,m(1).

Thus

P̃n,m(X1 = r1) = tn,m(r1, 1) (3.6)
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We now proceed by induction on n. Since all compositions are equally likely, we have

that

P̃n,m(∩k
l=1 ∩

jl+jl−1

i=jl−1+1 Xi = rl) = P̃n,m(X1 = r1)δm,n, (3.7)

where

δm,n = P̃n−r1,m−1(∩j1
i=2Xi = r1 ∩ ∩k

l=2 ∩
jl+jl−1

i=jl−1+1 Xi = rl)

and ∩j1
i=2Xi = r1 is taken to be empty if j1 = 1. Letting R′ = r1(j1 − 1) +

∑k
l=2 rljl, we

have by induction assumption that

P̃n−r1,m−1(∩j1
i=2Xi = r1 ∩ ∩jl+jl−1

i=jl−1+1Xi = rl) = tn−r1,m−1(R
′, J − 1).

From (3.6), we have that P̃n,m(X1 = r1) = tn,m(r1, 1). Hence from (3.7) we have that

P̃n,m(∩k
l=1 ∩

jl+jl−1

i=jl−1+1 Xi = rl) = tn,m(r1, 1)tn−r1,m−1(R
′, J − 1).

Using the identity

tn,m(r, 1)tn−r,m−1(r
′, j′) = tn,m(r + r′, j′ + 1)

we get that

P̃n,m(∩k
l=1 ∩

jl+jl−1

i=jl−1+1 Xi = rl) = tn,m(r1 +R′, J) = tn,m(R, J).

This proves the induction step.

In what follows, we write tn,m(r, j) as t(r, j). We complete Step 1 by estimating t(r, j)

for suitable range of r.

Let j, j1 ≥ 1 be any two fixed integers. For all r ≤ j1vn, we have

t(r, j) = e−
rm
n

(m
n

)j (
1 +O

(
1

nδ0

))
. (3.8)

where the O(.) term is independent of r.

Proof of (3.8): We first let r ≥ j + 1 and obtain that

log

(
t(r, j)

wm,n

)
= −

r−j+1∑
k=2

(
log

(
1− m+ k − 2

n

)
− log

(
1− k + j − 1

n

))
= −R1 −R2 (3.9)
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where R1 =
∑r−j+1

k=2
(m+k−2)−(k+j−1)

n
and R2 =

∑r−j+1
k=2

∑
l≥2

(m+k−2)l−(k+j−1)l

lnl . We esti-

mate R1 and R2 separately. For all r ≤ j1vn, we have that

R1 =
(m− j − 1)(r − j)

n
=

mr

n
− jm+ (j + 1)r − j(j + 1)

n
=

mr

n
+O

(
1

nδ

)
.

Here and henceforth all O(.) terms are independent of r. To obtain the above equation,

we use (B3) and get that

jm+ (j + 1)r − j(j + 1)

n
≤ jm+ (j + 1)j1vn − j(j + 1)

n

= O
(m
n

)
+O

(vn
n

)
= O

(m
n

)
+O

(
1

nδ

)
= O

(
1

nδ

)
. (3.10)

Also, we have

R2 =

r−j+1∑
k=2

∑
l≥2

(m+ k − 2)l − (k + j − 1)l

lnl

=

r−j+1∑
k=2

∑
l≥2

(m− j − 1)

lnl

{
(m+ k − 2)l−1 + (m+ k − 2)l−2(k + j − 1) + ...

+(k + j − 1)l−1
}

≤
r−j+1∑
k=2

∑
l≥2

(m− j − 1)

nl
(m+ k − 2)l−1

≤
∑
l≥2

(m− j − 1)(r − j − 1)

nl
(m+ r − j − 1)l−1 ≤ mr

n

∑
l≥2

(
m+ r

n

)l−1

=
mr

n

m+ r

n

(
1− m+ r

n

)−1

. (3.11)

As in (3.10), we have that m+r
n

= O
(

1
nδ

)
for all r ≤ j1vn. Hence for all r ≤ j1vn, we have

m+ r

n

(
1− m+ r

n

)−1

= O

(
1

nδ

)(
1−O

(
1

nδ

))−1

= O

(
1

nδ

)(
1 +O

(
1

nδ

))
= O

(
1

nδ

)
. (3.12)
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Also,
mr

n
= O

(mvn
n

)
= O

(
nαn1−δ

n

)
= O

(
nδ2
)
.

Substituting the above two estimates into (3.11), we get

0 ≤ R2 ≤ O
(
nδ2
)
O

(
1

nδ

)
= O

(
1

nδ3

)
.

Substituting the estimates for R1 and R2 into (3.9) we have that

t(r, j) = wn,m(j)e
−R1−R2 = e−

rm
n wn,m(j) exp

(
O

(
1

nδ

)
+O

(
1

nδ3

))
= e−

rm
n wn,m(j) exp

(
O

(
1

nδ0

))
(by (B1))

= e−
rm
n wn,m(j)

(
1 +O

(
1

nδ0

))
.

To evaluate wm,n(j) we have by definition that(
m− j

n

)j

≤ wn,m(j) ≤
(

m

n− j

)j

.

We have from (B3) that(
m− j

n

)j

=
(m
n

)j (
1− j

m

)j

=
(m
n

)j (
1 +O

(
1

m

))j

=
(m
n

)j (
1 +O

(
1

m

))
=
(m
n

)j (
1 +O

(
1

nδ0

))
.

Analogously,
(

m
n−j

)j
=
(
m
n

)j (
1 +O

(
1

nδ0

))
. Hence we have that

wn,m(j) =
(m
n

)j (
1 +O

(
1

nδ0

))
.

Thus

t(r, j) = e−
rm
n

(m
n

)j (
1 +O

(
1

nδ0

))2

.

To obtain (3.8) the above equation, we use (A1).

Step 2: In the case of partitions, we had defined an analogous function F in (2.17) and

were able to obtain a relation between P̃n,m(∩k
l=1Brl,jl) and F (., .) as in (2.30). Using

(2.30), we were able to convert sums regarding the probabilities of the events Br,j into

sums involving the function F. In the case of compositions, no such exact relation exists.

We therefore have the following result.
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Lemma 9. Let k ≥ 1 be any fixed integer and let j1, j2, ..., jk be any fixed integers. For

all n sufficiently large and for all tn ≤ r1 < r2 < ... < rk ≤ vn, we have that

P̃n,m(∩k
l=1Brl,jl) =

mJt(R, J)∏k
l=1 jl!

(
1 +O

(
1

nδ0

))
=

1∏k
l=1 jl!

e−
Rm
n

(
m2

n

)J (
1 +O

(
1

nδ0

))
(3.13)

where R =
∑k

l=1 rljl and J =
∑k

l=1 jl.

Proof : Let n =
∑m

i=1 Xi be a randomly chosen composition of n into m parts. Let

r1 < r2 < ... < rk and suppose that the number ri occurs at least ji times for each

1 ≤ i ≤ k. Letting J =
∑k

l=1 jl, we define SJ to be the set of all subsets of {1, 2, ...,m}
that have J elements. We order the elements of SJ as {ei}1≤i≤m̃J

where

m̃J =
m(m− 1)...(m− J + 1)

J !
≤ mJ

J !
(3.14)

is the number of elements in SJ . Let

T = {(p1, ..., pJ) :
J∑

l=1

11(pl = ri) = ji, 1 ≤ i ≤ k}.

For e = {l1, ..., lJ} ∈ SJ and p = (p1, ..., pJ) define

X(p, e) = {Xl1 = p1, ..., XlJ = pJ}

and

Ae = ∪p∈T X(p, e).

Hence we have that

P̃n,m(∩k
l=1Brl,jl) = P̃n,m (∪1≤i≤m̃J

Ai) (3.15)

where Ai = Aei . We obtain an upper bound and a lower bound for the above expression

using the inclusion-exclusion principle.

For an upper bound, we have from (3.15) that

P̃n,m(∩k
l=1Brl,jl) ≤

∑
1≤i≤m̃J

P̃n,m(Ai). (3.16)
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For a fixed e ∈ SJ and distinct p,p′ ∈ T , we have that X(p, e) and X(p′, e) are disjoint.

Hence for a fixed i, we have P̃n,m(Ai) =
∑

p∈T P̃n,m (X(p, ei)) and therefore∑
1≤i≤m̃J

P̃n,m(Ai) =
∑

1≤i≤m̃J

∑
p∈T

P̃n,m (X(p, ei)) .

For p ∈ T and e ∈ SJ , we have from (3.4) that

P̃n,m(X(p, e)) = t(R, J)

where R =
∑k

l=1 rljl ≤ Jvn. Hence∑
1≤i≤m̃J

P̃n,m(Ai) =
∑

1≤i≤m̃J

∑
p∈T

t(R, J) = m̃J(#T )t(R, J)

where #T denotes the number of elements in the set T . Since #T = J !
Jp
, we have from

(3.14) that

m̃J(#T ) =
mJ

Jp

J∏
i=1

(
1− i

m

)
=

mJ

Jp

J∏
i=1

(
1 +O

(
1

m

))

=
mJ

Jp

J∏
i=1

(
1 +O

(
1

m

))
=

mJ

Jp

(
1 +O

(
1

m

))
=

mJ

Jp

(
1 +O

(
1

nδ0

))
.

To obtain the last equality, we use (B3). Also, since R ≤ Jvn, the expression (3.8) for

t(R, J) holds. From (3.16), we therefore have that

P̃n,m(∩k
l=1Brl,jl) ≤

∑
1≤i≤m̃J

P̃n,m(Ai)

=
1∏k

l=1 jl!
e−

Rm
n

(
m2

n

)J (
1 +O

(
1

nδ0

))
. (3.17)

To find a lower bound for (3.15), we have by inclusion-exclusion principle that

P̃n,m(∩k
l=1Brl,jl) ≥

∑
1≤i≤m̃J

P̃n,m(Ai)−
∑

1≤i<j≤m̃J

P̃n,m(Ai ∩ Aj). (3.18)

We want to find an upper bound for the second summation in the above equation. We

first write ∑
1≤i<j≤m̃J

P̃n,m(Ai ∩ Aj) =

m̃J∑
i=1

m̃J∑
j=i+1

P̃n,m(Ai ∩ Aj).
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Let 1 ≤ i ≤ m̃J be fixed. To evaluate the inner sum in the above expression, we write

Iq to be the set of all ej ∈ SJ so that j ≥ i + 1 and such that the number of elements

common to ei and ej is q. Since q ≤ J − 1, we have

m̃J∑
j=i+1

P̃n,m(Ai ∩ Aj) =
J−1∑
q=0

∑
e∈Iq

P̃n,m(Ai ∩ Ae). (3.19)

For e ∈ Iq, we have that

P̃n,m(Ai ∩ Ae) = P̃n,m((∪p∈T X(p, ei)) ∩ (∪p′∈T X(p′, e)))

≤
∑
p∈T

∑
p′∈T

P̃n,m(X(p, ei) ∩X(p′, e)).

Since e ∈ Iq, the eventX(p, ei)∩X(p′, e) is either empty or can be written as ∩2J−q
l=1 {Xil =

p̃l} for some distinct Xil ’s and some integers p̃l. Hence by (3.4) we have that

P̃n,m(X(p, ei) ∩X(p′, e)) ≤ t(R′, 2J − q),

where R′ =
∑J

l=1 p̃l. Moreover, if we denote p = (p1, ..., pJ) and p′ = (p′1, ..., p
′
J), we have

that R =
∑J

l=1 pl ≤ R′ ≤
∑J

l=1 pl +
∑J

l=1 p
′
l = 2R ≤ 2Jvn. By (3.8), we therefore have

that

t(R′, 2J − q) = e−
R′m
n

(m
n

)2J−q
(
1 +

1

nβ0

)
≤ 2e−

R′m
n

(m
n

)2J−q

≤ 2e−
Rm
n

(m
n

)2J−q

for all sufficiently large n. Using the fact that #T = J !
Jp
, we therefore have that

P̃n,m(Ai ∩ Ae) ≤
∑
p∈T

∑
p′∈T

2e−
Rm
n

(m
n

)2J−q

= 2

(
J !

Jp

)2

e−
Rm
n

(m
n

)2J−q

.

From (3.19), we get that

m̃J∑
j=i+1

P̃n,m(Ai ∩ Aj) ≤ 2

(
J !

Jp

)2

e−
Rm
n

J−1∑
q=0

nq

(m
n

)2J−q

where nq = #Iq. Let e ∈ SJ be fixed. The number of elements e′ ∈ SJ that have exactly
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q elements in common with e is nq =

(
J

q

)(
m− J

J − q

)
≤ 2JmJ−q. Hence

m̃J∑
j=i+1

P̃n,m(Ai ∩ Aj) ≤ 2J+1

(
J !

Jp

)2

e−
Rm
n

J−1∑
q=0

mJ−q
(m
n

)2J−q

= 2J+1

(
J !

Jp

)2

e−
Rm
n

1

mJ

J−1∑
q=0

(
m2

n

)2J−q

= 2J+1

(
J !

Jp

)2

e−
Rm
n

1

mJ

(
m2

n

)J+1 1−
(

m2

n

)J
1− m2

n

≤ 2J+2

(
J !

Jp

)2

e−
Rm
n

1

mJ

(
m2

n

)J+1

.

In obtaining the last inequality, we have used the fact that
1−

(
m2

n

)J

1−m2

n

≤ 1

1−m2

n

≤ 2 for

sufficiently large n. We therefore have

m̃J∑
i=1

m̃J∑
j=i+1

P̃n,m(Ai ∩ Aj) ≤ m̃J2
J+2

(
J !

Jp

)2

e−
Rm
n

1

mJ

(
m2

n

)J+1

= e−
Rm
n
m̃J

mJ
O

(
m2

n

)J+1

= e−
Rm
n O

(
m2

n

)J+1

by (3.14). From (3.17) and the above equation, we get that∑
1≤i≤m̃J

P̃n,m(Ai) −
∑

1≤i<j≤m̃J

P̃n,m(Ai ∩ Aj)

=
1

Jp
e−

Rm
n

(
m2

n

)J (
1 +O

(
1

nδ0

))
− e−

Rm
n O

(
m2

n

)J+1

=
1

Jp
e−

Rm
n

(
m2

n

)J

×R′′

where

R′′ =

(
1 +O

(
1

nδ0

)
− JpO

(
m2

n

))
=

(
1 +O

(
1

nδ0

)
+O

(
m2

n

))
=

(
1 +O

(
1

nδ0

))
by (B3). From (3.18), we therefore have

P̃n,m(∩k
l=1Brl,jl) ≥

1

Jp
e−

Rm
n

(
m2

n

)J (
1 +O

(
1

nδ0

))
.
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From the above equation and (3.17), we get (3.13).

From the above result, it is intuitive that sums involving the probabilities of the events

Br,j can be converted into sums involving mjt(r, j). We therefore have the following

result. The proof is analogous to the proof of (2.26).

For a fixed integer k ≥ 1, let j1, j2, ..., jk be positive integers and let J =
∑k

l=1 jl and

Jp =
∏k

l=1 jl!. For all sufficiently large n we have

∑
tn<r1,r2,...,rk≤vn

1

Jp
mJt

(
k∑

l=1

rljl, J

)
=

e−Jt∏k
l=1 jl!jl

m2J−k

nJ−k

(
1 +O

(
1

nδ0

))
. (3.20)

Proof of Lemma 6: The proof is analogous to the proof of Lemma 1. We define ∆n as

in (2.29) and as in (2.30), we get that

0 ≤ ∆n =
∑
A(vn)

k∑
w=1

P̃n,m(∩k
l=1,l 6=wBrl,j ∩Brw,j+1)

where A(.) is as defined in the equation preceding (2.1). For any fixed integers j1, ..., jk

and r1 < r2 < ... < rk, we have from Lemma 9 that

P̃n,m(∩k
l=1Brl,jl) =

mJ

Jp
t

(
k∑

l=1

rljl, J

)(
1 +O

(
1

nδ0

))

where Jp = (j!)k−1(j+1)!. This is analogous to (2.30) with F (., .) replaced by mJ

Jp
t(., .)

(
1 +O

(
1

nδ0

))
.

Hence as in (2.31) we get that

∆n ≤ k
∑

tn<r1,...,rk≤vn

1

Jp
mJt

(
k∑

l=1

rljl + r1, kj + 1

)(
1 +O

(
1

nδ0

))
.

But from (3.20), we have that

∑
tn<r1,...,rk≤vn

1

Jp
mJt

(
k∑

l=1

rljl + r1, kj + 1

)
= ck,j

m2kj+2−k

nkj+1−k
×
(
1 +O

(
1

nδ0

))

where ck,j =
e−(kj+1)t

(j!j)k−1(j+1)!(j+1)
and as in (2.32), we have that m2kj+2−k

nkj+1−k = O
(

m2

n

)k(j−jα)+1

.

This completes the proof of Lemma 6.
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Proof of Lemma 7

Let Ã(.) and D(.) be as defined in the equations preceding (2.1) and (2.33), respectively.

We claim that Lemma 7 follows from the following two results.

We have that

∑
A(vn)

P̃n,m(∩k
l=1Brl,j) =

1

k!

∑
D(vn)

1

(j!)k
mkjt

(
k∑

l=1

jrl, kj

)(
1 +O

(
1

nδ0

))
. (3.21)

We have that

∑
Ã(vn)\D(vn)

1

(j!)k
mkjt

(
k∑

l=1

jrl, kj

)
=

(
m2j−1

nj−1

)k

O
(m
n

)
. (3.22)

Proof of Lemma 7 (assuming (3.21) and (3.22)): The proof is analogous to the proof of

Lemma 2. From (3.20), we have that

∑
Ã(vn)

1

(j!)k
mkjt

(
k∑

l=1

jrl, kj

)
=

e−kjt

(j!j)k
m2jk−k

njk−k

(
1 +O

(
1

nδ0

))

=

(
e−jt

j!j

)k (
m2j−1

nj−1

)k (
1 +O

(
1

nδ0

))
. (3.23)

Hence∑
A(vn)

P̃n,m(∩k
l=1Brl,j)

=
1

k!

∑
D(vn)

1

(j!)k
mkjt

(
k∑

l=1

jrl, kj

)(
1 +O

(
1

nδ0

))
(by (3.21))

=
1

k!

∑
Ã(vn)

−
∑

Ã(vn)\D(vn)

(1 +O

(
1

nδ0

))

=
1

k!

((
e−jt

j!j

)k (
m2j−1

nj−1

)k (
1 +O

(
1

nδ0

))

−
(
m2j−1

nj−1

)k

O
(m
n

))(
1 +O

(
1

nδ0

))
(by (3.23) and (3.22))

=
1

k!

(
e−jt

j!j

)k (
m2j−1

nj−1

)k

×R,
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where

R =

(
1 +O

(
1

nδ0

)
−
(

j!j

e−jt

)k

O
(m
n

))(
1 +O

(
1

nδ0

))
=

(
1 +O

(
1

nδ0

)
+O

(m
n

))(
1 +O

(
1

nδ0

))
=

(
1 +O

(
1

nδ0

))
.

In obtaining the last equation, we have used (B3) and (A1).

Proof of (3.21): The proof is analogous to the proof of (2.33) with F (., .) replaced by
1

(j!)k
mkjt(., .). As in (2.36), we therefore get that

∑
D(vn)

1

(j!)k
mkjt

(
k∑

l=1

jrl, kj

)
= k!

∑
A(vn)

1

(j!)k
mkjt

(
k∑

l=1

jrl, kj

)
.

But, from (3.20), we have that for (r1, ..., rk) ∈ Bn, and R =
∑k

l=1 jrl,

1

(j!)k
mkjt(R, kj) = P̃n,m(∩k

l=1Brl,j)

(
1 +O

(
1

nδ0

))−1

= P̃n,m(∩k
l=1Brl,j)

(
1 +O

(
1

nδ0

))
.

This proves (3.21).

Proof of (3.22): The proof is analogous to the proof of (2.34) with F (., .) replaced by
1

(j!)k
mkjt(., .). We define the sets Gij as in the proof of (2.34). As in (2.38), we get that

∑
Ã(vn)\D(vn)

1

(j!)k
mkjt

(
k∑

l=1

jrl, kj

)
≤ k(k − 1)

2

∑
G12

1

(j!)k
mkjt

(
k∑

l=1

jrl, kj

)
.

Since∑
G12

1

(j!)k
mkjt

(
k∑

l=1

jrl, kj

)
=

∑
tn≤r1,...,rk−1≤vn

1

(j!)k
mkjt

(
2jr1 +

k−1∑
l=2

jrl, kj

)
,

from (3.20), we therefore have that∑
G12

1

(j!)k
mkjt

(
k∑

l=1

jrl, kj

)
= ck,j

m2kj−k+1

nkj−k+1

(
1 +O

(
1

nδ0

))

= ck,j

(
m2j−1

nj−1

)k (m
n

)(
1 +O

(
1

nδ0

))
=

(
m2j−1

nj−1

)k

O
(m
n

)
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where ck,j =
e−kjt

2jk(2j!)(j!)k−1 . This proves (3.22).

Proof of Lemma 8

We first estimate P̃n,m(Br,j) for the range r ≥ vn.

Lemma 10. For all n sufficiently large and for all r ≥ vn, we have that

P̃n,m(Br,j) ≤ e−C4nδ2 (3.24)

for some positive constant C4.

Proof : Let n =
∑m

i=1 Xi be a randomly chosen composition of n into m parts. We

have from (3.4) that

Pn,m(X1 = r) =
r∏

i=2

(
1− m+i−2

n

1− i
n

)
wm,n.

For i ≥ 2, we have that
(

1−m+i−2
n

1− i
n

)
= 1− (m−2)/n

1−i/n
< 1− m−2

n
. Also, since m ≤ n, we have

that wm,n ≤ 1. For any r, we therefore have that

Pn,m(X1 = r) ≤ 2

(
1− m− 2

n

)r−1

= 2

(
1− m− 2

n

)r (
1− m− 2

n

)−1

= 2

(
1− m− 2

n

)r (
1 +O

(m
n

))
≤ 4

(
1− m− 2

n

)r

.

Also, Br,j ⊆ Br,1 = ∪m
i=1{Xi = r}. For all r ≥ vn, we therefore have that

P̃n,m(Br,j) ≤ Pn,m(∪m
i=1{Xi = r}) ≤ mPn,m(X1 = r)

≤ 4m

(
1− m− 2

n

)r

≤ 4me−
r(m−2)

n ≤ 4me−
vn(m−2)

n = 4me2e−mn−δ

.

for all sufficiently large n. In the last inequality, we use 1 − x ≤ e−x and in the third

inequality we use vn ≤ r ≤ n and hence that − r(m−2)
n

= 2r
n
− rm

n
≤ 2− mvn

n
= 2−mn−δ.
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Since m ∼ Anα, we have that −mn−δ < −C5n
δ2 for some positive constant C5 and all n

sufficiently large. Hence, we have that for all sufficiently large n,

P̃n,m(Br,j) ≤ 4me2e−mn−δ ≤ 4me2e−C5nδ2 ≤ e−C4nδ2

for some positive constant C4 smaller than C5.

Proof of Lemma 8: If (r1, ..., rk) ∈ A(n) \ A(vn), there exists some i, 1 ≤ i ≤ k, so that

ri > vn. By Lemma 10, we therefore have that

P̃n,m(∩k
i=1Bri,j) ≤ P̃n,m(Bri,j) ≤ e−C4nδ2 .

The rest of the proof is analogous to the proof of Lemma 3. We define ∆̃n as in the proof

of Lemma 3. Using the fact that the cardinality of A(n) \A(vn) is at most nk, as in the

proof of Lemma 3, we have that

∆̃n ≤
∑

A(n)\A(vn)

e−C4nδ2 ≤ nke−C4nδ2 ≤ e−C6nδ2

for some positive constant C6 less than C4.

4 Conclusion

In this paper, we have proved a conjecture of Yakubovich regarding limit shapes of slices

of partitions of an integer n when the number of summands m ∼ Anα for some α < 1
2
.

We have proved that the probability that there exists a summand of multiplicity j in

a randomly chosen partition or composition of an integer n goes to zero asymptotically

with n provided j is larger than a critical value. As a corollary, we have strengthened

a result of [4] concerning the repeatability of summands in a randomly chosen integer

partition of n when α = 1
3
.
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5 Appendix

Proofs of (A2)-(A5): (A2) Follows since β3 < β, and hence β0 < β.

(A3) For r ≤ j2vn, we have

1

(n− j1r)γ
=

1

nγ

(
1− j1r

n

)−γ

=
1

nγ

(
1 +O

(vn
n

))−γ

=
1

nγ

(
1 +O

(vn
n

))
=

1

nγ

(
1 +O

(
1

nβ

))
=

1

nγ

(
1 +O

(
1

nβ0

))
.

In obtaining the last equality, we have used (A1).

(A4) In the first inequality we use α < 1
2
, in the second we use α ≥ 1

3
, in the third we

use m ∼ Anα and in the fourth we use β0 ≤ β1 < 1− 2α.

(A5) Follows since m ∼ Anα.

Proof of (2.16): We let J = jα and obtain from (2.13) that

Pm−l−1(n− r)

Pm−l(n− r)
= exp

(
K1 +K2 +O

(
1

nβ0

))
(5.25)

for any fixed integer l ≥ 1 and for all r ≤ jvn where

K1 = (m− l − 1) log

(
(n− r)e2

(m− l − 1)2

)
− (m− l) log

(
(n− r)e2

(m− l)2

)
and

K2 =

jα∑
k=2

ak
(m− l − 1)2k−1 − (m− l)2k−1

(n− r)k−1
.

In (5.25) and henceforth, any O(.) term is independent of r. We evaluate K2 first. For

any integer k ≥ 2, we have that

0 ≤ (m− l)2k−1 − (m− l − 1)2k−1 =
2k−1∑
l1=1

(
2k − 1

l1

)
(m− l − 1)2k−1−l1

≤ m2k−2

2k−1∑
l1=1

(
2k − 1

l1

)
= (22k−1 − 1)m2k−2.
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Therefore

|K2| ≤
jα∑
k=2

|ak|
(m− l)2k−1 − (m− l − 1)2k−1

(n− r)k−1
≤ D

jα∑
k=2

(22k−1 − 1)
m2k−2

(n− r)k−1

≤ D(22jα−1 − 1)

jα∑
k=2

(
m2

n− r

)k−1

where D = sup2≤k≤jα |ak|. By (A3), we have that
(

m2

n−r

)k−1

=
(

m2

n

)k−1 (
n

n−r

)k−1
=(

m2

n

)k−1 (
1 +O

(
1

nβ0

))
≤ 2

(
m2

n

)k−1

for all sufficiently large n. Hence by (A4) we have

|K2| ≤ 2D(22jα−1 − 1)

jα∑
k=2

(
m2

n

)k−1

= O

(
m2

n

)
= O

(
1

nβ0

)
.

Also, we have

K1 = log

(
(m− l)2

(n− r)

)
+ (m− l − 1) log

(
m− l

m− l − 1

)2

− 2

= log

(
(m− l)2

(n− r)

)
+ 2(m− l − 1) log

(
1 +

1

m− l − 1

)
− 2.

For a fixed l ≥ 1 and m sufficiently large, we have

log

(
1 +

1

m− l − 1

)
=

1

m− l − 1
+O

(
1

m− l − 1

)2

.

Hence by (A4) we have

2(m− l − 1) log

(
m− l

m− l − 1

)
= 2 +O

(
1

m− l − 1

)
= 2 +O

(
1

m

)
= 2 +O

(
1

nβ0

)
.

Thus

K1 = log

(
(m− l)2

(n− r)

)
+O

(
1

nβ0

)
.

Substituting the estimates for K1 and K2 in (5.25), we get that

Pm−l−1(n− r)

Pm−l(n− r)
= exp

(
log

(
(m− l)2

(n− r)

)
+O

(
1

nβ0

))
=

(m− l)2

(n− r)
exp

(
O

(
1

nβ0

))
=

(m− l)2

(n− r)

(
1 +O

(
1

nβ0

))
.
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But
(m− l)2

n− r
=

m2

n

(
1− l

m

)2
n

n− r
.

Also, by (A4),
(
1− l

m

)2
= 1 + O

(
1
m

)
= 1 + O

(
1

nβ0

)
and by (A3), n

n−r
= 1 + O

(
1

nβ0

)
.

Hence
Pm−l−1(n− r)

Pm−l(n− r)
=

m2

n

(
1 +O

(
1

nβ0

))3

.

To obtain (5.25) from the above equation, we use (A1).
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