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1

and compositions when o = 3.

Key words: Yakubovich conjecture, repeated summands, slices of Young dia-
grams.

Subj-class: GM, PR, CO.

AMS 2000 Subject Classification: Primary: 05A17, 11P81; Secondary: 60C05,
62E10, 90B15, 91D30.

*E-Mail: guru9r@isid.ac.in



1 Introduction

1.1 Integer Partitions

Let n > 1 be any integer and let n = ay + as + .... + a,, for some m > 1 and some
positive integers {a;}7,. We define the set {ai,...,a,} to be a partition of n into m
summands. Let p(n) denote the total number of partitions of n without any restriction
on the number of summands. By the Hardy-Ramanujan asymptotic formula [1] for p(n),
we have that

p(n) ~ (4ny/3)"levsV", (1.1)
Throughout the paper, we write a,, ~ b,, for two sequences a,, and b,, if lim,,_,, ‘;—: = 1.
Analogous formulas have been derived in [5] for the number of partitions p,,(n) of an

integer n into m summands where m = my , is related to n as
m ~ An® (1.2)

for some positive constant A and 0 < a < % Henceforth, unless otherwise mentioned,
the integer m will always be related to n as in (1.2). The notion of randomness of an
integer partition was first introduced in [4] to study of the multiplicity of summands of
a given partition. Suppose we define the probability space (2, F, P, ) where §2 denotes
the set of all partitions of n into m summands, F is the collection of all subsets of {2 and
for w € Q, we let Py, ,,(w) = zﬁ(n)‘ If B(n,m) denotes the event that there is a repeated
summand in any such randomly chosen partition, then the main result in [4] states that
that P, ,,(B(n,m)) — 0 as n — oo for o = 5. In other words, the probability that there
is a summand of multiplicity two or larger in any randomly chosen partition of n into m
summands is very small if m ~ Ans.

In [6] the above result has been generalized by considering limit shapes of slices of
integer partitions. More precisely, let gx = Qg mn denote the number of summands of
value k in any integer partition of n into m summands. For a positive integer j and
t > 0, we define

() =Y 1gr = j) (1.3)

k>t
where 1(E) denotes the indicator function of the event £. Thus ¢;(t) denotes the number
of summands larger than ¢ that have multiplicity j. Our definition of ¢;(.) differs from [6]
by a factor of j. In (1.2), we let & > 3 be such that
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is an integer. We have the following result which is the second part of Theorem 2 of [6].

Theorem. [6] Let € > 0 be fizred. For 1 < j < j,, we have

P n?~t nt e It
N W By 2 W T

12__20; we have that

>6> —0

as n — oco. For j >
Prm (¢5(t) > €) — 0

as n — Q.

2—«
1—2a

we prove as the following theorem.

For the range j, < j < the limiting behaviour is stated as a conjecture which

Theorem 1. Let 57 > 1 and [ > 0 be fized integers.

(a) If j = jo and s = @, then
t l
Prmdd; (— | =1%—s Zes
' m [!

(b) If j > jo + 1, then for e > 0, we have

as n — Q.

Py (¢;(t) >€) — 0

as n — oQ.

1.2 Integer Compositions

Let n > 1 be any integer and let n = a; + as + .... + a,, for some m > 1 and some
positive integers {a;}",. We define the m—tuple (ay,...,a,,) to be a composition of n
into m summands. Thus (1,1,3) and (3,1, 1) are distinct compositions of the integer 5
into 3 summands. We define random compositions on the probability space (Q, F, ]f”nm)
where Q denotes the set of all compositions of n into m summands, F is the collection of
all subsets of Q and an(A) denotes the probability of occurrence of event A in the set
of all compositions of n into m summands assuming each composition is equally likely.
Analogous to ¢;(¢) in (1.3), we define



with ¢, denoting the number of summands of value k£ in any composition of n into m
summands. Letting j, be as defined in (1.4), we have the following result which is
Theorem 3 of [6].

Theorem. [6] Let € > 0 be fizred. For 1 < j < j,, we have
’ m2i—1 m 4y

2—
e we have that

>6) —0

as n — oco. For j >
B (65(8) > €) — 0

as n — oQ.

2—«
1—2a

we prove as the following theorem.

For the range j, < j < the limiting behaviour is stated as a conjecture which

Theorem 2. Let 7 > 1 and | > 0 be fixed integers.
(a) If j = jo and § = %, then

~ ~ (nt 8

as n — Q.

(b) If j 2 ja+1
Py (qgj(t) > e) —0
as n — oo for every e > 0.

The paper is organized as follows: In Section 2 we prove Theorem 1 and in Section 3

we prove Theorem 2. Finally, in Section 4, we present our conclusion.

2 Proof of Theorem 1

In what follows, Z denotes the set of integers. For positive integers r and j, define C, ;

to be the event that the number r occurs exactly j times in the partition of n into m

summands. For any fixed integer £ > 1 and a real number ¢ > 0 we define ¢,, = "Et,

A(q) = Aus(q) = {(r1,72,,m1) €ZF it <11 <19 < ... <1 < q),
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and

Alq) = Ank(q) = {(r1,re, .., 1) € ZF b, <117y e < q}.

Let
A(n)

To prove Theorem 1, it suffices to prove the following Proposition.

Proposition 1. For j > j, + 1, we have that
SLJ‘(O; TL) — 0 (22)

as n — o0o. For j = j, and for any fixed integer k > 1, we have that
gk

(2.3)
as n — oo, where s is as i Theorem 1.

Before we prove Theorem 1, we need the following result. The proof is analogous to
the proof of Corollary 3 (pp. 34) of [3].
Let Ay, ..., A, be any sequence of events. For a fized k > 1, let

T;, = D Pr(A;, Ay, Ay,
1< <2< <1 <n

For any fixed integers [,1' > 1, we have that

2411 ;
Z (—1)" ( )Ti < Pr(ezactly | of Ay, ..., A, occur)

l
21 +1 .
< S (- ( z)T (2.4)

i=l

i=l
Proof of Theorem 1 (assuming Proposition 1): (b) Let j > j, + 1 be fixed. From (1.3)
we get that

n

Prm(9;(0) > 0) = Pp (U7, Cry) < an,m(cnj) = 51,;(0;n) — 0

r=1

as n — 00. In other words, the probability that a summand of multiplicity larger than

Jo Occurs in a partition of n into m summands converges to zero as n — oo.
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(a) Fix two integers [,I’ > 1 and let j = j,. From (1.3) we have that ¢;(t,) = [ if
and only if exactly [ of Cy, 1415, ..., Cnj occur. We use (2.4) to obtain that for any n,

2:_ (1) ( ; ) Sig(tin) < Pum(d(ta) =1) <D (-1 ( ; ) Sij(tin),

i=l i=l

where S;;(.;.) is as defined in (2.1). Allowing n — oo, we use Proposition 1 to obtain
that

U +1—1 . 7
> (=1 ( ; ) < lminf P, (¢5(t,) = 1)

i=l
20/ +1 A\ s
< limsup Py, (¢;(t,) =1) < Z(_l)z’—z < ) 5
" i=l
Allowing I' — oo, we get that
: !

6_8% <liminf P, ., (¢;(t,) = 1) <limsup P, ., (¢;(t,) =1) < e *—.

This proves (a) of Theorem 1. u

The rest of the section is devoted to the proof of Proposition 1. In what follows,
we let B, ; = B, j(m,n) to be the event that the number r occurs at least j times in a
partition of n into m summands. Let 3 < a < 5 be as in (1.2) and fix any 8 € (0,1)
such that

max <3a -1, %) < B < a. (2.5)

and let v,, = n' =P,
) 1
bi=0+1-3a, fo=a—0, B3=20—«aand fy = min (51,52,537E>- (2.6)

Finally, choose 6 < % so that

—0 (2.7)

as n — o0.

We use the following facts repeatedly in the proofs below. The positive integers
d, {71}¢_, and the positive numbers {a;}%, are fixed. For all sufficiently large n, the
following relations hold. The proofs are in the Appendix.
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(A1) Hle (1 + 0 (#))JZ =1+0 (n%o) where ap = min(ay, as, ..., ag).
(A2) 5 =0 (%) -
(A3) —— = an (l—l—O(niﬂ)) = n% (1—|—O(n%0)) for any fixed v > 0 and for all

(n—g1r)”
r S jQUn-

(A1) 2=0(2) =0 (%) =0(tm) = 0 (H).

2]a 1

(Ab) ™ = A%e71(1 4+ 0(1)) < 2A%a"1,

n]a
The proof of Proposition 1 follows from the following three lemmas.
Lemma 1. Let j > 1 and k > 1 be any two fixed integers. We have that

m k(j_ja)+1
0= 3 Rt X ranciacan = (%)

A(vn)
Lemma 2. Let 5 > 1 and k > 1 be any two fized integers. We have that

1 (e 7t\* /m¥—1\" 1
k )=
;) Pn,m(mllemJ) - k! < ] ) ( ni—1 ) (1 + O (n,ﬁo)) .

Lemma 3. Let j > 1 and k > 1 be any two fixed integers. We have that

O S ZPn,m(mleBrhj) — Z IP)an(méf:an,j) S 6_%7152,

Proof of Proposition 1 (assuming Lemmas 1-3): To prove (2.2), we let £ = 1 and
t =0. Thus ¢, = 2 = 0 and A(q) = A(g) = {r : 1 <r < ¢} where A(.) and A(.) are as
defined in the equation preceding (2.1). Since C,.; C B, ;, we have that

Z Pn,m(Cr,j) = Z Pn,m<Cr,j> < Z Pn,m(Br,j) =L+ 1
A(n)

1<r<n 1<r<n

Where Il = Zlgrgvn Pn7m<BT7j) = ZA(’Un) ]P)n’m(BT’j) and Iz = Zz)ngrgn ]P)n7m(Br»j) =
>ty Prom(Brj) = 3 40,y Prm(Brj). From Lemma 2, we have that for sufficiently large

n,
e W (m2 1 1
9 ni—1 J nja—1 n

—-tj 2\ JJa
4& 7 A%a (m—) . (2.8)
J

IN

IN



2

In the last inequality above, we have used (A5). Also, (%)J o =0 (mT) since j >

Ja + 1. We therefore have that
2
L =0 <ﬁ) 50
n

as n — 0o. From Lemma 3, we have that

From (2.1), we therefore have that

S1;(0n) = Y Ppp(Crj) <L+ I, — 0

1<r<n

as n — 0o. This proves (2.2).
To prove (2.3), we write Sk j, = > 4 Pom(NF,Cyj.) = S1— So + S3 where S; =
ZA(Un) ]P)mm(ﬂleBn,ja)a

Z]P)”m ml 1 WJ anm ﬁl 1 rua)

and

anm ml 1Cra) Zan ﬂl 1Cra)-

A(vn)
From Lemma 2 and (A5) we have that

» = w5 ) () (o)
_ %(‘ff"‘t) (A%=1(1 4 o(1)))" (1+O(n1ﬁo)>
- s (1+0(5x)) — 5

as n — oo where s is as defined in Theorem 1.

It suffices to show that Sy — 0 and S3 — 0 as n — oo. To estimate S; we use the
fact that C; C B, ; and have that

Sy = Y ]P’n,m(ﬁlecn,j)ﬁ Z P (N1 Bry g)

A(n)\A(vn) n)\A(vn)
= anm mz 1 m Z an ml 1 m) (2.9)
A(n)



An*BQ

From Lemma 3, we therefore have that S3 < e 75 — 0 as n — oo. Finally, letting

m2

j = Jo in Lemma 1, we have that Sy = O <7> — 0 as n — 0. [

We prove Lemmas 1, 2 and 3 in that order.

Proof of Lemma 1

Let £ > 1 and y > 1 be two integers and define Py(y) to be the number of partitions of
y into less or equal to k parts. We need the following result which is a Theorem in pp.
2 of [2].

Theorem. [2] Let € > 0 be given. We have that

1

Pily) = 5.0 exp (y% g(u) + a(u) + O (yé+6 + E)) (2.10)

where u =

2
g(u) = v ulog(l —e™?),
U

a(u) = log (ulﬁ(l eV — %UQG—U)—l/Q)

and v =wv(u) is determined by

v t —1
u? = v? (/ dt) )
0 et - ]_

The proof of Lemma 1 is now obtained in three steps.

Step 1: We obtain a power series expansion for g(.) for small u and derive uniform esti-
mates for the remainder O(.) term for various ranges of y (see (2.13 below).

Step 2: We define a function F(.,.) that is related to probability of the event B, ; and
obtain an asymptotic expression for F(r,j) and > F(r,j) as r varies over a certain
range.

Step 3: We convert sums involving the probabilities of the events B, ; into sums involv-

ing the function F(.,.) to complete the proof of Lemma 1.

Step 1: By Comment 7 of [2], we know that there exists an 7 > 0 such that the function



v(u) is represented by a convergent power series in the interval (0,7). By definition, we

know that v(.) is a even function of u. Choosing 7 sufficiently small, we then have that

J
v(u) = Z apu®® + O(u?'+?)

k=1

for all 0 < u < n and for some real constants a, and any arbitrary integer J > 1. Also,

by Comment 7 pp. 10 of [2], we have that a; = 1 and as = —3. Thus

2v u? 4
—= 2u — -+ Z 2apu® 1t + O(u? ) (2.11)
k=3
and
J Vi
v _ i J+1
e’ = ZO( ' + 0@’
3u? 4
= 1- u2 -+ T —+ Z bku% -+ O(uQ‘]H)
k=3
for all 0 < u < 17 and some real constants b. Using the expansion log(1—t) = — 227, t;—i—

O(t*’ (1 + |log(1 —t)])) for 0 < ¢ < 1, we then get
3u? !
—oy 2 2k 2742
log(l—e™) = log (u — = 33 bru™ + O(u ))

3u’ ¢ 2k—2 2J
= 210gu+10g<1—7—2bku + O(u™’)

k=3

Bu2 &
= 2logu — % + kZ_S cxu 2 + O(u?)

for some real constants ¢, and for all 0 < w < 7. Substituting (2.11) and the above

equation into the exact expression for g(.) given in (2.10), we get that

u

5 J
g(u) = 2ulog (e) + uz + Z dpu® ™t + O(u*’ ™) (2.12)
k=3

for some real constants dj and for all 0 < u < 7. By Comment 7 of [2] we also have that
a(u) = O(u*) for all 0 < u < n (Our definition of a(u) differs from that of [2] by an
additional term of log 27).
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To complete Step 1, we have the following result for Py(y) for k very close to m and
as y varies in distinct ranges.
Letj > 1,1> 0 andJ > j, be fized integers and for @ asin (2.7), let 0y = min (20, 21+29, JO — 1) .
1

For e = 35 and m as in (1.2), we have that

o2 J m — [)2k-1
P, (y) = b exp ((m —1)log (ﬁ) + Z ak% + R) (2.13)

2my

for some real constants a and

(ﬁ) if n—jv, <y<n
R={ O(=%) if m**% <y <n-—ju,

O (W) if m?2logm <y < m?+?

where the O(.) terms are all independent of y.
Proof of (2.13): We prove for | = 0. Let {e;} be any sequence such that ’:—2 — 0 as

n

n — oo. For e, <y we have that

u=—<

VY T Ve
as n — oo. Since u < 7 for all n sufficiently large, the expansion for g(u) given by (2.12)
holds and a(u) = O(u*). Hence we have that

y2g(u) + a(u) = mlog( >+—+Zak

where Ry = O ( 2”1) +0 <m—2> Letting € = —; in (2.10) we then get that for e, <y,

Pm(y):%exp (mlog( ) ZJ: m > (2.14)

where
R = R1+O(y$m +%> :o(m;’]ﬂ +Z_j+ﬁ+%)
= 0 <R11 + Rig + Rz + %) (2.15)
and Ry = ™22 ,Rip = ZL; and Ri3 = ei% In (2.15) and henceforth, any O(.) term is

independent of the variable y. We consider three cases separately.
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Case I: e, =n — ju,.

We have that
2 2 -1 2
m® _ m? <1_&> :ﬂ<1+0<i)>ﬁo
€n n n n nf

as n — oo. Hence (2.14) holds and from (A3), we have that

m2J+1 m2J+1 1
R, = = 14+0 .
2=y~ (+0(5))

Since J > j,, we therefore have that

J—ja+1 P J—ja+1
m2J+1 mz Ja+ mzja 1 i 1 mz Ja+
= — . < 24432 —_—

n’ n nja—l n

2 2
<o (3)-0(2) o[
n n nro

for sufficiently large n, where to obtain the first inequality in the first line we use (A5)
and to obtain the last equality in the second line, we use (A4). Thus Ry; = O (L) .

nfo
Analogously R12 = m = O( ) =0 (n%O) and ng = W =0 (n1_}12> =
O (=) by our choice of By in (2.6). From (A4), we have that - = O (=5 ). Hence
Ry + Ris+ Ris+ E =0 ( ) This implies that R in (2.14) is O ( )

(2.13) for the case n — jv, <y < n.
240

This proves

Case II: e, = m
We have that

m2

1
—=——0
en m

as n — oo. Hence (2.14) holds and we have Ry = #, Ry = ﬁ and Rz = W
Hence Ry1 + Ris + Ris —i— = = O( 90) where 6y = min(1, J§ — 1,20, %) = min(J0 —

1,260, 2 since 20 < 1. Therefore R = O (=) and this proves (2.13) for the case

m*t? <y <n— ju,.
Case III: e, = m*logm.

We have that

m?2 1

e, logm

2
as n — oo. Hence (2.14) holds and we have Ry = (logm J,ng = <$> and Ri3 =
L 1z~ Hence R11+R12+R13+% =0 <W> This implies that R = O (

m1/6(logm) (logm) )
and this proves (2.13) for the case m?logm <y < m2*?, n

12



Before we proceed to Step 2, we have the following result that is used frequently
below. The proof is in the Appendix.
Let j > 1 and | > 0 be fized integers. For all r < jv,, we have

e ItY) 219

where the O(.) term is independent of r.

Step 2: For positive integers j and r, we define

. . pm—j(n - T)
F(Tuj) :Fm,n(raj) = (217)
pm(n)
where p,,(n) denotes the number of partitions of n into m summands. We state and
prove two results about the function F(r, j) are needed for the proof of Lemma 1.

Let j > 1 and j; > 1 be any two fized integers. For n sufficiently large and r < jiv,, we

F(r,j) = (1 . %)m (%2)] (1 +0 (%)) . (2.18)

where the O(.) term is independent of r.

have

Proof of (2.18): 1f P,,(n) denotes the number of partitions of n into at most m summands,

we have
Pm(n) = Pp(n) — Pph_1(n).
k%g—j—(l("*;))
. Py (n—r mej n—r . . m—j (n—"
Letting I} = I1(r) = Bi(n)), I, = Ih(r) = W and I3 = I3(r) = (=
we therefore have from (2.17) that
F(r,5) = Li(r)La(r) Is(r). (2.19)

We estimate [, I and I3 separately. To estimate I3(r), we have by (2.16) and (A4) that
P, _1(n) m? 1 1
= (1 S = S 2.2

P,.(n) n O nfo © nPo (220)

and for all » < jyv,, that
Po_j_1(n—r) m? 1 1
=—|(140|—|)=0|—].
Poon—r o T\ A o

Here and henceforth all O(.) terms are independent of r. Hence for all r < jyv,, we have
that

Lr)=1+0 (i) . (2.21)

nbBo
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To estimate I5(r), we get from (5.25) that for all r < jyu,,

Pn_j(n—r) _ J P _k(n—r)

by = ey “Ue

k=1

o) F o) s

To obtain the last equality, we have used (Al).

We now estimate [;. For all r < jjv,, we have from (2.13) that

P,(n—r)
Pp(n) 4

- () e (G (7)o (i) e

k=2

L(r)

For £ > 2 and all r < j,v,, we have that

ka—l 1 _ 1 < m2k—1 1 N 1
(n _ r)kq nk—1 — (n _ jvn)kq nk—1
B m2k—1 nk-1 .
o nk—1 (n _ jvn)k—l

- Zo(4) vy

2k—1

k 2
Since m% < 1 for sufficiently large n, we have that “7— = = <m—> <= (—) =
for k > 2. Therefore

m?2k-1 1 m? 1 n3e 1
o) = 5o () - () -0 ()
Since [y < 1, we have O (%) =0 (L) and therefore for all £ > 2 and r < jiv,, we

nF1 nPo

o (g ) =0 () o

have

14



Substituting the above bound into (2.23), we have that for r < jju,,

O o)
= (=0 (o(2))e (0(5))
_ <1—%> <1+O< )> (1+O<n;))
_ (1—%>m <1+0<%)). (2.25)

To obtain the last equality, we use (Al). Substituting (2.25), (2.22) and (2.21) into

(2.19) we have that
F(r ')_<1_Z>mm2 Lo L))
3= n/ n nfo '

To obtain (2.18) from the above equation, we use (Al). n

We complete Step 2 by proving the following result. Let fl() be as defined in the
equation preceding (2.1).
For a fized integer k > 1, let 1, o, ..., Jr be fixed positive integers and let J = Zle J1-

For all sufficiently large n we have

Z F (Z i, ) Hl_%”:j : (1 1) (nlﬁ())) . (2.26)

Proof of (2.26): It r; <w, for 1 <1 <k, we must have that R = Zle rij; < Ju, and
therefore by (2.18), we have that

P(omr) - (-8 () (0 () e

Here and henceforth, the O(.) terms are independent of ;,1 < i < k. For R < Juv,, we
have R ) R )
R v
Thn=1—— L) =1—-—= — .
e n+0<n2) n+0(n25)
We therefore have

R m R 1 m Rm R 1 m
(2 = (o)) <o (eol)



where in the above equation, we use the fact that enO (n%ﬁ) < e/0 (%ﬂ) =0
Since 25 > «, we have that (1—1—0(7%13)) = 1+O(n26) = 1—1—0(%) =140
Thus from (2.27) we have

k n m2 J
Pyt = o ()
=1

For any k£ > 1 and any set of functions h;(.),1 < j <k, we have

> h(in)holin) b)) = Y > o Y ha(i)ha(ia).. (i)

1<, <0 1<11<n 1<i2<n 1< <n
= E h1 21 E h222 E hklk
1<i1<n 1<i2<n 1<ip<n
7=1 1<i<n
Hence

Er{Em) - £l (5) (o)
::ﬁh@+OQ;» 229)

_jl'r'm m2 jl
where Jy =3, _ ., e » () .

N
Il
N
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Using the fact that —i—? — ]77" < —Dn for some positive constant D, we have that

. ; Jgm _ gm
(mz)ﬂ o= (tn+O(1) _ A5 A 0(R)

(]l:

Jjm

n 1—e

n

<m2)jz et +0 (e_D”BQ + %)

n
et (2t ol _papz M n m?\\
= 5 ()i (1o ()
o=t [ m2i—1 m
- () o (2)
To obtain the last equality, we use
‘ 2\\ ! -1
(14 HO(eDn™Y) (1+m%lo (%» _ (14 0(eP"Y) <1+O<@>>
— (14 0(e D™y (1 41O (—))
= 1+ O(e_D”ﬁZ) +0 <ﬁ>

_o(my.

n

ey e olen o)

Substituting the above expression for J; into (2.28), we therefore have that

A%}) F (g rljl,J)
5 (7)o (0 (32)
_ He,;fjl (”jj‘j) (1ro(™) (Ho (Lﬁ))

1=

To obtain (2.26) from the above equation, we use (A4) and (Al). n
Step 3:
Proof of Lemma 1. Let k > 1 be fixed and define
An = Z Pn,m(mleBrz,ﬂ - Pn,m(mlecmj>' (2.29)
A(vn)
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Since C,; = B, ; \ By j+1, we have that

0 < An = Z Pn,m(mleBn,j) - Pn,m(mleBf‘z,j N mf:l(Bn,jﬁ-l)c)
A(vn)

k
= Z Pn,m(mleBrhj N (Ufulerw,j-&-l)) < Z an,m(mleBn,j n Brw,j—H)
A(vn) A(vn) w=1
k
= Z an,m(mle,l;ﬁmej N Brw7j+1)~
A(vp) w=1

For any fixed integers ji, ..., Jx and r; < ro < ... < 1, we have that

k k
Pn,m(mleBTl,jz) =F (Z Tt Z]l> . (230)
=1 =1

Hence

k k
0< A, < ZZF( rlj+rw,kj+1)
k k
F (Zrlj+rw,kj+1)
1

(]

k
— k F(Zrlj—i—n,kj—i—l) (2.31)
A(vn)

where the last equality follows by symmetry. From (2.26), we have that

k m2ki+t2—k 1
ZF Zl’f’lj‘i"f’l,kj—'—l = Ck’jW <1+O<%>)
A(vn)

1=

e (kj+1)
where ¢, ; = W% But, from (A5), we have that
m2ki+2—k m2i-1 k m2 m2da—1 k m2 k(j—ja)+1
e = () o Ger) ()
2\ k(i—ja)+1 2\ k(i—ja)+1
< (24%)" m—) —0 (m—) (2.32)
n n
This completes the proof of Lemma 1. [ ]
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Proof of Lemma 2

For fixed integers £ > 1 and ¢ > 1, define

D(q) = Dnil(q) = {(r1,7r2, ..., %) € ZF t, < 1,79, ..., < q and 7y #r;ifi # j}.

Further let F'(.,.) be as defined in (2.17). We first show that Lemma 2 follows from the

two statements below that are proved later:

Z Prn (N1 Bry 5) = Z F (Zm,lw) (2.33)

A(vn)

SOF (erl,k]> ( njj_ll)ko (%) . (2.34)

A(Un)\D(U 2)

and

For now we assume that the above two statements hold. From (2.33) we have that

k
Z an ﬂ[ 1 rl] Z F (erhk.]) - Z F (Z]Tbk])
(vn)

A(vp) = A(vn)\D =1

We know by (2.26) that
k e kit 20k—Fk 1
F ir, kg = ————(14+0(—
R D)

A(vn)
eI\ /m%—1\* 1
- (5) () (o))
Hence from (2.34), we have that

1 eI\ * (m2-1\* 1
k _
;) Pn,m(mllerl,j) - E <( J ) ( nj_l > (1 + O (%))

19



L (1+0(%)- (Z) o)
- (v (%) +o()=(1+0(%)).

In obtaining the last equality we have used (A4). This completes the proof of Lemma 2. =

Proof of (2.33): For any two sets Vi, V, C A(n), we have that
k k k

S (o) < Sr(Sonas) Xr (o) e

V1UVs =1 \%1 =1 A% =1
with equality if V; and Vs, are disjoint. Letting Py to be the set of all permutations of
the elements of the set {1,2,...,k}, we have that

D(Un) = UUEPkVU
where
VO’ = {(7"1,’/‘2, -'-7rk) < To(1) < T (2) < ... < T'o(k) < Un}.

Also, if 0,0 € Py, and ¢ # o', we have that V, and V,, are disjoint. Hence from (2.35),

we have that Z i (Zﬂ%kﬂ?> S Y F (Z]rl,k]>

Un) O'Epk Vo'

By symmetry, for o € Py, we have

Voo

where 0y is the permutation such that o¢(i) = ¢ for 1 <1i < k. But V,, = A(v,) and the

number of elements in Py, is k!. Hence

Y F <erl,k]) = k! Z F (Z]n,/@> (2.36)

D(vn) =1

Finally, (2.33) follows from (2.30). n

Proof of (2.34): If (r1,...,r) € A(v,) \ D(v,) then we have that r, = 7, for some two

20



distinct indices a and b. If £ denotes the set of such distinct pairs, then £ has cardinality
@. For (a,b) € & define Gop = {(11,...,7%) : tp <1 < 0,1 <1 <k and r, = 1p}.
Hence we have that

A(Un) \ D(v,) C U(a,p)ceYab- (2.37)

Hence from (2.35), we get that
k
> r(Smn) s ¥ Sr(Xons)
A(vn)\D(vn) I=1 (a,b)€€ Gap
By symmetry, we have that

SoF (kag> S F (Zm,kj)

Gab G12

)

Since & has cardinalit

> F (erl,kj> < @ Y F <erl,kj> . (2.38)
(vn)

A(vn)\D =1 Gi2 =1

Y F <erl,kj) > F <2jr1 + kiﬁ,,kj) :

G12 tn<r1,..,TEk—1<Un =2

From (2.26), we therefore have that
o= kit 2ki—k+1 1
ZF (Z]Tl,k]> = 2jF1 pki—k+l (1+O (%))

G2
m2i—1 k my e~ kit 1
- (%) (g (1o (%))

This proves (2.34). n

Proof of Lemma 3

We first estimate P,, ., (B, ;) for the range r > v,, and for a fixed integer j > 1.
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Lemma 4. For all n sufficiently large we have

exp ( AZ%) if v, <1 <n—m*t?
Prom(Brj) < exp (—2) if n—m*% <r<n-—m?logm (2.39)
exp (—C(a)mlogm) if r>mn —m?logm.

where C(a) = 1222

8«

Proof: We note that the event B, ; is contained in the event B, ; = B,.1(m,n) that r

occurs as a summand in the partition of n into m parts. We have that for all sufficiently

large n,
Po(Bry) < Pu(Bra) = %
_ Phi(n—r1)— PZ_Q(n —) < Pn1i(n—r)
Pr(n) = Fri(n) ~ Pn(n) ;Pm—l(n)
- SR
- o () (o ()
< % (2.40)
2+0

Forv, <r<n-m

+ T(n—'r’)—T(")"‘O<m190 +%)>

where T(y) = S, a, =T 0 = min(Jf — 1,26, 2) and 6 is as defined in (2.7).
Choosing J large enough SO that JO > 2 we have that 6, is positive and therefore

exp (O (ﬁ + 5 )) < 2 for all sufficiently large n. Writing

nfrexp ((m—l)log (”;T)) — exp ((m—?)log (”;T))

we therefore have that

%Shmp(( —2)10g(nn )+T(n—7“) T(”))

22
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for all sufficiently large n. Since

J m — 1)2k—1 m — 1)2k-1
T - 1) = Yo (P - )

we have

<2exp(W(n—r)—W(n)) (2.42)

where W(y) = (m — 2)logy + 3.7, |ak|l We have that

2%—1
W’(y)zi( —2—\a2| Z|ak] —1( 1> >

—_1)2 2
_(myl) <m < L 0asn— oo. Hence

For m**? < y < n — v, we have that <ML
Yy m

! (m—1)2%*"1  (m—1)3J (m— 1)\
;|ak|(k_1)T = TZMH(k’—l) (T)

< U Z -1 ()
_ 0”;”30(%) <™ e

for all sufficiently large n. Therefore
1 —1)3
W(y) > - (m _9_ 3‘a2|M)
(1 2y

for all sufficiently large n. For m?*? < y < n — v,, and n sufficiently large, we therefore
have that

W) 2 1 (-2 )

Y 2 2y
1)3 m3

In obtaining the second inequality in the above equation, we have used e S o =

m!'~%. In obtaining the third inequality, we have used the fact that ™— — 0 as n — 0o
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and hence 2 + @ml_e < 7 for sufficiently large n. For all sufficiently large n, we

therefore have that W(y) is an increasing function and hence attains its maximum at

Yy =n — v,. From (2.42), we therefore have that
P, i(n—r)
————— <2exp(W(n —wv,) —W(n)).
1) < 2o (W (0 ) = W(n)

To estimate W(n — v,) — W(n) we proceed as follows. We write W(n —v,) — W(n) =
Wy + Wy where Wy = (m — 2)log (1 — 22) and

=3l (e - )

From (2.24) we have that

J 2%k—1 2%k—1 2%k—1
m m m—1
() ()
O

Also using the inequality log(1 — z) < —x and the fact that m ~ An®, we have

— A A
(m=2v, A op_ A

v
— (m—2)1 (1——”) —
Wy = (m ) log o < o 5 5

for sufficiently large n. From the above estimates for W; and W5, we therefore get that

Pm_l(n—r) A B8 1 _ApB2
e <9 ——n’ — ) ) <eim
Poa(n) = eXp( y O ) ) =¢

for all sufficiently large n. This proves (2.39) for v, <7 <n —m?**.

To estimate P,, ., (B, ;) for n — m?t? <r <n—m?logm, we proceed as follows. We
let J = j, and have from (2.13) that

Pn_1(n—r)
Pm_l(n)

n—r

— exp ((m— 2) log< ) +T(n—r) —T(n)

+0 (%) +0 (niﬁ)) (2.44)
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WhereT( )= Zk Qakm 1% " For m? logm <y < m?t Wehavethat%§m§<

— 0 as n — oo. Hence as in (2.43), we have that

log m

J (m — 1)2k—1 (m — 1)3
Z |ag|——7F— < |CL2|T (2.45)

k—1
k=3 Y

for all sufficiently large n and for n — m?T® < r < n — m?logm, we have

T(n 1)~ T(n) < Z\ak\( D) e

nk—-1

J
(m 1)2]671
< |ay] —
2l Gy
o (m 1)3 J . (m 1)2k—1
- el Gy L e
O G P
= el Gy el =y = el =

From (2.44), we therefore have that for all n sufficiently large and for all n —m?*? <r <

n —m?logm,

Pnoa(n—r) m 1
— < V(n— O(—— O|— 2.46
Boat) = ( e+ () o) o
where V (y) = (m—2)log (£) +3|as | (L) > We estimate V'(y) as follows. For m?logm <
(m—1)3 (m—1)3 m
y < m**? we have - S TmtToamm § TTog - Hence
1 (m—1\ _ 1
Viy)=—(m—2—-3las]——L) > (m—-2-3

=1 (=230l 2 1 (-2 sy )

Since “’;ﬂm = logm — 0 as n — oo, we have that 2 + 3|as| 57 < 73 for all sufficiently

large n. Hence V'(y) = 3, for all sufficiently large n. In particular, V(y) is an increasing

function for all sufficiently large n. Hence

2+ 3
210\ m 3laz| (m —1)
Vin—r)<V(m )—(m—2)log< " )+ SR

By our choice of # in (2.7), we have that log (m i ) < —% for all n sufficiently large.

Also (m 1) <mt?< %, for all sufficiently n. We therefore have that

—(m—=2) m 3m
‘/ — < —_I__ — 1__
(n—=7) 2 8 8
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for all sufficiently large n. Since 1+ O (T

\_/
+
Q

A/~
3
~——
IN
|3
S
=
=
)
o
=2
a
@
=
=
~<
®
=
ofS]
@

n, we have that

Vin—1) + o(ﬁ)ﬂ)(%)

= 8 * 8 4
for all sufficiently large n. From (2.46), we therefore get (2.39) for n — m?*? < r <
n —m?logm.
We now consider the range r > n —m?logm. Since P,,(n) < p(n) where p(.) is given
by (1.1), we have from (2.40) that
Pn_1(n—r) < p(n—r)
P, 1(n) ~ P,_1(n)

To bound the numerator, we have from (1.1) that

D
( ] exp(2cv/n — 1) < Dexp(2¢yv/n — 1)
n—r

for some positive constants ¢ and D and for all » < n— 1. Hence for all n —r < m?logm,

]P)n,m(Br,j) S

pln—r) <

we have that

D exp(2¢y/n — 1) < D exp(2cma/logm)
Pm71<n) - mel(n) ‘
To bound the denominator, we let J = j, and have from (2.13) that

P, i(n) = ﬁexp (( —1)log (%) +T(n )+O( 1ﬁo)>
> e (= 1o (5 ) + 7)) (2.45)

for all sufficiently large n, where T'(.) is as defined in (2.44). Since (m;I)Q < mTZ — 0 as
n — oo, we have that (2.45) holds with y = n. Therefore,

Prn(Brj) < (2.47)

1 2k—1 1)2k 1
T(n)| = <Zlak!
3 J 1)2k 1
) DS g =
k=3
m—1)3 —1)3 m—1)3
< |a2|< Tl ) _ 3jay) M1
2n 2n



for all sufficiently large n. Since m ~ m—1 ~ An® and a < %, we have that —< L ) ~

(m—1)2

—_

1

—1)2 2
— 0 as n — o0o. Also, (mnl) <= —0asn— oo. Hence

10g<::22) ~ log(nl—2«)
m— 3
7 (n) _ B
(m —1)log (%) (m —1)log (ﬁ)
3lag| (m —1)? 1

= S —0
n log<(m 1)2>

as n — o0o. In particular,

(m —1)log ((m”fl)) #70) > o ((JT)

for all sufﬁciently large n. Also, we have that (m 1) log <(m 21) ) ~ % log (%—f) ~ 21—

2a) logn = 522mlog(n®) ~ 52%mlog m. Hence (m ). log( —r ) > 2C (a)ymlogm for
all sufﬁ<31ently large n where C(a) = 1222, Consequently,

2

(m —1)log (ﬁ) +T(n) > 2C(a)mlogm

for all sufficiently large n. Substituting the above lower bound into (2.48) we therefore
have that ]
P,_1(n) > Ty EXP (2C(a)ymlogm) .

From (2.47), for all r > n — m?log m, we therefore have that

Pym(By;) < 4nnDexp (20m\/10g a)mlog m)

< exp<20—|— ym~/logm mlogm)

For all sufficiently large m, we have that (2c¢4+1)m+/log m—2C(a)mlogm < —C(a)mlog m.
Hence we have that for all r > n — m?logm,

Pn,m(BT,j) < exp (—C(a)mlog m) :

We have proved (2.39) for r > n — m?log m. |
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Proof of Lemma 3: We first have that

An - Z]an ﬂl 1 7'7.:.7 Z ]an ml 1 7'11.7)

A(n) A(on)
- Z ]P)nrm(QZZIBTi,j) Z 0
A(n)\A(vn)

Also, if (r1,...,7) € A(n) \ A(v,), there exists some i,1 < i < k, so that r; > v,. By

Lemma 4, we therefore have that

Pn,m(ﬂleBn,ﬁ

IA

Pn,m(Bn,j)
m AnP2
< max (exp (—C(a)mlogm),e 4, e 4 ) .

nB2 _ no B ~ 1
mlogm ~—  mlogm AnPlogm

by = a — [ < «, we have that % — 0 as n — oo. Hence the right hand side of

— 0 as n — oo0. Since

Since m ~ An®, we have that

nﬁ . .
the above equation is bounded above by e~ for all n sufficiently large. Since the
cardinality of A(n) \ A(v,) is at most n*, we have that

This proves Lemma 3. [ |

As a result of the above theorem, we strengthen Lemma 3 of [4].

Corollary 5. If p,,(n) denotes the number of partitions of n into m summands, then

Pm(n) ~ % ( :;11 >

3 Proof of Theorem 2

if and only if m = o(n'/?).

In this section, we let m be as in (1.2) with 3 < o < 3. We let « be such that j,
defined in (1.4) is an integer. For positive integers r and j, define C.; = C, ;(m,n) to
be the event that the number r occurs exactly j times in the composition of n into m
summands. For any fixed integer k > 1, we define Sy ; = S ;(t;n) as in (2.1). We claim

that Theorem 2 follows from the following Proposition.
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Proposition 2. For j > j, + 1, we have that
Sl,j(O; TL) — 0 (31)

as n — 0o. For j = j, and for any fixed integer k > 1, we have that

gk
Skja(tsn) —> -

i (3.2)

as n — 0o, where § is as in Theorem 2.

Proof of Theorem 2 (assuming Proposition 2): The proof is analogous to the proof of

Theorem 1. ]

In the rest of the section, we prove Proposition 2. For a positive integer j, we
define B, ; = B, j(m,n) to be the event that the number r occurs at least j times in a

composition of n into m summands. Choose ¢ € (0, 1) such that

a 1l -«
— <<
2 2

-6

and define v,, = n'=° and

(51 =9 +1-— 20(, 52 = — (5, 53 =20 — o and (50 = Hlin(51,§2,53). (33)

The relations (A1) and (A5) continue to hold in the case of compositions. Also, for fixed

integers 71, 7o > 1, we have

B2) —~ = L (1+0(%)) = n%(l—f-O(n%o)) for any fixed v > 0 and for all

(B3) 2 =0(%) =0(2) =0 (=) = 0 ().
The proofs are analogous to the corresponding proofs for (A2)-(A4).

Let A(.) be as defined in the equation preceding (2.1). As in the case of partitions,

we claim that the proof of Proposition 2 follows from the following three lemmas.

Lemma 6. Let j,k > 1 be any two fized integers. We have that

) 2\ F=ia)+1
< 3 Panlaug) = 3 Bun(ChiCo) = o(™) "
A(vn

n
A(vn)
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Lemma 7. Let j,k > 1 be any two fixed integers. We have that

- 1 e\ " [m@-1\" 1
. 1 1
;)anm(”lle) T (j!j) ( i1 ) (1 o (n‘s)) |

Lemma 8. Let j,k > 1 be any two fixed integers. We have that

0<2an N1 Bryj) Zan N Brg) < e
A(n)

Proof of Proposition 2 (assuming Lemmas 6-8): The proof is analogous to the proof
of Proposition 1. To prove (3.1), we let k =1 and ¢t = 0 in (2.1). Thus ¢, = 2 = 0 and

S BulCrs) = > Pon(Cry) S L+ 1
A(n

1<r<n

where I; and I, are as defined in the proof of Proposition 1 with P, ,,, replaced by Ipnm

Analogous to (2.8), we have from Lemma 7 that for sufficiently large n,

et [im2i-1 1 m2 J=Ja
L = — . 14+ 0 <4——A¥H [ .
=55 (5) (o () =455 (5)

J =)
Since 7 > j, + 1, we have <m—2> =0 (%2) and therefore that

2
[1=O(m>—>0

n

as n — 00. From Lemma 8, we have that

Hence we have that I; + I, — 0 as n — oo. This proves (3.1).
To prove (3.2), we write Skj, = >4 P (NF,Cy i) = S1 — So + S where Sy, S,
and Sz are as defined in the proof of Proposition 1. From Lemma 7 and (A5) we have

that
1 (e dat\* /p2ia—1\* 1
s = u(5m) (i) (e ()
gk 1 gk
= kl<1+0(1)) (1+O (@)) — E

as n — oo where 5 is as defined in Theorem 2.
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It suffices to show that Sy — 0 and S3 — 0 as n — co. To estimate S; we use the
fact that C,; C B, ;. Analogous to (2.9), we therefore have that

S3<2an ﬁl 1 Tl] Z]an ml 1 7"1])
A(n)

A(vn)
nd
From Lemma 8, we therefore have that S5 < e= "% — 0 as n — oc. Finally, letting
J = Jo in Lemma 6, we have that Sy = O (%) — 0 as n — oo. n

We prove Lemmas 6, 7 and 8 in that order.

Proof of Lemma 6
For positive integers j > 1 and j + 1 <r <n — 1, define the quantity P, ,(r,J) as

_m _ m+l _ mar—j-1
ﬁn,m(r7j> _ (1 n) (1 n ) (1 n )

(- (- 22) (- 2)

and define for r > j,

. . Py (r, J)wnm(j) i r>j+1

where w, . (5) = [T, (=),

The proof of Lemma 6 is now obtained in three steps.
Step 1: We obtain a relation between P, and t(.,.). and estimate t(r, j) for a suitable
range of 7.

Step 2: We obtain a relation between probabilities of the events B, ; and the quantity

t(r, j) and obtain an asymptotic expression for ) | ¢(r, j) as r varies over a certain range.
Step 3: We convert sums involving the probabilities of the events B, ; into sums involv-

ing the function ¢(.,.) to complete the proof of Lemma 6.

Step 1: We have the following relation.

Let k > 1 be any fized integer and let jo = 0, j1, ..., jx be fized integers. Letn =Y " X,
be a randomly chosen composition of n into m parts. For positive integers r;, 1 < i < k,
let R = Zle rij and J = Zle g1 be such that R<n—1 and J < m —1. We have that

P (N M7 X = 11) = tam(R, J). (3.4)
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Proof of (3.4): Let C(n,m) denote the set of all compositions of n into m parts. We
have (see Andrews (1984)) that

#C(n,m) = ( ;__11 > :

Suppose that C,.(n, m) denotes the set of all compositions of n into m summands with r >
1 being the value of the first summand. The set C,.(n, m) has a one to one correspondence

with the set of all compositions of n — r into m — 1 summands. Therefore we have that

#er(n7m> = < Zl_—TQ_ ! ) :

Hence for r; > 2, we have

n—ry—1 )
Boo(Xy =ry) = Ponbm) ( m-2 (3.5)

#C(n,m) n—1
m—1

m—1
= (B27) % Pt

where
, mn—r—-1) (n—r—m+2)
P () (n—2) 7 (n—m+1)
m—r—-1) (n—ri—m+2) 1

= (n—m)....(n—'ﬁ) (n_2) (n_m_|_1) (n—m)...(n—ﬁ)

(L) (-7 o (L =)

n

(-H-3 -2

= Pm,n(/’nla 1)

For r; = 1, we have from (3.5) that

- m—1
an(Xl - 7”1) = n—1 - wnm<1>
Thus
I@)n m(Xl = Tl) - tn,m<rla 1) (3 6)



We now proceed by induction on n. Since all compositions are equally likely, we have
that

P (N L X =) = Prou(X0 = 1100, (3.7)

where

N J1 _ k Jitdi-1 _
5m,n - Pn—rl,m—l(miZQXi =7y N ml:Q mi=j171+1 Xz - 7‘1)

and N/, X; = 7| is taken to be empty if j; = 1. Letting R’ = r(j; — 1) + Zfﬁ rij, we
have by induction assumption that
IEanrl,mfl(ﬁzlzg)(i =r N mil:j;fl_zl_HXz = Tl) = tnfrl,mfl(Rlu J — 1)
From (3.6), we have that I?Pmm(Xl =711) = tpm(ri, 1). Hence from (3.7) we have that
I@)n,m(ﬁle ﬂgl:—;fl_;hq Xz = Tl) = tn,m(rla 1)tn—r1,m—1(R/7 J — 1)
Using the identity
tn,m(ra l)tn—r,m—l(,rlvj,) - tn,m<r + Tla j/ + ]-)
we get that
Py (Mg O X = 10) = tym(r + R, J) = tym(R, J).

This proves the induction step. [ ]

In what follows, we write t,, ,,,(7, j) as t(r, j). We complete Step 1 by estimating ¢(r, j)
for suitable range of r.

Let j, 71 > 1 be any two fixed integers. For all r < jiv,, we have

t@J)—e7?(%)j(L+O(i%)>. (3.8)

where the O(.) term is independent of r.
Proof of (3.8): We first let » > j 4+ 1 and obtain that

. r—j+1 .
-2 —1
log (M) - (log (1_M) g (1_%))
Wi pe n n

— R - R (3.9)
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1

41 (mAk—2)— (k41 1 k—2)!— (k4j—1)!
where R, = 2:]; (m+ )n( =D and Ry = S j+ > 2 (m+ lnl( =D We esti-

mate R; and Ry separately. For all » < jyv,, we have that

nd

Rlz(m—j—l)(r—j):@_jm+(j+1)r—j(j+1>:mr+0(;)_

Here and henceforth all O(.) terms are independent of 7. To obtain the above equation,
we use (B3) and get that

gm+ G+ Dr—jG+1) gm+ G+ Djion =50+ 1)
n n

IN

Also, we have

(m+k—-2)!—(k+j—1)
Ry = ZZ In
k=2 [>2
r—j+1 (m—]—l)
— ZZl—l{(m+k—2)l_1—|—(m+l€—2)l_2(k—|—j—1)+...
k=2 1>2 n
+(k+j-1)""}
N~ (m—j— 1)
< Y YT
k=2 1>2 n
. . -1
< Z(m—J—1)Z(T—J—1)<m+r_]_1)z1<ﬂz<m+r)
1>2 n n >2 n
-1
_ @m%—r(l_m—%r) . (3.11)
n n n

As in (3.10), we have that m” =0 (%) for all r < jyv,. Hence for all » < jiv,,, we have

(22 - of3) (-o(2))

- 0 (%) . (3.12)




Also,

oo(™) =0 ("anl_é) — 0 (n®).

n n n

Substituting the above two estimates into (3.11), we get

1 1

Substituting the estimates for Ry and Rs into (3.9) we have that

Hrj) = wam(j)e PR = e*%wn,m(j) exp (O (%) +0 (L))

nds
1

= ¢ W wpm(j)exp (0 (Té)) (by (B1))

= Pl (1 +0 <ni5)> '

To evaluate w,, ,(j) we have by definition that

N j
(") <t = ()
n n—j
We have from (B3) that

() = GV (=8) =) (oo ()
- @) (o (8)- €Y (o)

Analogously, <n—rfj)J = (%)J (1 +0 (%)) . Hence we have that

Thus

t(r,j) = e (%)j (1 +0 (%))2 .

To obtain (3.8) the above equation, we use (Al).

Step 2: In the case of partitions, we had defined an analogous function F' in (2.17) and

were able to obtain a relation between B, ,,(Nf_,B,, ;) and F(.,.) as in (2.30). Using

(2.30), we were able to convert sums regarding the probabilities of the events B, ; into

sums involving the function F. In the case of compositions, no such exact relation exists.

We therefore have the following result.
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Lemma 9. Let k > 1 be any fized integer and let j1, jo, ..., Jr be any fixed integers. For
all n sufficiently large and for all t, < r <ry < .. <71 <wv,, we have that

~ m’t(R, J 1
]P)Tl,m(mf:IBTz»jz) = ( ) (1 +0 <%)>

Hf:le!
2\ J
- e (MY (oL (3.13)
[T— ! n nf

where R = Zle rigi and J = Zf:l Ji-

Proof: Let n = )", X; be a randomly chosen composition of n into m parts. Let
ry < ro < ... < 1 and suppose that the number r; occurs at least j; times for each
1 <i < k. Letting J = Zle Ji, we define Sy to be the set of all subsets of {1,2,...,m}
that have J elements. We order the elements of Sy as {e; }1<i<m, where

m(m—1)..(om—J+1) _m’

is the number of elements in S;. Let

T ={(p1,-sps) Zl(pl =r;) =Jji,1 <i <k}

=1
For e ={ly,....,I1;} € S; and p = (p1, ..., p;s) define
X(p7 e) = {Xh =D1, - XlJ = pJ}
and
Ae - UpGTX(p’ 6)'
Hence we have that
Pron (M1 Brjy) = Prn (Ur<icin, As) (3.15)

where A; = A.,. We obtain an upper bound and a lower bound for the above expression
using the inclusion-exclusion principle.

For an upper bound, we have from (3.15) that

anm(mleBrlajZ)S Z Pn,m(Az) (316)

1<i<iny

36



For a fixed e € S; and distinct p,p’ € T, we have that X (p, e) and X (p/, e) are disjoint
Hence for a fixed i, we have P, ,,(4;) = > peT P,.m (X (p,€;)) and therefore
S B = Y S B (X(pec).
1<i<my peT

1<i<my
For p € T and e € S;, we have from (3.4) that
P (X (p.€) = t(R,J)
where R = Zle rij; < Ju,. Hence
> P = > D HRJ) =i #THR, J)
1<i<myj peT
, we have from

1<i<my
where #7 denotes the number of elements in the set 7. Since #7 =

(3.14) that
iy (#T) = mjjﬁ(l_%>:ﬂ}_:ﬂ(l+0( >)
_ %Jl(wo( )

7 1 1

S5 (o) -5 (el)

Jp m Jp ndo

To obtain the last equality, we use (B3). Also, since R < Ju,, the expression (3.8) for

(R, J) holds. From (3.16), we therefore have that

S Z Pn,m(Az)

IFDnﬂn(mleBTsz)
1<i<my
1 m (27 1
= —— () (1+0(—=)). (3.17)
H1:1jl! n néo

To find a lower bound for (3.15), we have by inclusion-exclusion principle that
(3.18)

pnnn(méklemjz) > Z I@mm(Ai) - Z Pn,m(Ai N Aj)'
1<i<j<myj

1<i<ri;
We want to find an upper bound for the second summation in the above equation. We

first write
nmAﬂA i:mz m(A; N Aj).

>

1<i<j<my
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Let 1 < i < my be fixed. To evaluate the inner sum in the above expression, we write
7, to be the set of all e; € Sy so that j > ¢ + 1 and such that the number of elements

common to e; and e; is ¢. Since ¢ < J — 1, we have

i m(A; N A)) i D Pam(AiNA). (3.19)

q=0 e€Zy

For e € Z;, we have that

Iﬁn,m(‘élimAe) = ED m((Uper X (P, €:)) N (Uper X (P />6>>)

< 3 B (X(p.e) N X (0 0)).

PET p'eT

Since e € Z,, the event X (p, e;)NX(p’, €) is either empty or can be written as ﬂlz:‘]fq{Xil =
pi} for some distinct X;,’s and some integers p;. Hence by (3.4) we have that

P (X (p,e;) N X(p'e)) <tR,2J —q),

where R’ = 22721]51. Moreover, if we denote p = (p1, ..., ps) and p’ = (p!, ..., p/;), we have
that R=3 , m < R <Y p+ L, 1 = 2R < 2Jv,. By (3.8), we therefore have

that
/ _ _mwm /m\2J7a 1
t(R,2J—q) = e = <E> <1+%>
R'm (M 2/~ Rm /M 274
< 2 n (—) <2 n (—)
n n

for all sufficiently large n. Using the fact that #7 = <, we therefore have that

- - 2J— ! 2 . 2]

Poa(dind) < 33 2 (M) =0 (§> et ()

peT p'eT " p n

From (3.19), we get that

ZIanAmA)<2( p>2 Yy 1nq< >2J_q

Jj=i+1 q=0

where n, = #Z,. Let e € S; be fixed. The number of elements e’ € S; that have exactly
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J
q elements in common with e is n, =
q

j=it+1

my ~ |
> Pam(AinA4;) < 2J+1<‘]‘

—_ 2J+1 (‘]‘

_ 2]+1 <£

< 2J+2 i‘
> Jp

m—J
< 2/m7=4 Hence

—dq

J—1
Rm J— m 2J—q
DIBIC)

n
q=0

1
In obtaining the last inequality, we have used the fact that 17é < ,1mj < 2 for
sufficiently large n. We therefore have " !
my Mg 2 2\ J+1
~ J! m 1 [m
>3 Banltina) < w2 () %o ()
— & Ip m n
i=1 j=i+1
Rm M m2\ 7 m2\ 7
m n n

by (3.14). From (3.17) and the above equation, we get that

Z - ) Pua(Ain4y)

1<i<m 1<i<j<my
1 __Rm (m2
p— — n —
Jp n
1 __Rm (m2
p— — n —
JIp n

where

v (1vo(5) -
= (1+o(55) +o

by (B3). From (3.18), we therefore have

]fpmm(mleBm,jl ) > —e




From the above equation and (3.17), we get (3.13). u

From the above result, it is intuitive that sums involving the probabilities of the events
B,; can be converted into sums involving m’t(r, j). We therefore have the following
result. The proof is analogous to the proof of (2.26).

For a fixed integer k > 1, let ji, Jo, ..., Jx be positive integers and let J = Elejl and
Jp = Hle Jil. For all sufficiently large n we have

—Jt 2J-k

k
1 ) e m 1
—m’t rg,J | = — - (1 +0 (—)> ) (3.20)
Z p <; ) [T gilge n=* n%

tn<T1,72,--,TE<Un

Proof of Lemma 6: The proof is analogous to the proof of Lemma 1. We define A,, as
in (2.29) and as in (2.30), we get that

k
0<A, = Z an,m(mle,l;éwBﬂJ N By, j+1)
Afvn) w=1

where A(.) is as defined in the equation preceding (2.1). For any fixed integers ji, ..., jx

and 71 < r9 < ... <1, we have from Lemma 9 that
m’ b 1
N N B .
Pron (M1 Bryg,) = Tpt (lzl Tl J) <1 +0 <%))

where J, = (5!)*71(j+1)!. This is analogous to (2.30) with F'(.,.) replaced by %t(., )(1+0 (=)
Hence as in (2.31) we get that

k
1 1

tn <T1,ee,Tk<Un p =1

But from (3.20), we have that

1, k ‘ ‘ m2kit+2—k 1
S g (T nan) =g (1o ()

tn <T1,ee T <Up =1
(k) iyo k(j—ja)+1
where ¢, ; = (j!j)kil(g:))!t(jﬂ) and as in (2.32), we have that % =0 (%2> )
This completes the proof of Lemma 6. [ |

40



Proof of Lemma 7

Let A(.) and D(.) be as defined in the equations preceding (2.1) and (2.33), respectively.

We claim that Lemma 7 follows from the following two results.
We have that

We have that

3 ﬁmkjt <ijn,kj> = <”:;j_11>k0 (2). (3:22)

. ! n
A(vn)\D(vn)

Proof of Lemma 7 (assuming (3.21) and (3.22)): The proof is analogous to the proof of
Lemma 2. From (3.20), we have that

k . .
1 i ' . e—k‘jt m?]k—k 1
2 (Z””) - G PO

A(vn)
e It K m2i—1 k 1
(5 (5 (o) om

Hence

Z @n,m(ﬂ?ZIBlej)

A(vn)
= % > ﬁm’”t (gm,kj) (1 +0 (%)) (by (3.21))

D(vn)

(2 2 o)

A(Un) A(vn)\D(vn)
eI\ [\ * 1
((J’!j) (nﬂ'—l) (HO(%»
m2=1\* m 1
_ ( m—l) o(ﬂ) (1+0(%)) (by (3.23) and (3.22))
1 fe i\ /m¥-1\*
- H(jlj) (nj-l) o

| =




where

B 1 iiN* m 1
R - <1+o(%) -(£) o(ﬂ) (1+0(=))
1 m 1 1
In obtaining the last equation, we have used (B3) and (Al). m

Proof of (3.21): The proof is analogous to the proof of (2.33) with F(.,.) replaced by
—mbit(.,.). As in (2.36), we therefore get that

(IH*
1 e 1 -
5 et (St ) =2 X ot ()
D(vp) () =1 A(vn) (7) =1
But, from (3.20), we have that for (r,...,7%) € B, and R = Zle JTi,
1 , - 1 -
_kmkjt(Rv k]) = Pn,m<ﬂ§€:13n,j) (1 + O <_>)

(41 n%

- 1
it (100 ().

This proves (3.21). u

Proof of (3.22): The proof is analogous to the proof of (2.34) with F(.,.) replaced by
Lem¥it(.,.). We define the sets G;; as in the proof of (2.34). As in (2.38), we get that

GF
1 (& k(k — 1) |
S o (k) < MUY L ()
(41 =1 2 (79 =1

A(Un)\D(Un) 12

Since

k k—1
1 o 1 .
> (E m,kry) = 2 Gy (237“1+ > m,k:y> ,
’ =1 =2

G12 tn<ri,...,rk—1<vpn (‘7'

from (3.20), we therefore have that
k .
1 y ‘ . m2k]—kz+1 1
Z (j!)km ’t (erl’k]> = kI k1 1+0 o
Gi2 =1
m2=\" /m 1
= (%) () (o ()
m2-\* _m
- ( ni—1 ) 0 (E)
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where ¢, ; = W This proves (3.22). n

Proof of Lemma 8
We first estimate ]f"nym(Bm) for the range r > v,,.

Lemma 10. For all n sufficiently large and for all r > v,, we have that

B, (B, ;) < e o (3.24)

for some positive constant Cy.

Proof: Let n = »"" X; be a randomly chosen composition of n into m parts. We

have from (3.4) that
r 1— m+i—2
]P)n,m(Xl - 7”) = (1—7> m,n.
=2

7 n

_ m+i—2
For 7 > 2, we have that (1—"> — 1 (m=2)/n

— Tijn

that w,,, < 1. For any r, we therefore have that

<1l-— mT_2 Also, since m < n, we have

]P)n,m(Xl = T') S 2 (1 -

) e
“2() ()
)

—9
. 2(1—m

< 4(1—m_2) .
n

Also, B, ; C B,y = U2 {X; =r}. For all r > v,,, we therefore have that

Pn,m(Br,j) < ]P)n,m<U;11{Xz = T}) < m]P)mm(Xl = T)

—2\"
< 4m(1—m )
n

_r(m=2) _vnp(m—2) 9 _
dme™" n < 4dme n = 4me‘e

mn =9

IN

for all sufficiently large n. In the last inequality, we use 1 — x < e and in the third

inequality we use v, < r < n and hence that _rm=2) _2r _rm <2 — 9 _ypyp9,
n n n n
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Since m ~ An®, we have that —mn=° < —Csn% for some positive constant Cs and all n

sufficiently large. Hence, we have that for all sufficiently large n,
I[E’nym(BT’j) < dme2e~™ " < 4me2e=Csn < g~Can®
for some positive constant Cy smaller than Cs. [ |

Proof of Lemma 8 If (rq,....,1) € A(n) \ A(v,), there exists some 4,1 < i < k, so that

r; > v,. By Lemma 10, we therefore have that

P o b
Py (M1 By ) < BBy, ) < e,

The rest of the proof is analogous to the proof of Lemma 3. We define A, as in the proof
of Lemma 3. Using the fact that the cardinality of A(n) \ A(v,) is at most n*, as in the

proof of Lemma 3, we have that

A(n)\A(vn)

for some positive constant Cy less than Cy. [

4 Conclusion

In this paper, we have proved a conjecture of Yakubovich regarding limit shapes of slices

of partitions of an integer n when the number of summands m ~ An® for some a < %

We have proved that the probability that there exists a summand of multiplicity j in

a randomly chosen partition or composition of an integer n goes to zero asymptotically

with n provided j is larger than a critical value. As a corollary, we have strengthened

a result of [4] concerning the repeatability of summands in a randomly chosen integer
1

partition of n when a = 3.
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5 Appendix

Proofs of (A2)-(A5): (A2) Follows since f3 < (3, and hence 5y < S.
(A3) For r < jav,, we have

1

(n — jir)?

-
= s ()=o)
- .

In obtaining the last equality, we have used (A1).

(A4) In the first inequality we use a < %, in the second we use a > %, in the third we

use m ~ An® and in the fourth we use fy < g1 <1 — 2a.

(A5) Follows since m ~ An®. n

Proof of (2.16): We let J = j, and obtain from (2.13) that

et CR ) 625

for any fixed integer [ > 1 and for all » < jv,, where

Ki = (m—1—1)log (%) ~(m = {log (%)

and

Ja k—1 2k—1
(m—1—1)%*"1—(m—1)
Ky = Zak (n — )1 :
k=2

In (5.25) and henceforth, any O(.) term is independent of r. We evaluate K first. For
any integer k > 2, we have that

21
0 < (m=D*"—(m—1-1)""=>" ( ) (m — 1 — 1)%-1-h

l1=1 h

2k—1
m2k—2 Z ( le_ 1 ) _ (22k:—1 _ l)ka—Q‘
1

=1

IN
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Therefore

Ja 2k—1 2%k—1 Ja 2k—2
—1 — —[-1
K| < ka’(m ) (m ) < DZ(Q%—I _1)m—

k-1 k—1
where D = supy<;;, |ax|- By (A3), we have that (;’f) = <m—2> (-2 )kil

s n n—r

2

k-1 k-1
<m—> (1 +0 (n%o)) <2 (’%2> for all sufficiently large n. Hence by (A4) we have

|K|<2D(22ja‘1—1)§: m H—O m —o(L~
2l = n N n ) nbo )’

k=2

Also, we have

K = 1og((m_l)2) +(m—1—1)log (m—_l)2—2

m—17—1

1og(($:i))2) +2(m—1—1)log <1+#) _9.

For a fixed [ > 1 and m sufficiently large, we have

1 1 1 ?
1 1 = — _
og( +m—l—1> m—l—1+o<m—l—l>

Hence by (A4) we have

2(m—l—1)10g(m—_l) = 240

m-—1—1

Thus

ose(5) 0 ()
Substituting the estimates for K; and K in (5.25), we get that
iy~ (=) o))
(o) 5 o)
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But

<

(m=10>_m? 1_i > n
n—r n m) n-—

Also, by (A4), (1—%)2214—0( ) =1+0(=5) and by (A3), L~ =1+ 0 (=) -

L
m

Hence , X
Pon i q4n—=r) m 1
Phi(n—r) n * nfo
To obtain (5.25) from the above equation, we use (Al). n
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