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Abstract

In this paper, we study the size of the giant component CG in the random geo-
metric graph G = G(n, rn, f) of n nodes independently distributed each according
to a certain density f(.) in [0, 1]2 satisfying infx∈[0,1]2 f(x) > 0. If c1

n ≤ r2n ≤ c2
logn
n

for some positive constants c1, c2 and nr2n −→ ∞, we show that the giant compo-
nent of G contains at least n − o(n) nodes with probability at least 1 − o(1) as
n → ∞. We also obtain estimates on the diameter and number of the non-giant
components of G.

Key words: Random geometric graphs, size of giant component, number of com-
ponents.
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1 Introduction

Consider n nodes independently distributed in S = [0, 1]2 each according to a certain
density f(.) and say two nodes u = (xu, yu), v = (xv, yv) ∈ R2 are connected to each other
if the Euclidean distance d(u, v) between them is less than rn. We denote the resulting
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random geometric graph (RGG) as G = G(n, rn, f). Throughout the paper we assume
the density f on [0, 1]2 satisfies

0 < inf
x∈[0,1]2

f(x) ≤ sup
x∈[0,1]2

f(x) < ∞. (1)

Random graphs as described above are important in many applications and properties
like emergence of giant component, connectivity and area coverage have been studied
before (Penrose (2003), Gupta and Kumar (1998), Franceschetti et. al (2009), Muthukr-
ishnan and Pandurangan (2005)) for a variety of random graphs.

For the case of RGGs, we recollect the pertinent results below for convenience.

Theorem. (Gupta and Kumar (1998), Penrose (2003)) If r2n = c1
n

for some constant
c1 > 0 sufficiently large and the density f(.) satisfies (1), then:
(a) There exists a constant ε = ε(c1) > 0 so that

P(G contains a component CG such that #CG ≥ εn) −→ 1

and
#CG

n
−→ 2ε in probability

as n → ∞. If r2n = c2
logn
n

for some constant c2 > 0 and the density f(.) satisfies (1), we
have:
(b) If c2 is sufficiently large, then P(G is connected) −→ 1 as n → ∞.
(c) If c2 is sufficiently small, then lim infn P(G is not connected) > 0.

Here and henceforth any constant will always be independent of n and #CG denotes
the number of nodes in CG. Part (a) of the above result describes the size of the giant
component CG of G. Parts (b) and (c) describe the behaviour of G in the densely con-
nected regime. Indeed when the density f is uniform, parts (b) and (c) are proved in
Corollary 3.1 and Corollary 2.1, respectively, of Gupta and Kumar (1998). The proof
for non-uniform f satisfying (1) is analogous. Part (a) and related results are discussed
in Chapter 11 of Penrose (2003).

Not much is known about the graph for intermediate values of rn. To our knowledge,
even the size of the giant component is not known as a function of rn. Our main con-
tribution in this paper is developing novel techniques to analyze the structure of giant
component in the intermediate range i.e., when c1

n
≤ r2n ≤ c2

logn
n

for sufficiently large
positive constants c1, c2 and obtain estimates on the size and diameter of non-giant com-
ponents (Theorem 1). The advantage of our approach is that it can also be used to study
related problems in RGGs.

Before we state the main result, we define the diameter of a graph. The diameter of
any subgraph H of G is defined as

diam(H) = sup
u,v

dH(u, v),
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where dH(u, v) represents the graph distance between the nodes u and v and the supre-
mum is taken over all pairs u, v belonging to the vertex set of H. We state the main
result of the paper below. Let TG denote the collection of all components of G. For a
fixed β > 0 we define the following events: Let

Un = Un(β) =

{
#TG ≤ 1

r2n
e−βnr2n

}
denote the event that the number of components of G is less than 1

r2n
e−βnr2n ,

Vn = Vn(β) =
{
there exists C0 ∈ TG such that #C0 ≥ n− ne−βnr2n

}
denote the event that there exists a (giant) component C0 in TG whose size is at least
n− ne−βnr2n and

Wn = Wn(β) = Vn

⋂{
sup

C∈TG\C0

diam(C) ≤ 1

β

(
log n

nr2n

)2
}
.

denote the event that the diameter of every component of G other than the giant com-

ponent C0 is less than 1
β

(
logn
nr2n

)2
.

Theorem 1. Consider the graph G = G(n, rn, f), where the density f(x) satisfies (1)
and the radius rn satisfies

c1
n

≤ r2n ≤ c2 log n

n
(2)

for some fixed positive constants c1 and c2. Let Un and Wn be events as defined above and
fix δ > 1. If nr2n −→ ∞ as n → ∞, there exists a positive constant β = β(δ) sufficiently
small so that:
(i) P(Un) ≥ 1− e−βn1−1/δ

and
(ii) P(Wn) ≥ 1− e−βnr2n , for all n ≥ 1.

The above result essentially says whenever rn is in the intermediate range as in (2), a
giant component of G exists with very high probability and moreover it contains nearly
all the nodes.

2 Proof of Theorem 1

Divide the unit square S into small rn
∆

× rn
∆

closed squares {Si}i and choose ∆ = ∆n ∈
[4, 5] so that ∆

rn
is an integer. We choose such a ∆ so that nodes in adjacent squares can

be joined by an edge in G. Define Si to be occupied if it has at least one node and vacant
otherwise.
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2.1 Proof of (i)

We first count the number of vacant squares in the set {Si}i. We then use the fact that
for each vacant square Sj, the

8rn
∆

× 8rn
∆

square with same centre as Sj intersects at
most 64 distinct components of G to prove (i). The choice of 8 is not crucial and any
integer larger than 2 suffices since we only need to estimate the number of components

“associated” with Sj. The total number of squares is t =
(

∆
rn

)2
. To obtain an estimate

on the total number of vacant squares, we let {Zi}1≤i≤t be Bernoulli random variables
taking values either zero or one. We set Zi = 1 if and only if the square Si is vacant
which happens if and only if none of the n nodes are in Si.

We note that the sum
∑

i Zi equals k if and only if there are exactly k vacant squares.
To compute the probability that

∑
i Zi = k, we proceed as follows. The number of ways

of choosing k squares from a total of t squares is
(
t
k

)
. The total area of the k squares is

k r2n
∆2 ≥ kr2n

25
since ∆ ≤ 5. All the k squares chosen are empty with probability at most pnk ,

where

pk = 1− k inf
i

∫
Si

f(x)dx ≤ 1− β0kr
2
n ≤ e−β0kr2n (3)

and β0 =
1
25
infx∈[0,1]2 f(x) > 0. Thus using the inequality

(
n
k

)
≤
(
ne
k

)k
, we have

P

(
t∑

i=1

Zi ≥ k

)
≤

t∑
j=k

(
t

j

)
pnj

≤
t∑

j=k

(
te

j

)j

pnj

≤
t∑

j=k

(
te

j

)j

e−jβ0nr2n

≤
t∑

j=k

(
te

k

)j

e−jβ0nr2n .

Setting k = ete−θnr2n for some constant θ < β0 to be determined later and letting β1 =
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β0 − θ, we get for all sufficiently large n that

P

(
t∑

i=1

Zi ≥ ete−θnr2n

)
≤

t∑
j=k

e−jβ1nr2n

≤ e−kβ1nr2n

1− e−β1nr2n

≤ 2e−kβ1nr2n

= 2 exp
(
−ete−θnr2nβ1nr

2
n

)
= 2 exp

(
−β1e∆

2ne−θnr2n

)
≤ 2 exp

(
−16eβ1ne

−θnr2n

)
,

where we use t = ∆2r−2
n and ∆ ≥ 4, respectively, in obtaining the last two inequalities.

In what follows, the constants {βi}i≥1 are not necessarily same in each occurrence. Let
δ > 1 be any constant. Since r2n ≤ c2

logn
n

for some c2 > 0 (see (2)), we choose θ sufficiently
small so that

θnr2n ≤ θc2 log n ≤ 1

δ
log n.

This implies that

P

(
t∑

i=1

Zi ≥ ete−θnr2n

)
≤ 2 exp

(
−16eβ1n

1−1/δ
)
.

Also, for each vacant square Sj, the
8rn
∆

× 8rn
∆

square with same centre as Sj intersects at

most 64 distinct components of G. Since t = ∆2

r2n
≥ 16

r2n
, we get from the above equation

that

P
(
#TG ≥ 212er−2

n e−θnr2n

)
≤ 2 exp

(
−16eβ1n

1−1/δ
)

and (i) follows.
The rest of the proof is devoted to establishing (ii). The idea is to tile S horizontally

and vertically into rectangles and show that each rectangle contains a crossing of edges
in the longer direction with high probability. We then join together these crossings to
form a “backbone” and show that it forms a part of the giant component. Throughout,
we define Kn = logn

nr2n
and allow Kn to be an integer. (Later, we show that the tiling is

(slightly) modified if Kn is not an integer without any change in the argument.)
From (2), we have that Kn ≥ 1

c2
. Let R be any m2rn

∆
× m1Knrn

∆
rectangle contained

in S which contains exactly m1m2Kn of the squares from {Si}i. We define a left-right
crossing in R to be any set of distinct squares L = (S0, S1, ..., St) such that:
(a) For every i, the squares Si and Si+1 share an edge.
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Figure 1: Occupied left-right crossing in the rectangle R for some ∆ ≥ 4.

(b) S0 intersects the left face of R and St intersects the right face.
If every square in L is occupied, we say that L is an occupied left-right crossing. Figure 1
illustrates an occupied left-right crossing in a m2rn

∆
×m1Knrn

∆
rectangle R. The nodes in the

rectangle are illustrated as dark dots and the sequence of grey squares form an occupied
left-right crossing in R. We need the following estimate on the probability of occurrence
of an occupied left-right crossing in R.

Lemma 2. For n ≥ N0 (independent of the choices of m1 and m2), the event that an
occupied left-right crossing occurs in R has probability at least

1− m2

nm1δ1
(4)

for some δ1 > 0 (independent of the choices of m1 and m2).

We now use the above estimate to construct a “backbone” of G and thus prove (ii).
Before we do so, we prove Lemma 2. The proof is independent of the rest of the proof
of Theorem 1.
Proof of Lemma 2: To prove (4), we identify the centre of each square Si contained in R
with a vertex in Z2 in the natural way. Thus the rectangle R has an equivalent rectangle
R̃ consisting of sites in Z2. Say that a site is occupied if the corresponding square Si is
occupied and vacant otherwise.

We now use the fact that either a left-right occupied crossing or a top-bottom vacant
crossing must always occur in R̃ but not both (see for e.g., Bollobas and Riordan (2006)
or Grimmett (1999)). To evaluate the probability of a vacant top-bottom crossing, we
fix a point x in the top face of R̃ and consider a vacant crossing of length k starting from
x (see Figure 2 for illustration). The area enclosed by the corresponding path Π1 in R2

is kr2n
∆2 ≥ kr2n

25
, since ∆ ≤ 5. The probability that a particular node is present in Π1 is (see

also (3)) ∫
Π1

f(x)dx ≥ kβ0r
2
n,
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Figure 2: Vacant top-bottom crossing of a 4× 9 rectangle in Z2 from the site x. Circled
sites correspond to occupied squares.

where β0 = 1
25
infx∈[0,1]2 f(x) > 0. Therefore the probability that the path Π1 is vacant

is less than
(1− kβ0r

2
n)

n ≤ e−knβ0r2n .

Since the number of self-avoiding paths of length k starting from x is less than 4k

(at each step no more than four choices are possible), the probability that there exists
a vacant path of k squares starting from the square Sx with centre x and contained
in R is bounded above by 4ke−knβ0r2n . Any top-bottom crossing from starting from Sx

must necessarily contain at least m1Kn and no more than m1m2Kn squares. Therefore
the probability that there exists a vacant path starting from Sx and contained in R is
bounded above by

m1m2Kn∑
k=m1Kn

4ke−kβ0nr2n ≤ (e−β1nr2n)m1Kn

for a fixed constant 0 < β1 < β0 and all n ≥ N0, for some constant N0 independent of
the choices of m1 and m2. In the above, we use the fact that nr2n −→ ∞ and therefore
that 4e−β0nr2n < e−β1nr2n for all n sufficiently large. Since there are m2 possibilities for Sx,
the probability that there exists a vacant top-bottom crossing of R is bounded above by

m2(e
−β1nr2n)m1Kn = m2e

−β1m1 logn = m2

(
1

nβ1

)m1

since Kn = logn
nr2n

.

2.2 Proof of (ii)

Tile the square S horizontally into a set of rectangles RH each of size 1 × MrnKn

∆
and

also vertically into rectangles each of size MrnKn

∆
× 1 for some fixed constant M ≥ 1 to

be determined later. Let R be a fixed 1× MKnrn
∆

rectangle in the tiling RH and let δ > 1
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be a fixed constant. From (4), we know that R contains an occupied left-right crossing
L = (S0, S1, ..., St) with probability at least

1− ∆

rn

1

nMδ1
≥ 1− ∆

√
c1

√
n

nMδ1
≥ 1− 1

nδ+2

if M is sufficiently large. The first inequality above is because r2n ≥ c1
n
for some constant

c1 (see (2)). Let EH
n denote the event that every rectangle in RH contains an occupied

left-right crossing in G satisfying (a)-(b) described above. The number of rectangles in
RH is less than

∆

MrnKn

≤ ∆

Mrn

1

c2
≤ ∆

Mc2

√
n

√
c1

≤ D1

√
n

for some constant D1 > 0. In evaluating the above we again use (2). The first inequality
is because Kn = logn

nr2n
≥ 1

c2
by our choice of rn in (2) and the second inequality follows

because r2n ≥ c1
n
. It follows that

P(EH
n ) ≥ 1− D1

√
n

nδ+2
≥ 1− 1

nδ+1
,

for all n sufficiently large. Following an analogous analysis for the vertically tiled rect-
angles described in the first paragraph of the proof and defining an analogous event EV

n ,
we have that P(EV

n ) ≥ 1− 1
nδ+1 . Thus if En = EH

n ∩ EV
n , we have that

P(En) ≥ 1− 2

nδ+1
. (5)

In Figure 3(a), we depict the occurrence of the event En. We see that the event En

results in a connected set of rn
∆
× rn

∆
squares B ⊆ {Si}i forming a “backbone” of crossings

in S. Let C0 denote the component of G containing nodes in B.
In the above, we have assumed thatKn = logn

nr2n
is an integer. If not, we setKn = d logn

nr2n
e

and starting from the base of the square S, we perform an analogous horizontal tiling
as above. The only difference is that the two topmost rectangles overlap as seen in
Figure 3(b). A similar situation occurs in the vertical tiling. Following an analogous
analysis as above, we obtain (5) and a corresponding backbone. The rest of the argument
below remains unchanged.

We note that the tiling of S into vertical and horizontal rectangles induces a tiling of S
(not necessarily disjoint) into MrnKn

∆
× MrnKn

∆
size squares {S ′

i}i. (If Kn is an integer then
the tiling is disjoint as seen from Figure 3(a)). If the event En occurs, then the resulting
backbone B (and hence the component C0) intersects each square S ′

i “vertically” and
“horizontally” as shown in Figure 3(a). Therefore, if there exists a connected component
C of G distinct from C0, it must necessarily be contained in a 2MKn

∆
× 2MKn

∆
square with

centre at some rn
∆

× rn
∆

square Si. In Figure 4, the square A1A2A3A4 of Figure 3(a) is
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(a) The event En in the unit square. Each
wavy line is an occupied left-right crossing
of rn

∆ × rn
∆ squares as in Figure 1.
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(b) The tiling obtained when Kn is not an
integer. The two topmost 1 × MKnrn

∆ rect-
angles in the tiling overlap.

Figure 3: Construction of the backbone.�
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Figure 4: The square A1A2A3A4 in Figure 3(a) is magnified to show a component not
attached to the backbone.
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magnified and a component C distinct from C0 is shown. The centre of the hatched
rn
∆
× rn

∆
square is also the centre of A1A2A3A4.

Clearly in such a component C, the minimum number of edges traversed in going

from any node u to any other node v is at most
(
2MKn

∆

)2
< (2MKn)

2 and therefore
diam(C) < (2MKn)

2. To summarize, so far we have proved that if event En occurs, then
a backbone B and hence the component C0 containing all the nodes in squares comprising
the backbone and possibly other nodes exist. Moreover, any component of G distinct
from C0 has diameter less than (2MKn)

2. Recall that TG is the set of all components of
G and for θ > 0 let

Fn = Fn(θ) =

 ∑
C∈TG : diam(C)<(2MKn)2

#C < ne−θnr2n


denote the event that the sum of sizes of components whose diameter does not exceed
(2MKn)

2 is less than ne−θnr2n .We have the following estimate on probability of occurrence
of the event Fn.

Lemma 3. We have
P(Fn) ≥ 1− e−θ1nr2n (6)

for some positive constants θ and θ1.

Before we prove the above result, we complete the proof of (ii). Whenever En ∩ Fn

occurs, the component C0 contains at least n− ne−θnr2n nodes and is therefore the giant
component. Also, the diameter of any non-giant component is less than (2MKn)

2.
Choosing θ1 > 0 smaller if necessary, we have from (5) and (6) that the event En ∩ Fn

occurs with probability

P(En ∩ Fn) ≥ 1− e−θ1nr2n − 2

nδ+1
≥ 1− 2e−θ1nr2n

for all n sufficiently large. In the above estimate, we have used the fact (2) that nr2n ≤
c2 log n for some positive constant c2. This proves (ii) and hence Theorem 1. The proof
of Lemma 3 is independent of the proof of Theorem 1 and is provided below.

Proof of Lemma 3: Say that a set of squares C ⊆ {Si}i is a cluster if they form a
connected set in R2. We say that the cluster C is occupied if every square in the cluster
is occupied.

Fix i and consider the square Si. If Si is occupied, denote Ci to be the maximal
occupied cluster containing Si. Set Xi to be the number of nodes in Ci if Ci is contained
in the 2(2MKn)

2rn×2(2MKn)
2rn square Sin

i with same centre as Si. Otherwise set Xi to
be zero. Thus,

∑
iXi is an upper bound on the sum of size of components whose diameter

is less than 2(2MKn)
2. In the beginning of the proof of (ii), we recall that to obtain the
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Figure 5: The occupied cluster Ci and the set of vacant squares π1 (marked by the symbol
Π) are shown for the square Si that is denoted by the dark square.

estimate (2MKn)
2 on the diameter of a component not attached to the backbone, we had

considered a 2MKn × 2MKn square appropriately centred (like A1A2A3A4 in Figure 4).
In this subsection, however, we are not given any information regarding the backbone.
Therefore, to obtain a bound on the size of a component whose diameter is less than
(2MKn)

2 the only information we have is that the component is enclosed in a (slightly
bigger) 2(2MKn)

2 × 2(2MKn)
2 square.

We first estimate P({#Ci = k} ∩ {Xi 6= 0}) for k ≥ 1. Suppose that Xi 6= 0 and
therefore that the cluster Ci is contained in the square Sin

i . Our aim now is to obtain a
sufficiently large number of vacant squares “attached to” Ci. Consider Ci as a set in R2

and let ∂1, ..., ∂T be its disjoint boundaries. Each ∂i is a circuit of edges (ei,1, ..., ei,Li
) (not

necessarily self-avoiding) such that ei,1 and ei,Li
touch each other. Since Ci is connected,

one of the boundaries, say ∂1, contains all squares of Ci and all the other boundaries in
its interior. Also, any square S1,j that has an edge e1,j ∈ ∂1 and not contained in Ci is
necessarily vacant.

Let π1 denote the set of distinct vacant squares that contain some edge in ∂1. The
path ∂1 contains L1 ≥ 2 edges of which at least L1

2
of them have an endvertex in the

interior of S. This implies that #π1 ≥ L1

8
. In Figure 5, the dark grey square is Si and

the grey squares form Ci. The set of vacant squares π1 is shown by the squares marked
Π and the curve of thick lines represents ∂1.

To compute the probability that such a vacant set of squares occurs, we set the centre
of Si to be the origin and draw X− and Y− axes parallel to the sides of Si. Let e1,last be
the “last” edge in ∂1 that intersects the X−axis at (xlast, 0). In other words, if an edge
e1,j in ∂1 intersects the X−axis at (xj, 0), then xlast > xj. In Figure 5, the edge e1,last
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is also shown. Clearly, there are at most L1 possibilities for the location of edge e1,last.
Also, the number of choices for ∂1 starting from e1,last is less than 4L1 .

Now, the total area of squares in π1 is at least L1

8
r2n
∆2 ≥ L1

8
r2n
25

since ∆ ≤ 5. Given
∂1, with probability at least L1

8
β0r

2
n a particular node is present in π1 where β0 =

1
25
infx∈[0,1]2 f(x) > 0 is as in (3). Therefore with probability at most(

1− 1

8
β0L1r

2
n

)n

≤ e−β0L1nr2n/8

none of the n nodes are present in π1.

If Ci contains k squares, then the number of edges L1 in ∂1 satisfies
√
k
4

≤ L1 ≤ 4k.
The upper bound is clear. To see why the lower bound is true, suppose that ∂1 has less

than
√
k
4

edges. It is then necessary that ∂1 is contained in the
√
k
2

rn
∆
×

√
k
2

rn
∆

square Spk

with the same centre as Si. The square Spk contains at most k
4
squares from {Sj}j. This

is a contradiction since the path ∂1 contains Ci in its interior and Ci contains k squares.
Thus for k ≥ 1 we have from the above discussion that

P({#Ci = k} ∩ {Xi 6= 0}) ≤
∑

√
k
4

≤l≤4k

e−lβ0nr2n/8l4l

≤ 4k
∑

√
k
4

≤l≤4k

(
4e−β0nr2n/8

)l
≤ ke−θ0nr2n

√
k (7)

for a fixed positive constant θ0 <
β0

40
and all n ≥ N0, where N0 is a constant that does not

depend on k. Here we use the fact that nr2n −→ ∞ and hence that 4e−β0nr2n/8 < e−5θ0nr2n

for some constant θ0 > 0 and for all sufficiently large n. Letting N(A) denote the number
of nodes in the set A, we therefore have that

EXi = E
∑
C0

∑
Sj∈C0

N(Sj)11(Ci = C0)11(Xi 6= 0)

= I1 + I2,

where the summation in the first line is over all clusters C0 that contain the square Si

and are contained in Sin
i . In the above equation,

I1 = E
∑
C0

∑
Sj∈C0

N(Sj)11(Ci = C0)11(N(C0) ≥ 2ekβ0nr
2
n)11(Xi 6= 0),

I2 = EXi − I1 and β0 is as in (3).
To evaluate I1 and I2, we need a couple of preliminary estimates. For a fixed C0

containing k squares, we estimate P(N(C0) ≥ 2ekβ0nr
2
n) first. Indeed since a particular

12



node is present in C0 with probability at most pk = kβ0r
2
n (see (3)), we have that

P(N(C0) ≥ 2enpk) ≤
∑

αnpk≤j≤n

(
n

j

)
pjk

≤
∑

αnpk≤j≤n

(
ne

j

)j

pjk

≤
∑

αnpk≤j≤n

(
ne

2enpk

)j

pjk

≤
∑

j≥αnpk

(
1

2

)j

≤ e−2β2knr2n (8)

for some positive constant β2 independent of k, i and the choice of C0. In the third

inequality above, we have used the estimate
(
n
k

)
≤
(
ne
k

)k
. Also, the expected number of

nodes in any square Si is bounded above by

sup
j

EN(Sj) = n sup
j

∫
Sj

f(x)dx ≤ n sup
x∈[0,1]2

f(x)
r2n
∆2

≤ D1nr
2
n (9)

for some positive constantD1 since supx∈[0,1]2 f(x) < ∞ (see (1)) and ∆ ≥ 4.Analogously,

sup
j

EN(Sj)
2 ≤ D2(nr

2
n)

2 (10)

for some positive constant D2.
To evaluate I1, we now use Cauchy-Schwarz inequality to obtain that

I1 ≤
∑
k≥1

∑
#C0=k

∑
Sj∈C0

EN(Sj)11(N(C0) ≥ 2ekβ0nr
2
n)

≤
∑
k≥1

∑
#C0=k

∑
Sj∈C0

(EN2(Sj))
1/2P(N(C0) ≥ 2ekβ0nr

2
n)

1/2

≤ D3nr
2
n

∑
k≥1

∑
#C0=k

∑
Sj∈C0

e−kβ2nr2n

for some positive constant D3 independent of i. In obtaining the final estimate, we use
(10) and the notation

∑
#C0=k refers to the sum over all clusters C0 containing k squares

of which one of them is Si. Since the number of clusters of size k is less than 8k, we get

I1 ≤ D3nr
2
n

∑
k≥1

k8ke−kβ2nr2n ≤ D4nr
2
ne

−β3nr2n

13



for some positive constants D4 and β3, independent of i.
To evaluate I2 we write

I2 = E
∑
k≥1

∑
#C0=k

∑
Sj∈C0

N(Sj)11(Ci = C0)11(N(C0) ≤ 2ekβ0nr
2
n)11(Xi 6= 0)

≤ 2eβ0nr
2
nE
∑
k≥1

k
∑

#C0=k

∑
Sj∈C0

11(Ci = C0)11(Xi 6= 0)

= 2eβ0nr
2
nE
∑
k≥1

k2
∑

#C0=k

11(Ci = C0)11(Xi 6= 0)

= 2eβ0nr
2
n

∑
k≥1

k2P({#Ci = k} ∩ {Xi 6= 0})

≤ 2eβ0nr
2
n

∑
k≥1

k3e−θ0nr2n
√
k

≤ D5nr
2
ne

−β5nr2n

for some positive constants D5 and β5 independent of i, where the second inequality
follows from the estimate (7). From the estimates of I1 and I2, we therefore have that

EXi ≤ D6nr
2
ne

−β6nr2n (11)

for some positive constants D6 and β6 independent of i.
The number of squares in {Si}i is ∆2r−2

n . By Markov inequality, we therefore have
for θ > 0 that

P

∆2r−2
n∑

i=1

Xi ≥ ne−θnr2n

 ≤
∑

i EXi

n
eθnr

2
n

≤ (∆2r−2
n )

D6nr
2
ne

−β6nr2n

n
eθnr

2
n

≤ D7e
−θ1nr2n

for some positive constants θ1 andD7, if θ is sufficiently small. Since Fn =
{∑

iXi < ne−θnr2n

}
,

this proves the lemma.

Acknowledgement

I thank Professor Rahul Roy for a careful reading of the manuscript and a referee for
comments which led to an improvement of the paper. The support from a National
Board for Higher Mathematics scholarship and a Sandwich PhD programme scholarship
is gratefully acknowledged.

14



References

[1] B. Bollobas and O. Riordan. (2006). Percolation. Academic Press.

[2] M. Franceschetti, O. Dousse, D. N. C. Tse and P. Thiran. (2007). Closing Gap in
the Capacity of Wireless Networks via Percolation Theory. IEEE Trans. Inform.
Theory, 53, 1009–1018.

[3] P. Gupta and P. R. Kumar. (1998). Critical Power for Asymptotic Connectivity in
Wireless Networks. Stoch. Process and Applications, 2203–2214.

[4] G. Grimmett. (1999). Percolation. Springer Verlag.

[5] S. Muthukrishnan and G. Pandurangan. (2005). The Bin-Covering Technique for
Thresholding Random Geometric Graph Properties. Proc. SODA 2005, 989–998.

[6] M. Penrose. (2003). Random Geometric Graphs. Oxford.

15


