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Abstract

In this work we introduce a new urn model with infinite but countably many colors indexed by
an appropriate infinite set. We mainly focus on d-dimensional integer lattice and replacement
matrix associated with bounded increment random walks on it. We prove central and local
limit theorems for the expected configuration of the urn and show that irrespective of the null
recurrent or transient behavior of the underlying random walk, the urn models have universal
scaling and centering giving appropriate normal distribution at the limit. The work also provides
similar results for urn models corresponding to other infinite lattices.
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1 Introduction

Pólya urn schemes and its various generalizations with finitely many colors have been widely studied
in literature [16, 11, 10, 1, 2, 14, 12, 13, 9, 5, 6, 8], also see [15] for an extensive survey of many of
the known results. The model is described as follows:

We start with an urn containing finitely many balls of different colors. At any time
n ≥ 1, a ball is selected uniformly at random from the urn, the color of the selected
ball is noted, the selected ball is returned to the urn along with a set of balls of various
colors which may depend on the color of the selected ball.

∗
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The goal is to study the asymptotic properties of the configuration of the urn. Suppose there
are K ≥ 1 different colors and we denote the configuration of the urn at time n by Un =
(Un,1, Un,2 . . . , Un,K), where Un,j denotes the number of balls of color j, 1 ≤ j ≤ K. The dy-
namics of the urn model depends on the replacement policy which can be presented by a K ×K

matrix, say R whose (i, j)th entry is the number of balls of color j which are to be added to the
urn if the selected color is i. In literature R is termed as replacement matrix. The dynamics of the
model can then be written as

Un+1 = Un +Ri (1.1)

where Ri is the i
th row of the replacement matrix R if the (random) color of the ball selected at

the (n+ 1)th draw is i.
A replacement matrix is said to be balanced, if the row sums are constant. In that case the

asymptotic behavior of the proportion of balls of different colors will be same if we change the
replacement matrix R by R/s where s is the row sum. Note that the later matrix is a stochastic

matrix and hence the entries are not necessarily non-negative integers. Since we will be interested
mostly in the asymptotic behavior of the configuration of a balanced urn model, so without loss
of any generality, we assume that the replacement matrix R is a stochastic matrix. In that case it
is also customary to assume that U0 is a probability distribution on the set of colors, which is to
be interpreted as the probability distribution of the selected color of the first ball drawn from the
urn. Note in this case the entries of Un indexed by the colors are no longer the number of balls
of that color, but Un/ (n+ 1) is the probability mass function associated with the the probability

distribution of the color of the (n+ 1)th selected ball. In other words, if Zn is the color of the ball
selected at the (n+ 1)th draw then

P
(
Zn = i

∣∣∣Un

)
=

Un,i

n+ 1
, 1 ≤ i ≤ K. (1.2)

We can now consider a Markov chain with state space as the set of colors, the transition matrix as
R and starting distribution as U0. We call such a chain, a chain associated with the urn model and
vice-versa. In other words given a balanced urn model we can associate with it a unique Markov
chain on the set of colors and conversely given a Markov chain on a finite state space there is an
associated urn model with balls of colors indexed by the state space.

It is well known [12, 13, 5, 6, 8] that the asymptotic properties of a balanced urn are often
related to the qualitative properties of this associated Markov chain on finite state space. For
example, if the associated finite state Markov chain is irreducible and aperiodic with stationary
distribution π then in [12, 13] it has been proved that

Un

n+ 1
−→ π a.s. (1.3)

The reducible case for the finite color urn model has been extensively studied in [5, 6, 8] and
various different kind of limiting results have been derived based on the properties of the replace-
ment/stochastic matrix R.

In this work we introduce a new urn model with countable but infinitely many colors. We will
show that for such a generalization unlike in the finite color case, the asymptotic behavior of the
configuration may not always depend only on the qualitative properties of the associated Markov
chain.
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1.1 Urn Model with Infinitely Many Colors

We consider the natural generalization of the urn model to infinitely many colors through the
associated Markov chain on countably infinite state space. More precisely, let S be a countable and
possibly infinite set and let R be a stochastic matrix on S. Starting with an initial configuration
U0 which is a probability distribution on S we consider the urn model with possibly infinitely many

colors indexed by S. The dynamics of the model remains same as above, that is, at the (n+ 1)th

trial if we choose a ball of color u ∈ S, then

Un+1 = Un +Ru

where Ru is the uth row of the replacement matrix R. Once again Un/ (n+ 1) is the probability

mass function associated with the the probability distribution of the color of the (n+ 1)th selected
ball, that is, if Zn is the color of the ball selected at the (n+ 1)th draw then

P

(
Zn = u

∣∣∣Un

)
=

Un,u

n+ 1
, u ∈ S. (1.4)

This basic recursion can be written in the matrix notation as follows

Un+1 = Un + In+1R (1.5)

where In = (In,v)v∈V with In,u = 1 and In,v = 0 if v 6= u where u is the color of the ball chosen at

(n+ 1)th trial.
In this work, we mainly consider the special case of this generalization where the associated

Markov chain is an i.i.d. bounded increment random walk on Zd. Although in Section 5 of the paper
we also consider the case of general random walk on Rd with i.i.d. discrete bounded increments.
Let {Xi}i≥1 be a sequence of random d-dimensional i.i.d. vectors and ∅ 6= B ⊆ Zd be the support
for X1. We assume B is a finite set. Let the law of X1 be given by the mass function

p (u) := P (X1 = u) , u ∈ B,

where we assume 0 < p (u) ≤ 1, u ∈ B and
∑

u∈B p (u) = 1. Let R be the transition matrix for
the random walk Sn =

∑n
k=1Xk, then it is easy to see that

R (u, v) =

{
p(v − u) if v − u ∈ B

0 otherwise
(1.6)

for all u, v ∈ Zd. Following few special cases are of particular interest:

1. In one dimension we consider a trivial walk, namely, “move one step to the right”. Formally,
in this case d = 1 and B = {1}, the law of X1 is given by P (X1 = 1) = 1. The associated
Markov chain Sn = S0 + n is deterministic and trivially transient. The transition matrix R
is given by

R(i, j) =

{
1 if j = i+ 1

0 otherwise.
(1.7)

We call this R the right-shift operator.
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2. The other special case is the simple symmetric random walk on Zd. For this B = {v ∈
Zd
∣∣∣ ‖v‖1 = 1 } where ‖ · ‖1 denotes the l1 norm. The law of X1 is given by P (X1 = v) =

1
2d , v ∈ B. The matrix R is given by

R(u, v) =

{
1
2d for v − u ∈ B

0 otherwise.
(1.8)

We here note that by the famous result of Pólya for d ≤ 2, the simple symmetric random
walk is null recurrent, while for d ≥ 3, it is transient.

1.2 Notations

Following notations and conventions are used in the paper.� For two sequences {an}n≥1 and {bn}n≥1 of positive real numbers such that bn 6= 0 for all

n ≥ 1, we will write an ∼ bn if lim
n→∞

an
bn

= 1.� Vectors are written as row vectors unless otherwise stated. For example, a finite dimensional
vector x ∈ Rd is written as x =

(
x(1), x(2), . . . , x(d)

)
where x(i) denotes the ith coordinate.

To be consistent with this notation matrices are multiplied to the right of the vectors. The
infinite dimensional vectors are written as y = (yj)j∈J where yj is the jth coordinate and J
is the indexing set. For any vector x, xt will denote the transpose of x.� By Nd (µ,Σ) we denote the d-dimensional Gaussian distribution with mean vector µ ∈ Rd and
variance-covariance matrix Σ. The associated Gaussian measure on

(
Rd,B

(
Rd
))

is denoted
by Φd and by φd we denote the corresponding density function. For d = 1, we simply write
N(µ, σ2) with mean µ ∈ R and variance σ2 > 0 and associated measure Φ and the density by
φ.� The symbol

w−→ will stand for weak convergence,
d−→ will denote convergence in distribution,

while
p−→ will denote convergence in probability.� For any two random variables/vectors X and Y , we will write X

d
= Y to denote that X and

Y have the same law.� The symbol d is used both for dimension and distribution, it will be clear from the context
what it stands for.

1.3 Outline

In the following section we state the main results which we prove in Section 4. In Section 3 we
state and prove two important results which we use in the proofs of the main results. In Section 5
we further generalize our results for d-dimensional random walk in Rd with i.i.d. discrete bounded
increments, in particular we consider the two dimensional triangular lattice. Finally in Section 6
contains a technical result which is required for the proofs in Section 4.
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2 Main Results

In this section, we present the main results for this paper. Throughout this paper we assume that
(Ω,F ,P) is a probability space on which all the random processes are defined.

2.1 Weak Convergence of the Expected Configuration

In this subsection, we present the main results for the urns in which the colors of the balls are indexed
Zd, d ≥ 1. Let (Xi)i≥1 be a sequence of i.i.d. random d-dimensional vectors with non-empty finite

support B ⊂ Zd. Let the law of X1 be given by P (X1 = v) = p(v), for v ∈ B, where 0 < p(v) ≤ 1

and
∑

v∈B p(v) = 1. For X1 =
(
X

(1)
1 ,X

(2)
1 , . . . ,X

(d)
1

)
, let µ =

(
E[X

(1)
1 ],E[X

(2)
1 ], . . . ,E[X

(d)
1 ]
)

and Σ = ((σij))1≤i,j≤d where σij = E[X
(i)
1 X

(j)
1 ]. We assume Σ to be positive definite. We write

Σ = Σ
1
2Σ

1
2 where Σ

1
2 is the unique symmetric positive definite matrix known as the positive square

root of Σ. Let {Sn}n≥0 be the random walk with increments {Xj}j≥1, that is Sn =
∑n

j=1Xj . We
also assume that the urn model starts with the initial configuration U0 = (U0,v)v∈Zd such that
U0,v = 0 except for finitely many v.

Theorem 2.1. Consider the urn model associated with the random walk {Sn}n≥0. Suppose U0 =
(U0,v)v∈Zd be such that U0,v = 0 except for finitely many v. Let Λn be the probability measure

on Rd corresponding to the probability vector 1
n+1 (E[Un,v])v∈Zd and Λ

cs
n be defined as Λ

cs
n (A) =

Λn

(√
log nAΣ−1/2 + µ log n

)
for A ∈ B

(
Rd
)
. Then, as n→ ∞,

Λ
cs
n

w−→ Φd (2.9)

where Φd (A) =
1

(
√
2π)

d

∫
A

e−
xxt

2 dt for A ∈ B
(
Rd
)
.

Since all vectors are taken to be row vectors, we always multiply the matrices to the right of
the vectors.

Remark 1. Theorem 2.1 states that if Zn be the color of the randomly selected ball in the (n+1)th

draw, then

Zn − µ log n√
log n

d−→ Nd(0, Σ) as n→ ∞. (2.10)

Corollary 2.2. For d = 1, let Xi ≡ 1, that is the underlying Markov chain moves deterministically

one step to the right, then as n→ ∞

Zn − log n√
log n

d−→ N(0, 1).

Corollary 2.3. Let Sn be the simple symmetric random walk on Zd, d ≥ 1. Then, as n→ ∞,

Zn√
log n

d−→ Nd(0, d
−1Id),

where Id is the d× d identity matrix.
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Remark 2. We know that the symmetric random walk on Zd is null recurrent for d ≤ 2 and transient
for d ≥ 3. For both cases, the asymptotic behavior of Zn is similar upto centering and scaling.
Furthermore, notice from (2.10) that even for the general case, the centering and scaling vary only
upto multiplicative constants depending only on the law of X1.

Remark 3. On Z the simple symmetric random walk is null recurrent while the right shift walk is
transient. For both cases, the asymptotic behavior of Zn is similar upto centering and scaling.

2.2 Weak Convergence of the Random Configuration

Let M1 be the space of probability measures on Rd, d ≥ 1 endowed with the topology of weak
convergence. For ω ∈ Ω, let Λn(ω) ∈ M1 be the random probability measure corresponding to the

random probability vector Un(ω)
n+1 .

Theorem 2.4. For ω ∈ Ω, let Λcs
n (ω) (A) = Λn(ω)

(√
log nAΣ−1/2 + µ log n

)
. Then, as n→ ∞,

Λcs
n

p−→ Φd on M1, (2.11)

where Φd (A) =
1

(
√
2π)

d

∫
A

e−
xxt

2 dt.

Remark 4. From Theorem 2.4 we can conclude that given any subsequence {nk}∞k=1 there exists a
further subsequence {nkj}∞j=1 such that as j → ∞,

Λcs
nkj

w−→ Φd almost surely for all ω.

2.3 Local Limit Theorem Type Results for the Expected Configuration

The random variable Zn corresponding to the probability vector 1
n+1 (E [Un,v])v∈Z admits local limit

type results. In this section we present theorems demonstrating this. We will first present the local
property for d = 1 and then show the same for higher dimensions.

2.3.1 Local Limit Type Results for One Dimension

In this subsection, we present the local limit theorems for urns with colors indexed by Z. For j ∈ N,
Xj is a lattice random variable. Let P (Xj ∈ a+ hZ) = 1, where a ∈ R and h > 0 is the span for

Xj . Define L(1)
n := {x : x = n

σ
√
logn

a− µ
σ

√
log n+ h

σ
√
logn

Z} where µ = E [X1] and σ
2 = E

[
X2

1

]
.

Theorem 2.5. Consider the urn associated with the Markov chain of the random walk {Sn}n≥0

and let Zn be the color of the randomly selected ball at the (n+ 1)th trial. We further assume that

P [X1 = 0] > 0. Then, as n→ ∞

sup
x∈L(1)

n

∣∣∣∣σ
√
log n

h
P

(
Zn − µ log n

σ
√
log n

= x

)
− φ(x)

∣∣∣∣ −→ 0 (2.12)

where φ(x) = 1√
2π
e

−x2

2 .

Remark 5. The assumption P [X1 = 0] > 0 implies that for each j ∈ N, Xj and IjXj are supported
on the same set.
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Let P [X1 = 0] = 0 and h̃ be the span for Xj . Let P (IjXj ∈ a+ hZ) = 1, where a ∈ R and

h > 0 is the span for IjXj . It is easy to see that h ≤ h̃. Define L(1)
n := {x : x = n

σ
√
logn

a− µ
σ

√
log n+

h
σ
√
logn

Z} where µ = E [X1] and σ
2 = E

[
X2

1

]
.

Theorem 2.6. Consider the urn associated with the Markov chain of the random walk {Sn}n≥0

and let Zn be the color of the randomly selected ball at the (n+ 1)th trial. We further assume that

h̃ < 2h. Then, as n→ ∞

sup
x∈L(1)

n

∣∣∣∣σ
√
log n

h
P

(
Zn − µ log n

σ
√
log n

= x

)
− φ(x)

∣∣∣∣ −→ 0

where φ(x) = 1√
2π
e

−x2

2 .

In the next theorem we present the local limit theorem when the urn is associated with the simple
symmetric random walk which is not covered by either Theorem 2.5 or Theorem 2.6. Let {Xi}i≥1

be an i.i.d. sequence of ±1 Bernoulli random variables, such that P [X1 = 1] = P [X1 = −1] = 1
2 .

In this case, the span of X1 is 2. The random variables IjXj is supported on the set {0, 1,−1}
and the span of IjXj is 1. Therefore, in this Xj and IjXj are supported on different sets. Let

P (IjXj ∈ a+ Z) = 1. One possible choice of a is 0. We define L(1)
n := {x : x = 1√

logn
Z}.

Theorem 2.7. Consider the urn model associated with the simple symmetric random walk on Z

and let Zn be the color of the randomly selected ball at the (n+ 1)th trial. Then, as n→ ∞

sup
x∈L(1)

n

∣∣∣∣
√

log nP

(
Zn√
log n

= x

)
− φ(x)

∣∣∣∣ −→ 0

where φ(x) = 1√
2π
e

−x2

2 .

2.3.2 Local Limit Type Results for Higher Dimensions

Throughout this subsection we assume d ≥ 2. For j ∈ N, Xj is a lattice random vector with L as
the minimal lattice (see pages 226 – 227 of [3] for a formal definition). We also define l = |det (L)|
where det (L) (see the pages 228 – 229 of [3] for more details). Let P (X1 ∈ x0 + L) = 1, where

x0 ∈ Rd. Let us define L(d)
n = {x : x = n√

logn
x0Σ

−1/2 − √
log nµΣ−1/2 + 1√

logn
LΣ−1/2} where

µ =
(
E[X

(1)
1 ],E[X

(2)
1 ], . . .E[X

(d)
1 ]
)
and Σ = ((σij))1≤i,j≤d with σij = E[X

(i)
1 X

(j)
1 ].

Theorem 2.8. Consider the urn associated with the Markov chain of the random walk {Sn}n≥0

and let Zn be the color of the randomly selected ball at the (n+ 1)th trial. We further assume that

P [X1 = 0] > 0, where 0 is the origin in Zd. Then, as n→ ∞

sup
x∈L(d)

n

∣∣∣∣∣
det(Σ1/2)

(√
log n

)d

l
P

(
Zn − µ log n√

log n
Σ−1/2 = x

)
− φd(x)

∣∣∣∣∣ −→ 0 (2.13)

where φd (x) =
1

(2π)d/2
e−

xxt

2 .
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The assumption P [X1 = 0] > 0 can be removed, for at least some cases, though we do not know
the full generality under which the local limit theorem holds. We consider a special case of interest
which is not covered by Theorem 2.8, namely the simple symmetric random walk on Zd.

Let {Xi}i≥1 be i.i.d distributed as P [X1 = ±ei] = 1
2d where ei is the d-dimensional row vector

with 1 at the ith coordinate and 0 elsewhere. Note that in this case, the mean increment vector
µ = 0 and the variance-covariance matrix Σ = d−1Id. Also observe that P [X1 = 0] = 0. In the
next theorem, we present the local limit behavior of the urn associated with the random walk
Sn =

∑n
j=1Xj . For j ∈ N, IjXj is a lattice random vector with minimal lattice as Zd and we may

choose of x0 = 0, that is, P
(
IjXj ∈ Zd

)
= 1. We define L(d)

n = {x : x =
√
d√

logn
Zd}.

Theorem 2.9. Consider the urn model associated with the Markov chain of the simple symmetric

random walk on Zd and let Zn be the color of the randomly selected ball at the (n+1)th trial. Then,

as n→ ∞

sup
x∈L(d)

n

∣∣∣∣∣(d)
d
2

(√
log n

)d
P

( √
d√

log n
Zn = x

)
− φd(x)

∣∣∣∣∣ −→ 0, (2.14)

where φd (x) =
1

(2π)d/2
e−

xxt

2 .

Note that here the the minimal lattice is Zd and so its determinant is 1 (see page 228 – 229 of [3]).

3 Auxiliary Results

In the following section, we present two important results which we will need to prove Theorems
2.1 and 2.4. Throughout this section we assume that the initial configuration U0 = (U0,v)v∈Zd is
such that U0,v = 0 except for finitely many v.

Define Πn (z) =
n∏

j=1

(
1 +

z

j

)
for z ∈ C. It is known from Euler product formula for gamma

function which is also known as Gauss’s formula (see page 178 of [7]) that

lim
n→∞

Πn(z)

nz
Γ(z + 1) = 1 (3.15)

uniformly on compact subsets of C \ {0,−1,−2, . . .}.
For λ ∈ Rd, let e (λ) =

∑
v∈B e

〈λ,v〉p(v) where 〈u, v〉 = uvt for u, v ∈ Rd denote the moment
generating function for X1. It is easy to note that e (λ) is an eigenvalue of R corresponding to the

right eigenvector x (λ) =
(
e〈λ,v〉

)t
v∈Zd . Let Fn = σ (Uj : 0 ≤ j ≤ n). Define

Mn (λ) =
Unx (λ)

Πn (e (λ))

From (1.5) we get,
Un+1x (λ) = Unx (λ) + In+1Rx (λ)

Thus,

E

[
Un+1x (λ)

∣∣∣Fn

]
= Unx (λ) + e (λ)E

[
In+1x (λ)

∣∣∣Fn

]
=
(
1 + e(λ)

n+1

)
Unx (λ) .
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Therefore, Mn (λ) is a non-negative martingale for every λ ∈ Rd and E
[
Mn (λ)

]
= M0 (λ). We

will make use of the martingales Mn (λ) in the proof of the next theorem in which we present a
representation of the marginal of Zn in terms of the increments Xi, i ∈ N.

Theorem 3.1. Let Zn be the color of the randomly selected ball in the (n+1)th draw, then for all

n ≥ 1

Zn
d
= Z0 +

n∑

j=1

IjXj . (3.16)

where {Ij}j≥1 are independent random variables such that Ij ∼ Bernoulli
(

1
j+1

)
and are indepen-

dent of {Xj}j≥1 and Z0 is a random vector taking values in Zd according to the probability vector

U0 and is independent of {Ij}j≥1 and {Xj}j≥1.

Proof. We have already noted that e (λ) denotes the moment generating function for X1. The
eigenvalues and the corresponding right eigenvectors for R are given by e (λ) and x (λ). If Zn

denotes the color of the randomly selected ball at the (n+ 1)th trial, then for λ ∈ Rd, the moment
generating function of Zn is given by

1

n+ 1

∑

v∈Zd

e〈λ,v〉E [Un,v] =
Πn (e(λ))

n+ 1
E
[
Mn(λ)

]

=
Πn (e(λ))

n+ 1
M0(λ). (3.17)

We note that

M0(λ)
1

n + 1
Πn (e(λ)) =M0(λ)

n∏

j=1

(
1− 1

j + 1
+
e(λ)

j + 1

)
.

Therefore, from (3.17) it follows that

Zn
d
= Z0 +

∑n
j=1 IjXj ,

where Z0 is a random vector taking values in Zd according to the probability vector U0 and is
independent of {Ij}j≥1 and {Xj}j≥1.

Theorem 3.2. There exists δ > 0 such that

sup
n≥1

sup
λ∈[−δ,δ]d

E

[
M

2
n (λ)

]
<∞.

Proof. From (1.5), we obtain

E

[
(Un+1x (λ))

2
∣∣∣Fn

]
= (Unx (λ))

2 + 2e (λ)Unx (λ)E
[
In+1x (λ)

∣∣∣Fn

]
+ e2 (λ)E

[
(In+1x (λ))

2
∣∣∣Fn

]

It is easy to see that

E

[
In+1x (λ)

∣∣∣Fn

]
=

1

n+ 1
Unx (λ) and E

[
(In+1x (λ))

2
∣∣∣Fn

]
=

1

n+ 1
Unx (2λ) .

9



Therefore, we get the recursion

E

[
(Un+1x (λ))

2
]
=

(
1 +

2e (λ)

n+ 1

)
E

[
(Unx (λ))

2
]
+
e2 (λ)

n+ 1
E [Unx (2λ)] . (3.18)

Dividing both sides of (3.18) by Π2
n+1 (λ),

E

[
M

2
n+1 (λ)

]
=

(
1 + 2e(λ)

n+1

)

(
1 + e(λ)

n+1

)2E
[
M

2
n (λ)

]
+
e2 (λ)

n+ 1

E [Unx (2λ)]

Π2
n+1 (λ)

. (3.19)

Mn (2λ) being a martingale, we obtain E [Unx (2λ)] = Πn (e (2λ))M0 (2λ). Therefore from
(3.19), we get

E

[
M

2
n (λ)

]
=

Πn (2e (λ))

Πn (e (λ))
2M

2
0 (λ) +

n∑

k=1

e2 (λ)

k





n∏

j>k

(
1 + 2e(λ)

j

)

(
1 + e(λ)

j

)2





Πk−1 (e (2λ))

Π2
k (e (λ))

M0 (2λ) . (3.20)

We observe that as e (λ) > 0, therefore
1+

2e(λ)
j

(

1+
e(λ)
j

)2 ≤ 1 and hence Πn(2e(λ))
Π2

n(e(λ))
≤ 1.

Therefore,

E

[
M

2
n (λ)

]
≤M

2
0 (λ) + e2 (λ)M0 (2λ)

n∑

k=1

1

k

Πk−1 (e (2λ))

Π2
k (e (λ))

. (3.21)

Using (3.15), we know that

Πn (e (2λ)) ∼
ne(2λ)

Γ (e (2λ) + 1)

and

Π2
n (e (λ)) ∼

n2e(λ)

Γ2 (e (λ) + 1)
.

It is easy to note that e (λ) > 0 for all λ ∈ Rd and e (λ) is continuous as a function of λ and e (λ) > 0.
So given η > 0 there exists 0 < K1,K2 <∞, such that for all λ ∈ [−η, η]d, K1 ≤ e (λ) ≤ K2. Since
the convergence in (3.15) is uniform on compact subsets of [0,∞) , given ǫ > 0 there exists N1 > 0
such that for all n ≥ N1 and λ ∈ [−η, η]d,

(1− ǫ)
Γ2 (e (λ) + 1)

Γ (e (2λ) + 1)

n∑

k≥N1

1

k1+2e(λ)−e(2λ)
≤

n∑

k≥N1

1

k

Πk−1 (e (2λ))

Π2
k (e (λ))

≤ (1 + ǫ)
Γ2 (e (λ) + 1)

Γ (e (2λ) + 1)

n∑

k≥N1

1

k1+2e(λ)−e(2λ)
.

Recall that e (λ) =
∑

v∈B e
〈λ,v〉p(v). Since |B| <∞, so we can choose a δ0 > 0 such that for every

λ ∈ [−δ0, δ0]d, 2e (λ)− e (2λ) > 0. Choose δ = min{η, δ0}. Since 2e (λ) − e (2λ) is continuous as a

10



function of λ, there exists a λ0 ∈ [−δ, δ]d such that minλ∈[−δ,δ]d 2e (λ)−e (2λ) = 2e (λ0)−e (2λ0) > 0.
Therefore

∞∑

k=1

1

k1+2e(λ)−e(2λ)
≤

∞∑

k=1

1

k1+2e(λ0)−e(2λ0)
.

Therefore given ǫ > 0 there exists N2 > 0 such that ∀λ ∈ [−δ, δ]d.

∞∑

k>N2

1

k1+2e(λ)−e(2λ)
≤

∞∑

k>N2

1

k1+2e(λ0)−e(2λ0)
< ǫ.

Γ2(e(λ)+1)
Γ(e(2λ)+1) , e

2 (λ) and M0 (2λ) being continuous as functions of λ are bounded for λ ∈ [−δ, δ]d.
Choose N = max{N1, N2}. From (3.21) we obtain for all n ≥ N

E

[
M

2
n (λ)

]
≤M

2
0 (λ) + C1

N∑

k=1

1

k

Πk−1 (e (2λ))

Π2
k (e (λ))

+ ǫ (3.22)

for an appropriate positive constant C1.∑N
k=1

1
k
Πk−1(e(2λ))

Π2
k(e(λ))

and M
2
0 (λ) being continuous as functions of λ, are bounded for λ ∈ [−δ, δ]d.

Therefore, from (3.22) we obtain that there exists C > 0 such that for all λ ∈ [−δ, δ]d and for all
n ≥ 1

E

[
M

2
n (λ)

]
≤ C.

This proves that

sup
n≥1

sup
λ∈[−δ,δ]d

E
[
M

2
n (λ)

]
<∞.

Remark 6. From Theorem 3.2 we can conclude that there exists a random variable M (λ) such that
as n→ ∞

Mn (λ) −→M (λ)

almost surely P and in L2(P).

4 Proofs of the Main Results

In this section we provide the proofs of the main results. Some of the notations used here have
been defined in the previous section.

11



4.1 Proofs for the Expected Configuration

This subsection contains the proofs for Theorems 2.1.

Proof of Theorem 2.1. Firstly we note by Theorem 3.1 without loss of generality, we may assume
that the process starts with a single ball of color indexed by 0, in other words Z0 = 0 in (3.16),
then

Zn
d
=

n∑

j=1

IjXj .

It is easy to see that E

[∑n
j=1 IjXj

]
− µ log n =

∑n
j=1

1
jµ − µ log n −→ γµ where γ is the Euler’s

constant.
Case I: d = 1. Let s2n = V ar

[∑n
j=1 IjXj

]
. It is easy to note that s2n =

∑n
j=1

1
j+1E

[
X2

1

]
−

µ2

(j+1)2 ∼ σ2 log n. Since |B| < ∞, given ǫ > 0, we have 1
s2n

∑n
j=1 E

[
IjX

2
j 1{IjXj>ǫsn}

]
−→ 0 as n →

∞. Therefore, by the Lindeberg Feller Central Limit theorem, we get as n→ ∞

Zn − µ log n

σ
√
log n

d−→ N(0, 1).

This completes the proof for d = 1.
Case II: d ≥ 2. Let Σn = [σk,l(n)]d×d denote the variance-covariance matrix for

∑n
j=1 IjXj

then by calculations similar to that in one-dimension it is easy to see that for all k, l ∈ {1, 2, . . . d}
as n→ ∞

σk,l(n)

(log n)σk,l
−→ 1.

Therefore for every θ ∈ Rd, by Lindeberg Feller Central Limit Theorem in one dimension,

〈θ,
n∑

j=1

IjXj〉 − 〈θ, µ log n〉

√
log n (θΣθt)1/2

d−→ N(0, 1) as n→ ∞.

Therefore by Cramer-Wold device, it follows that as n→ ∞
n∑

j=1

IjXj − µ log n

√
log n

d−→ Nd (0, Σ) .

Hence, as n→ ∞

Zn − µ log n√
log n

d−→ Nd (0, Σ) .

This completes the proof.
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4.2 Proofs for Random Configuration

In this subsection we will present the proof of Theorem 2.4. To do so, we present a lemma which
we will need in the proof of Theorem 2.4.

Lemma 4.1. Let δ be as in Theorem 3.2, then for every λ ∈ [−δ, δ]d

Mn

(
λ√
log n

)
p−→ 1 (4.23)

as n→ ∞.

Proof. Without loss of generality, we assume that the process starts with a single ball of color
indexed by 0. From equation (3.20) we get

E

[
M

2
n (λ)

]
=

Πn (2e(λ))

Π2
n (e(λ))

+
Πn (2e(λ))

Π2
n (e(λ))

n∑

k=1

e2(λ)

k

Πk−1 (e(2λ))

Πk (2e(λ))
.

Replacing λ by λn = λ√
logn

, we obtain

E

[
M

2
n (λn)

]
=

Πn (2e (λn))

Π2
n (e (λn))

+
Πn (2e (λn))

Π2
n (e (λn))

n∑

k=1

e2 (λn)

k

Πk−1 (e (2λn))

Πk (2e (λn))
(4.24)

Since the convergence in formula (3.15) is uniform on compact sets of [0,∞), we observe that for
λ ∈ [−δ, δ]d

lim
n→∞

Πn (2e (λn))

Π2
n (e (λn))

=
Γ2 (2)

Γ (3)
=

1

2
.

We observe that limn→∞ e (λn) = 1 and limn→∞
Πn(2e(λn))
Π2

n(e(λn))
e2(λn)

k
Πk−1(e(2λn))
Πk(2e(λn))

= 1
2
1
k
Πk−1(1)
Πk(2)

. Since

supn≥1 supλ∈[−δ,δ]d E

[
M

2
n (λ)

]
<∞, by dominated convergence theorem, we get

lim
n→∞

Πn (2e (λn))

Π2
n (e (λn))

n∑

k=1

e2 (λn)

k

Πk−1 (e (2λn))

Πk (2e (λn))
=

1

2

∞∑

k=1

2

(k + 2)(k + 1)
=

1

2
.

Therefore, from (4.24) we obtain

E

[
M

2
n (λn)

]
−→ 1 as n→ ∞.

Hence, it follows that
Mn (λn)

p−→ 1 as n→ ∞.

Proof of Theorem 2.4. Without loss of generality, we may assume that the urn process starts with
a single ball of color indexed by 0. Let Λn be the random probability measure on Rd corresponding

13



to the random probability vector 1
n+1Un. For λ ∈ Rd the corresponding random moment generating

function is given by

1

n+ 1

∑

v∈Zd

e〈λ,v〉Un,v =
1

n+ 1
Unx (λ) =

1

n+ 1
Mn (λ) Πn (e(λ)) .

The random moment generating function corresponding to the scaled and centered random measure
Λcs
n is

1

n+ 1
e−〈λ,µ

√
logn〉Unx

(
λ√
log n

)
=

1

n+ 1
e−〈λ,µ

√
logn〉Mn

(
λ√
log n

)
Πn

(
e(

λ√
log n

)

)
.

To show (2.11) it is enough to show that for every subsequence {nk}k≥1, there exists a further
subsequence {nkj}∞j=1 such that as j → ∞

e
−〈λ,µ

√
lognkj

〉

nkj + 1
Mnkj

(
λ√

log nkj

)
Πn

(
e

(
λ√

log nkj

))
−→ e

λΣλt

2 for all

λ ∈ [−δ, δ]d almost surely (4.25)

where δ is as in Lemma 4.1. From Theorem 2.1 we know that Zn−lognµ√
logn

d−→ Nd (0, Id). Therefore

using (3.17) as n→ ∞ we obtain,

e〈λ,µ
√
logn〉E

[
e
〈λ, Zn√

log n
〉
]
=

1

n+ 1
e〈λ,µ

√
logn〉Πn

(
e

(
λ√
log n

))
−→ e

λΣλt

2 .

Using Theorem 6.1 it is enough to show (4.25) only for λ ∈ Qd ∩ [−δ, δ]d which is equivalent to
proving that for every λ ∈ Qd ∩ [−δ, δ]d as j → ∞

Mnkj

(
λ√

log nkj

)
−→ 1 almost surely.

From Lemma 4.1 we know that for all λ ∈ [−δ, δ]d

Mn

(
λ√
log n

)
p−→ 1 as n→ ∞.

Therefore using the standard diagonalization argument we can say that given a subsequence {nk}k≥1

there exists a further subsequence {nkj}∞j=1 such that for every λ ∈ Qd ∩ [−δ, δ]d

Mnkj

(
λ√

log nkj

)
−→ 1 almost surely.

This completes the proof.

Remark 7. It is worth noting that the proofs of Theorems 2.1 and 2.4 go through if we assume U0

to be non random probability vector such that there exists r > 0 such that for all λ ∈ {λ : ‖λ‖ < r},
∑

v∈Zd e〈λ,v〉U0,v <∞ and limn→∞
∑

v∈Zd e
〈λ,v〉√
lognU0,v exists finitely.
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4.3 Proofs of the Local Limit Type Results

In this section, we present the proofs for the local limit type results for Zn. As before, we present
the proof for urn with colors indexed by Z first and then proceed towards the proofs for Zd, d ≥ 2.

4.3.1 Proof for the Local Limit Theorems for d=1

Proof of Theorem 2.5. Without loss of generality we may assume µ = 0 and σ = 1. We further
assume that the process begins with a single ball of color indexed by 0. From Theorem 3.1, we

know that Zn
d
=
∑n

k=1 IjXj . Xj is a lattice random variable, therefore IjXj is also so. Furthermore
0 ∈ B, therefore IjXj and Xj have the same lattice structure. Therefore Zn is a lattice random

variable with lattice L(1)
n . Applying Fourrier inversion formula, for all x ∈ L(1)

n we obtain

P

(
Zn√
log n

= x

)
=

h

2π
√
log n

∫ π
√

logn
h

−π
√

log n
h

e−itxψn(t) dt

where ψn (t) = E

[
e
it Zn√

log n

]
. Without loss of generality, we may assume h = 1. Also by Fourrier

inversion formula, for all x ∈ R

φ(x) =
1

2π

∫ ∞

−∞
e−itxe

−t2

2 dt.

Given ǫ > 0, there exists N large enough such that for all n ≥ N

∣∣∣
√

log nP

(
Zn√
log n

= x

)
− φ(x)

∣∣∣ ≤
∫ π

√
logn

−π
√
logn

∣∣∣ψn(t)− e
−t2

2

∣∣∣ dt+ 2

∫

[−π
√
logn,π

√
logn]

c
φ(t) dt

=

∫ π
√
logn

−π
√
logn

∣∣∣ψn(t)− e
−t2

2

∣∣∣ dt+ ǫ.

Given M > 0, we can write for all n large enough

∫ π
√
logn

−π
√
logn

∣∣∣ψn(t)− e
−t2

2

∣∣∣dt ≤
∫ M

−M

∣∣∣ψn(t)− e
−t2

2

∣∣∣dt+
∫ π

√
logn

M

∣∣∣ψn(t)
∣∣∣ dt

+2

∫ π
√
logn

M
e

−t2

2 dt. (4.26)

Given ǫ > 0 we choose an M > 0 such that
∫

[−M,M ]c

e
−t2

2 dt < ǫ.

Therefore,

∫ π
√
logn

M
e−

t2

2 dt ≤
∫

[−M,M ]c

e
−t2

2 dt < ǫ. (4.27)
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We know from Theorem 2.1 that as n→ ∞, Zn√
logn

d−→ N(0, 1). Hence for all t ∈ R, ψn(t) −→ e
−t2

2 .

Therefore, for the chosen M > 0 by bounded convergence theorem we get as n→ ∞
∫ M

−M

∣∣∣ψn(t)− e
−t2

2

∣∣∣dt −→ 0.

Let

I(n) =

∫ π
√
logn

M

∣∣∣ψn(t)
∣∣∣ dt.

We will show that as n→ ∞, I(n) −→ 0. Since Zn
d
=
∑n

j=1 IjXj , therefore

E
[
eitZn

]
=

n∏

j=1

(
1− 1

j + 1
+
e (it)

j + 1

)

=
1

n+ 1
Πn (e (it))

where e (it) = E
[
eitX1

]
. Therefore,

ψn(t) = E

[
e
it Zn√

log n

]
=

1

n+ 1
Πn

(
e(it/

√
log n)

)
.

Applying a change of variables t√
logn

= w, we obtain

I(n) =
√

log n

∫ π

M/
√
logn

∣∣∣ψn

(
w
√

log n
) ∣∣∣ dw. (4.28)

Now there exists δ > 0 such that for all t ∈ (0, δ)

|e (it)| ≤ 1− t2

4
. (4.29)

Therefore using the inequality 1 − x ≤ e−x, we obtain 1 − 1
j+1 + |e(it)|

j+1 ≤ e
− 1

j+1
t2

4 . Hence, for all
t ∈ (0, δ)

1

n+ 1
|Πn (e (it))| ≤ e

− t2

4

n∑

j=1

1

j + 1
. (4.30)

We observe from (4.28) that we can write

I(n) =
√

log n

∫ δ

M/
√
logn

∣∣∣ψn

(
w
√

log n
) ∣∣∣dw +

√
log n

∫ π

δ

∣∣∣ψn

(
w
√

log n
) ∣∣∣dw.

Let us write

I1(n) =
√

log n

∫ δ

M/
√
logn

∣∣∣ψn

(
w
√

log n
) ∣∣∣dw
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and

I2(n) =
√

log n

∫ π

δ

∣∣∣ψn

(
w
√

log n
)∣∣∣ dw.

From (4.30) we have I1(n) −→ 0 as n→ ∞.
As 0 is in the support of Xj , therefore IjXj and Xj will have the same lattices. Therefore for all

t ∈ [δ, 2π), |e (it)| < 1 and the characteristic function being continuous in t, there exists 0 < η < 1
such that |e (it)| ≤ η for all t ∈ [δ, π]. Therefore

1− 1

j + 1
+

|e (it)|
j + 1

≤ 1− 1

j + 1
+

η

j + 1
≤ e−

1−η
j+1 .

It follows that

1

n+ 1
|Πn (e (it))| ≤ e

−
n∑

j=1

1− η

j + 1
≤ C2e

−(1−η) logn

where C2 is some positive constant. So as n→ ∞
I2(n) ≤ C2e

−(1−η) logn (π − δ)
√

log n −→ 0.

So combining the facts that I1(n) −→ 0, I2(n) −→ 0 as n → ∞ and from (4.26) and (4.27), the
proof is complete.

Proof of Theorem 2.6. Without loss of generality we may assume that µ = 0, σ = 1 and the process
begins with a single ball of color indexed by 0. The proof is similar to the proof of Theorem 2.5

and therefore we omit certain details. Since the span of IjXj is h, for all x ∈ L(1)
n we obtain by

Fourrier inversion formula

P

(
Zn√
log n

= x

)
=

h

2π
√
log n

∫ π
√

logn
h

−π
√

log n
h

e−itxψn(t) dt

where ψn (t) = E

[
e
it Zn√

log n

]
. Without loss of generality, we may assume h = 1. Also by Fourrier

inversion formula, for all x ∈ R

φ(x) =
1

2π

∫ ∞

−∞
e−itxe

−t2

2 dt.

The bounds for
∣∣∣
√
log nP

(
Zn√
logn

= x
)
−φ(x)

∣∣∣ are similar to that in the proof of Theorem 2.5 except

for that of I2(n) where

I2(n) =
√

log n

∫ π

δ

∣∣∣ψn

(
w
√

log n
)∣∣∣ dw

and δ is chosen as in (4.29). We have to show

I2(n) −→ 0 as n→ ∞.

The span of X1 being h̃, for all t ∈
[
δ, 2π

h̃

)
, |e (it)| < 1. Since h̃ < 2 and the characteristic function

is continuous in t, there exists 0 < η < 1 such that |e (it)| ≤ η for all t ∈ [δ, π] ⊂
[
δ, 2π

h̃

)
. Therefore

I2(n) −→ 0 as n→ ∞ using the similar bounds as in the proof of Theorem 2.5.
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Proof of Theorem 2.7. In this case, µ = 0 and σ = 1. Without loss of generality, we may assume
that the process begins with a single ball of color indexed by 0. In this case, the span of IjXj is 1 and

P (IjXj ∈ Z) = 1. Therefore by the Fourrier inversion formula, for all x ∈ L(1)
n = {x : x = 1√

logn
Z}

we obtain

P

(
Zn√
log n

= x

)
=

1

2π
√
log n

∫ π
√
logn

−π
√
logn

e−itxψn(t) dt

where ψn (t) = E

[
e
it Zn√

log n

]
. Furthermore, by Fourrier inversion formula, for all x ∈ R

φ(x) =
1

2π

∫ ∞

−∞
e−itxe

−t2

2 dt.

Like in the case of Theorem 2.6, the proof of this theorem is also very similar to that of Theorem

2.5. The bounds for
∣∣∣
√
log nP

(
Zn√
logn

= x
)
− φ(x)

∣∣∣ are similar to that in the proof of Theorem 2.5

except for that of I2(n) where

I2(n) =
√

log n

∫ π

δ

∣∣∣ψn

(
w
√

log n
)∣∣∣ dw

and δ is chosen as in (4.29). To show that I2(n) −→ 0 as n→ ∞, we observe that

E
[
eitZn

]
=

n∏

j=1

(
1− 1

j + 1
+

cos t

j + 1

)

=
1

n+ 1
Πn (cos t)

since E
[
eitX1

]
= cos t. Therefore,

ψn(w
√

log n) = E
[
eiwZn

]
=

1

n+ 1
Πn (cosw) .

We note that cosw is decreasing in
[
π
2 , π

]
and for all w ∈

[
π
2 , π
]
,−1 ≤ cosw ≤ 0. Therefore, there

exists η > π
2 such that for all w ∈ [π − η, π) we have −1 < cos(π − η) < 0 and

∣∣∣ψn(w
√

log n)
∣∣∣ ≤ 1

n+ 1
Πn (cos(π − η)) .

Since −1 < cos(π − η) < 0, so for j ≥ 1,
(
1 + cos(π−η)

j

)
< 1. Therefore,

Πn (cos(π − η)) ≤ 1. (4.31)

Let us write
I2(n) = J1(n) + J2(n)

where

J1(n) =
√

log n

∫ π−η

δ

∣∣∣ψn

(
w
√

log n
)∣∣∣ dw (4.32)
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and

J2(n) =
√
log n

∫ π

π−η

∣∣∣ψn

(
w
√

log n
)∣∣∣ dw.

It is easy to see from (4.31) that

J2(n) ≤
η

n+ 1

√
log n −→ 0 as n→ ∞.

For all t ∈ [δ, π − η] , 0 ≤ |cos t| < 1, so there exists 0 < α < 1 such that 0 ≤ |cos t| ≤ α for all
t ∈ [δ, π − η]. Recall that

ψn(w
√

log n) =

n∏

j=1

(
1− 1

j + 1
+

cosw

j + 1

)
.

Using the inequality 1− x ≤ e−x, it follows that for all t ∈ [δ, π − η]

1− 1

j + 1
+

|cos t|
j + 1

≤ 1− 1

j + 1
+

α

j + 1
≤ e

− 1−α
j+1

and hence

1

n+ 1
|Πn (cos t)| ≤ e

−
n∑

j=1

1− α

j + 1
≤ Ce−(1−η) logn

where C is some positive constant. Therefore from (4.32) we obtain as n→ ∞

J1(n) ≤ Ce−(1−α) logn (π − η − δ)
√

log n −→ 0.

4.3.2 Proofs for the Local Limit Type Results for d ≥ 2

Proof of Theorem 2.8 . Without loss of generality we may assume that µ = 0 and Σ = Id and

the process begins with a single ball of color indexed by 0. From Theorem 3.1, we obtain Zn
d
=∑n

k=1 IjXj . Xj being a lattice random variable, IjXj is also so. Furthermore, 0 ∈ B, therefore Xj

and IjXj are supported on the same lattice. Therefore, Zn has lattice L(d)
n . For A ⊂ Rd and x ∈ R,

we define xA = {xy : y ∈ A}. By Fourrier inversion formula (21.28 on page 230 of [3]), we get for

x ∈ L(d)
n

P

(
Zn√
log n

= x

)
=

l

(2π
√
log n)d

∫

(
√
lognF∗)

ψn(t)e
−i〈t,x〉 dt

where ψn(t) = E

[
e
i〈t, Zn√

log n
〉
]
, l = |det (L)| and F∗ is the fundamental domain for X1 as defined in

equation(21.22) on page 229 of [3]. Also by Fourrier inversion formula

φd(x) =
1

(2π)d

∫

Rd

e−i〈t,x〉e−
‖t‖2
2 dt.
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Given ǫ > 0, there exists N > 0 such that n ≥ N large enough,

∣∣∣
(√

log n
)d

l
P

(
Zn√
log n

= x

)
− φd(x)

∣∣∣ ≤ 1

(2π)d

∫

(
√
lognF∗)

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣dt+
1

(2π)d

∫

Rd\
√
lognF∗

e−
‖t‖2
2 dt

≤ 1

(2π)d

∫

(
√
lognF∗)

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣dt+ ǫ.

Given any compact set A ⊂ Rd for all n large enough

∫

(
√
lognF∗)

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣dt ≤
∫

A

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣dt+
∫

(
√
lognF∗)\A

∣∣∣ψn(t)
∣∣∣ dt+

∫

Rd\A
e−

‖t‖2
2 dt.

By Theorem 2.1, we know that Zn√
logn

d−→ Nd(0, Id) as n → ∞. Therefore, for any compact set

A ⊂ Rd by bounded convergence theorem,

∫

A

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣dt −→ 0 as n→ ∞.

Choose A such that
∫

Ac

e−
‖t‖2
2 dt < ǫ.

Let us write

I(n) =

∫

(
√
lognF∗)\A

∣∣∣ψn(t)
∣∣∣dt. (4.33)

For the above choice of A, we will show that

I(n) −→ 0 as n→ ∞.

Since Zn
d
=
∑n

j=1 IjXj , we have

E

[
ei〈t,Zn〉

]
=

n∏

j=1

(
1− 1

j + 1
+
e (it)

j + 1

)

=
1

n+ 1
Πn (e (it))

where e (it) = E
[
ei〈t,X1〉

]
. So,

ψn(t) = E

[
e
i〈t, Zn√

log n
〉
]
=

1

n+ 1
Πn

(
e

(
1√
log n

it

))
.
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Applying a change of variables t = 1√
logn

w to (4.33), we obtain

I(n) = (
√

log n)d
∫

F∗\ 1√
log n

A

∣∣∣ψn

(√
log nw

) ∣∣∣dw. (4.34)

We can choose a δ > 0 such that for all w ∈ B(0, δ) \ {0} there exists b > 0 such that

|e(iw)| ≤ 1− b‖w‖2
2

. (4.35)

Therefore, using the inequality 1− x ≤ e−x

|ψn(
√

log nw)| =
1

n+ 1
|Πn (e(iw))|

≤
n+1∏

j=1

(
1− 1

j + 1
+

|e(iw)|
j + 1

)

≤ e

−
n∑

j=1

b

j + 1

‖w‖2
2

≤ C1e
−b ‖w‖2

2
logn (4.36)

for some positive constant C1. From (4.34) we can write

I(n) = I1(n) + I2(n)

where

I1(n) = (
√

log n)d
∫

(

B(0,δ)\ 1√
log n

A
)

∩F∗

|ψn

(√
log nw

)
| dw

and

I2(n) = (
√

log n)d
∫

F∗\B(0,δ)
|ψn

(√
log nw

)
|dw.

Since (4.36) holds, given ǫ > 0, we have for all n large enough

I1(n) ≤ (
√

log n)d
∫

B(0,δ)\ A√
log n

C1e
−b ‖w‖2

2
logn dw ≤ ǫ. (4.37)

Since 0 ∈ B, the lattices forXj and IjXj are same. Therefore, for all w ∈ F∗\B(0, δ) we get |e(iw)| <
1, so there exists an 0 < η < 1, such that |e(iw)| ≤ η. Therefore, using the inequality 1− x ≤ e−x,
we obtain

|ψn(
√

log nw)| ≤ e−
∑n

j=i
1

j+1
(1−η) ≤ C2e

−(1−η) logn (4.38)

for some positive constant C2. Therefore, using equation (21.25) on page 230 of [3] we obtain

I2(n) ≤ C ′
2(
√

log n)de−(1−η) logn −→ 0 as n→ ∞

where C ′
2 is an appropriate positive constant.
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Proof of the Theorem 2.9. It is easy to note that Sn is the simple symmetric random walk on Zd,
µ = 0 and Σ = d−1Id. We further assume, without loss of generality that the process starts with a
single ball of color indexed by 0.

For notional simplicity we write a proof for d = 2, the general case can be written similarly.
Now when d = 2, for each j ∈ N, IjXj is a lattice random vector with the minimal lattice Z2.

It is easy to note that 2πZ × 2πZ is the set of all periods for IjXj and its fundamental domain is
given by (−π, π)2. To prove (2.14), it is equivalent to proving

sup
x∈ 1√

2
L(2)
n

∣∣∣∣(log n)P
(

Zn√
log n

= x

)
− φ2, 1

2
I2
(x)

∣∣∣∣ −→ 0 as n→ ∞,

where φ2, 1
2
I2
(x) = 1

πe
−xxt

is the bivariate normal density with mean vector 0 and variance-

covariance matrix 1
2I2 and 1√

2
L(2)
n = {x : x = 1√

logn
Z2}. By Fourrier inversion formula (21.28

on page 230 of [3]), we get for x ∈ 1√
2
L(2)
n

P

(
Zn√
log n

= x

)
=

1

(2π)2 log n

∫

(−
√
lognπ,

√
lognπ)

2

ψn(t)e
−i〈t,x〉 dt

Also by Fourrier inversion formula

φ2, 1
2
I2
(x) =

1

(2π)2

∫

R2

e−i〈t,x〉e−
‖t‖2
4 dt.

Let us write Hn =
(
−√

log nπ,
√
log nπ

)2
. Given ǫ > 0, there exists N > 0 such that n ≥ N large

enough,

∣∣∣ log nP
(

Zn√
log n

)
− φ2, 1

2
I2
(x)
∣∣∣ ≤ 1

(2π)2

∫

Hn

∣∣∣ψn(t)− e−
‖t‖2
4

∣∣∣ dt+
1

(2π)2

∫

R2\Hn

e−
‖t‖2
4 dt

≤ 1

(2π)2

∫

Hn

∣∣∣ψn(t)− e−
‖t‖2
4

∣∣∣ dt+ ǫ.

Given any compact set A ⊂ R2 for all n large enough we have

∫

Hn

∣∣∣ψn(t)− e−
‖t‖2
4

∣∣∣ dt ≤
∫

A

∣∣∣ψn(t)− e−
‖t‖2
4

∣∣∣dt+
∫

Hn\A

∣∣∣ψn(t)
∣∣∣ dt+

∫

R2\A
e−

‖t‖2
4 dt.

By Theorem 2.1, we know that Zn√
logn

d−→ N2(0, 2
−1I2) as n→ ∞. Therefore, for any compact set

A ⊂ R2 by bounded convergence theorem,

∫

A

∣∣∣ψn(t)− e−
‖t‖2
4

∣∣∣dt −→ 0 as n→ ∞.
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Choose A such that
∫

Ac

e−
‖t‖2
4 dt < ǫ.

Let us write

I(n) =

∫

Hn\A

∣∣∣ψn(t)
∣∣∣ dt.

For the above choice of A, we will show that

I(n) −→ 0 as n→ ∞.

Applying a change of variables t = 1√
logn

w, we obtain

I(n) = log n

∫

(−π,π)2\ 1√
log n

A

∣∣∣ψn

(√
log nw

) ∣∣∣dw.

We can write

I(n) = I1(n) + I2(n)

where

I1(n) = log n

∫

(

B(0,δ)\ 1√
log n

A
)

∩(−π,π)2

|ψn

(√
log nw

)
|dw

and

I2(n) = log n

∫

(−π,π)2\B(0,δ)

|ψn

(√
log nw

)
|dw.

where δ is as in (4.35). Using arguments similar to (4.37), we can show that I1(n) −→ 0 as n→ ∞.
Therefore it is enough to show that I2(n) −→ 0 as n → ∞. To do so, we first observe that for
t = (t1, t2) ∈ R2 the characteristic function for X1 is given by e (it) = 1

2 (cos t1 + cos t2). So if

t ∈ [−π, π]2 be such that |e (it)| = 1, then t = (π, π), (−π, π), (π,−π), (−π,−π). The function
cos t is continuous and decreasing as a function of t for t ∈

[
π
2 , π

]
. Choose η > π

2 such that for

t ∈ A1 = (−π, π)2 ∩ Bc(0, δ) ∩ Dc, we have |e (it)| < 1, where D = [π − η, π)2 ∪ [−π − η,−π) ×
[π − η, π) ∪ [−π − η,−π)2 ∪ [π − η, π)× [−π − η,−π). Let us write

I2(n) = J1(n) + J2(n)

where

J1(n) = log n

∫

A1

|ψn

(√
log nw

)
|dw
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and

J2(n) = log n

∫

D
|ψn

(√
log nw

)
|dw.

It is easy to note that

J1(n) ≤ log n

∫

A1

|ψn

(√
log nw

)
|dw

where A1 denotes the closure of A1. For w ∈ A1 there exists some 0 < α < 1 such that |e (it)| ≤ α.
Therefore using bounds similar to that in (4.38) we can show that

J1(n) −→ 0 as n→ ∞.

We observe that

J2(n) ≤ 4 log n

∫

[π−η,π]2
|ψn

(√
log nw

)
|dw.

Hence, it is enough to show that log n
∫
[π−η,π]2 |ψn

(√
log nw

)
|dw −→ 0 as n → ∞. For w ∈

[π − η, π]2 we have 0 < |
(
1 + e(iw)

j

)
| ≤

(
1 + cos(π−η)

j

)
≤ 1. Therefore

|ψn(w)| =
1

n+ 1

n∏

j=1

∣∣∣
(
1 +

e(iw)

j

) ∣∣∣ ≤ 1

n+ 1
.

So,

log n

∫

[π−η,π]2
|ψn

(√
log nw

)
|dw ≤ η2

n+ 1
log n −→ 0 as n→ ∞.

5 Urn on General Graphs on Rd

We can further generalize the urn models to a large variety of graphs with vertex set a countable sub-
set of Rd and an appropriate edge set. Let {Xi}i≥1 be a sequence of random d-dimensional i.i.d. vec-
tors with non empty support set B ⊂ Rd. We assume the cardinality of B to be finite. Consider V :={∑k

i=1 nibi : n1, n2, . . . , nk ∈ N, b1, b2, . . . , bk ∈ B
}
⊆ Rd and E := {{u, v} : v, u ∈ B and v − u ∈ B}.

Let G = (V,E) be the graph with vertex set V ⊆ Rd and edge set E. Let the law of X1 be given
by

P (X1 = w) = p(w) for all w ∈ B.

where 0 < p(w) ≤ 1 for all w ∈ B and
∑

w∈B p(w) = 1. Define the random walk Sn =
∑n

k=1Xk.
In this section, we consider urn model with replacement matrix given by the stochastic matrix
associated with the bounded increment random walk Sn on G. Let the urn evolve according to the
random walk Sn with the replacement matrix R given by

R (u, v) =

{
p(v − u), if v − u ∈ B

0 otherwise
(5.39)
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for all u, v ∈ V .
The urn models as defined in the Subsection 1.1 with vertex set Zd and edge set being the

nearest neighbor links are special cases of urns on general graphs.

5.1 Main Results for General Graphs

Throughout this and the remaining subsections V, (Xi)i≥1 and B will remain as defined in Section
5.

For X1 =
(
X

(1)
1 ,X

(2)
1 , . . . ,X

(d)
1

)
, let µ =

(
E[X

(1)
1 ],E[X

(2)
1 ], . . . ,E[X

(d)
1 ]
)

and Σ = [σij ]d×d

where σij = E[X
(i)
1 X

(j)
1 ]. We assume Σ to be positive definite and as earlier let Σ = Σ1/2Σ1/2. Let

Sn =
∑n

j=1Xj. Let Un denote the configuration of the urn at time n and the process begin with
U0 = (U0,v)v∈V such that U0,v = 0 except for finitely many v.

Theorem 5.1. Let the urn model be associated with the random walk {Sn}n≥0. Let Λn be the

probability measure corresponding to the probability vector 1
n+1 (E[Un,v])v∈V . For all A ∈ B

(
Rd
)
,

define Λ
cs
n = Λn

(√
log nAΣ−1/2 + µ log n

)
. Then, as n→ ∞

Λ
cs
n

w−→ Φd.

where for Φd (A) =
1

(
√
2π)d

∫
A

e−
xxt

2 dt for A ∈ B
(
Rd
)
.

Remark 8. Theorem 5.1 states that if Zn be the color of the randomly selected ball in the (n +
1)th draw, that is Zn is a random d-dimensional vector corresponding to the probability vector
1

n+1 (E[Un,v])v∈V , then

Zn − µ log n√
log n

d−→ Nd(0, Σ) as n→ ∞. (5.40)

For ω ∈ Ω, let Λn(ω) ∈ M1 be the random probability measure corresponding to the random

probability vector Un(ω)
n+1 where M1 is the space of probability measures on Rd, d ≥ 1 endowed with

the topology of weak convergence.

Theorem 5.2. For ω ∈ Ω, let Λcs
n (ω) (A) = Λn(ω)

(√
log nAΣ−1/2 + µ log n

)
. Then, as n→ ∞,

Λcs
n

p−→ Φd on M1, (5.41)

where Φd (A) =
1

(
√
2π)d

∫
A

e−
xxt

2 dt for A ∈ Rd.

Remark 9. From Theorem 5.2 we can conclude that given any subsequence {nk}∞k=1 there exists a
further subsequence {nkj}∞j=1 such that as j → ∞

Λcs
nkj

w−→ Φd almost surely for all ω.

Let the support set for the i.i.d. sequence of increment vectors {Xi}i≥1 be

B =
{
(1, 0), (−1, 0), ω,−ω, ω2 ,−ω2

}
,
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Figure 1: Triangular Lattice

where ω, ω2 are the complex cube roots of unity and the law be given by P (X1 = v) = 1
6 for every

v ∈ B. Let G = (V,E) be the corresponding graph. It is called the triangular lattice in R2. Let
Sn =

∑n
j=1 IjXj be the random walk on the triangular lattice G. The urn with colors indexed by

the vertices of the triangular lattice and replacement matrix given by the stochastic matrix of the
increment vectors Xi is an example of urn on general graphs.

Corollary 5.3. Let the colors of the balls in the urn be indexed by the vertex set of the triangular

lattice on R2 and the urn model be associated with the random walk {Sn}n≥0 on triangular lattice.

Let the process begin with a single ball of color indexed by 0, then as n→ ∞

Zn√
log n

d−→ N2

(
0,

1

2
I2

)
. (5.42)

5.2 Proofs

The proofs of Theorems 5.1 and 5.2 are exactly similar to that of Theorems 2.1 and 2.4 and hence
omitted. However, we present the proof of Corollary 5.3.

Proof of Corollary 5.3. In this case B = {(1, 0), (−1, 0), ω,−ω, ω2 ,−ω2} where ω and ω2 are the
complex cube roots of unity. For a complex number z, Re(z) and Im(z) will denote respectively
the real and imaginary parts of z.

Since 1 + ω + ω2 = 0, therefore it is immediate that µ = 0. Also we know that ω =

1
2 + i

√
3
2 . Observe that E

[(
X

(1)
1

)2]
= 2

6

(
1 + (Re ω)2 +

(
Re ω2

)2)
and Re ω = Re ω2, there-

fore E

[(
X

(1)
1

)2]
= 2

6

(
1 + 2 (Re ω)2

)
= 1

2 . Similarly, since Im(ω) = −Im(ω2), E
[(
X2

1

)2]
=

2
6

(
(Im(ω))2 +

(
Im(ω2)

)2)
= 1

2 . Furthermore E

[
X

(1)
1 X

(2)
1

]
= −2

6Im
(
1 + ω + ω2

)
= 0.
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6 Technical Results

In this section we present the following technical result which we have used in the proof of Theorem
2.4.

Theorem 6.1. Let µ̂n be a sequence of probability measures on
(
Rd,B(Rd)

)
, d ≥ 1 and let mn(· )

be the corresponding moment generating functions. For some δ > 0 if mn(λ) −→ e
‖λ‖2

2 as n → ∞
for every λ ∈ [−δ, δ]d ∩Qd then as n→ ∞

µ̂n
w−→ Φd,

where Φd (A) =
1

(
√
2π)d

∫
A

e−
xxt

2 dt for A ∈ B
(
Rd
)
.

Proof. For notational simplicity we present the proof when d = 1. The proof when d ≥ 2 is similar
with appropriate modifications. From Theorem 22.2 of [4], we know that a distribution is uniquely
determined by its moment generating function in a neighborhood of 0. Therefore it is enough to
prove that sequence of probability measures µ̂n is tight. Choose a δ′ ∈ Q such that 0 < δ′ < δ. To
prove tightness, we observe that for a > 0

µ̂n [(−a, a)c] ≤ e−δ′a (mn(−δ′) +mn(δ
′)
)
.

Since mn(δ
′) → m(δ′) and mn(−δ′) → m(−δ′) as n→ ∞, we can say that

sup
n≥1

µ̂n [(−a, a)c] −→ 0 as a→ ∞.

Therefore, for every subsequence {nk}k≥1 there exists a further subsequence {nkj}j≥1 and a proba-

bility measure µ̂ such that µ̂nkj

d−→ µ as n→ ∞. We already know thatmnkj
(λ) −→ e

λ2

2 as j → ∞
for every λ ∈ [−δ, δ] ∩ Q. Since the moment generating function is continuous as a function of its

argument, therefore the moment generating function for µ̂ is e
λ2

2 . Therefore this completes the
proof.
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