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Abstract

In the literature of information theory, the concept of generalized entropy has been

proposed. Recently, the length based shift-dependent information measure has been studied

by Di crescenzo and Longobardi (2006). In this paper, the concept of weighted generalized

entropy has been introduced. The properties of weighted generalized residual entropy and

weighted generalized past entropy are also discussed.
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1 Introduction

In the area of information theory as well as engineering sciences, the Shannon entropy and

its applications is a very important and well known concept. Information theory includes

the study of uncertainty measures and various practical and economical methods of coding

information for transmission. Let X be an absolutely continuous nonnegative random variable

having probability density function fX(t). Then Shannon’s entropy is defined as

H(X) = −

∫
∞

0

fX(x) ln fX(x)dx = −E [ln fX(X)] . (1.1)

One of the main drawback of H(X) is that for some probability distribution it may be negative

and then it is no longer an uncertainty measure. This drawback is removed in the generalized

entropy. By choosing a convex function φ such that φ(1) = 0, Khinchin (1957) generalized (1.1)

and defined the measure as

Hφ(X) =

∫
fX(x)φ(fX(x))dx. (1.2)
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For two particular choice of φ, (1.2) can be written as

H
β
1 (X) =

1

β − 1

[
1−

∫
∞

0

f
β
X(x)dx

]
, (1.3)

and

H
β
2 (X) =

1

1− β
ln

∫
∞

0

f
β
X(x)dx, (1.4)

for some fixed β > 0 and β 6= 1. As β → 1 in (1.3) or in (1.4), then they tends to (1.1). It

can be seen that by choosing appropriate value of β, one can always find nonnegative H
β
1 (X)

and H
β
2
(X) but (1.1) may be negative for some distribution. Sometime it is very important to

study about the system that survived up to an age t, then Shannon’s entropy function is not

useful in measuring the uncertainty about the residual lifetime of the system. Ebrahimi (1996)

have introduced residual entropy and defined as

H(X; t) = −

∫
∞

t

fX(x)

F̄X(t)
ln

(
fX(x)

F̄X(t)

)
dx, (1.5)

where F̄X(t) be the survival function of the random variable X. Nanda and Paul (1996) have

introduced generalized residual entropy and they have redefined (1.3) and (1.4) for a unit

surviving up to age t as

H
β
1 (X; t) =

1

β − 1

[
1−

∫
∞

t

(
fX(x)

F̄X(t)

)β

dx

]
, (1.6)

and

H
β
2 (X; t) =

1

1− β
ln

∫
∞

0

(
fX(x)

F̄X(t)

)β

dx, (1.7)

respectively. As β → 1 in (1.6) or in (1.7), then they tends to (1.5). In some practical situation

sometime it is important to study the uncertainty related to the past rather than the future.

The past entropy over (0, t) have been introduced by Di Crescenzo and Longobardi (2002). If

X be the lifetime of a system then the past entropy of the system is defined as

H̄(X; t) = −

∫ t

0

fX(x)

FX(t)
ln

(
fX(x)

FX(t)

)
dx, (1.8)

where FX(t) be the distribution function of the random variable X. Gupta and Nanda (2002)

have been defined generalized past entropies given by

H̄
β
1 (X; t) =

1

β − 1

[
1−

∫ t

0

(
fX(x)

FX(t)

)β

dx

]
, (1.9)

and

H̄
β
2
(X; t) =

1

1− β
ln

∫
∞

0

(
fX(x)

FX(t)

)β

dx, (1.10)
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respectively. When β → 1 in (1.9) or in (1.10), then they tends to (1.8).

When an investigator collects a sample of observations produced by nature, according

to the certain model, the original distribution may not be reproduced due to various reasons

(cf. C.R. Rao (1965)). In many practical circumstances for modeling statistical data, sometime

the standard distributions are not found appropriate. For this reason, it is important to con-

sider the concept of weighted distributions. Guiasu (1986) has shown that weighted entropy

has been used to balance the amount of information and the degree of homogeneity associated

to a partition of data in classes. When the weight function depends on the lengths of the

component, the resulting distribution is called length biased weighted function. Di Crescenzo

and Longobardi (2006) have considered a length based shift dependent information measure,

related to the differential entropy and also introduced the concept of weighted residual entropy

and weighted past entropy. Misagh and Yari (2011) have studied the weighted differential infor-

mation measure for two-sided truncated random variable. Motivated with the usefulness of the

generalized entropy and the weighted entropy, the concept of weighted generalized entropy has

been introduced. Further, weighted generalized residual entropy and the weighted generalized

past entropy have been discussed in this paper.

This paper is organized as follows. In Section 2 of this paper some basic notation and

properties of weighted generalized entropy have been studied. Section 3 discusses the properties

of weighted generalized residual entropy, while Section 4 deals with some properties of weighted

past generalized entropy. Finally, Section 5 presents some concluding remarks.

Throughout the paper, increasing and decreasing properties of a function are not used

in the strict sense. For any twice differentiable function g(t), we write g′(t) and g′′(t) to denote

the first and the second derivatives of g(t) with respect to t, respectively, and a
def
= b means

that a is defined by b.

2 Weighted generalized entropy

If X is an absolutely continuous non-negative random variable with probability density

function fX(t) and survival function F̄X(t), then the probability density function of length

based weighted random variable Xω associated to the random variable X is

fω(t) =
t

E(X)
fX(t),

and the survival function is

F̄ω(t) =
E(X|X > t)

E(X)
F̄X(t).

Then the weighted entropy is given by

Hω(X) = −

∫
∞

0

fω(x) ln fω(x)dx

= −
E (X lnX)

E(X)
+

E(X) lnE(X)

E(X)
−

1

E(X)

∫
∞

0

xfX(x) ln fX(x)dx. (2.1)
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The weighted generalized entropy is given by

Hωβ

1 (X) =
1

β − 1

[
1−

∫
∞

0

fωβ

(x)dx

]

=
1

β − 1

[
1−

1

(E(X))β

∫
∞

0

xβf
β
X(x)dx

]
, (2.2)

and

Hωβ

2 (X) =
1

1− β

[
ln

(
1

(E(X))β

∫
∞

0

xβf
β
X(x)dx

)]
. (2.3)

It can be noted that as β → 1 in (2.2) or in (2.3), they reduces to (2.1). Hωβ

1 (X) and Hωβ

2 (X)

are called as first kind weighted entropy of order β and second kind weighted entropy of order

β respectively.

The following example shows that although two distributions have same generalized

entropies but they have different weighted generalized entropies.

Example 2.1 Let X and Y be random variables with density functions

fX(t) =

{
1+t
4
, 0 6 t < 2,

0, otherwise,

and

fY (t) =

{
1− 1+t

4
, 0 6 t < 2,

0, otherwise.

Take β = 2. Then, we can see that Hβ
1 (X) = H

β
1 (Y ) = 11

24
, where H

β
1 (X) and H

β
1 (Y ) are the

first kind generalized entropies of X and Y . The first kind weighted generalized entropies of

the random variables X and Y are given by Hωβ

1 (X) = 53
245

and Hωβ

1 (Y ) = 53
125

respectively.

Therefore, Hωβ

1 (X) 6= Hωβ

1 (Y ).

Again, the second kind generalized entropies of the random variables X and Y are given

by H
β
2 (X) = H

β
2 (Y ) = ln 24

13
. But we can see that Hωβ

2 (X) = ln 245

192
and Hωβ

2 (Y ) = ln 125

72
are

not equal.

Hence, even though H
β
1 (X) = H

β
1 (Y ) and H

β
2 (X) = H

β
2 (Y ), the weighted generalized

entropy about the predictability of X by the density function fX(t) is smaller than the pre-

dictability of Y by the density function fY (t). 2

The following propositions gives the properties of Hωβ

1 (X) and Hωβ

2 (X).

Proposition 2.1 Let Z be a random variable defined by Z = aX + b. Then

(i) Hωβ

1 (Z) =
1

β − 1

[
1−

(E(X))β

aβ−1 (aE(X) + b)
β

(
1− (β − 1)Hωβ

1 (X)
)]

−
β

(β − 1)aβ−1(aE(X) + b)β

∫
∞

t=0

tβ−1

(
F̄

β
X

(
t− b

a

)[
1− (β − 1)Hβ

1

(
X ;

t− b

a

)]
− F̄

β
X(t)

[
1− (β − 1)Hβ

1 (X ; t)
])

dt;
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(ii) Hωβ

2 (Z) =
1

1− β
ln

[
(E(X))

β

aβ−1 [aE(X) + b]
β
exp

(
(1− β)Hβ

2 (X)
)]

+
β

(1− β)aβ−1 [aE(X) + b]
β

∫
∞

t=0

tβ−1

[
F̄

β
X

(
t− b

a

)
exp

(
(1− β)Hβ

2

(
X ;

t− b

a

))
− F̄

β
X(t) exp

(
(1 − β)Hβ

2 (X ; t)
)]

dt,

where a > 0, b > 0 and X be any absolutely continuous random variable. 2

Proposition 2.2 If X and Y are independent, then

(i) Hωβ

1 (X,Y ) = Hωβ

1 (X) +Hωβ

1 (Y )− (β − 1)Hωβ

1 (X)Hωβ

1 (Y )

(ii) Hωβ

2 (X,Y ) = Hωβ

2 (X) +Hωβ

2 (Y ). 2

3 Weighted generalized residual entropy

Di Crescenzo and Longobardi (2006) have introduced the concept of weighted residual

entropy which can be defined as

Hω(X; t) = −

∫
∞

t

fω(x)

F̄ω(t)
ln

(
fω(x)

F̄ω(t)

)
dx

= −
1

E [X|X > t]

∫
∞

t

x
fX(x)

F̄X(t)
ln

(
xfX(x)

E [X|X > t] F̄X(t)

)
dx. (3.1)

In this section the concept of weighted generalized residual entropy functions have been intro-

duced and some properties of weighted generalized entropy have been discussed. The weighted

generalized residual entropy functions are defined by

Hωβ

1 (X; t) =
1

β − 1

[
1−

∫
∞

t

(
fω(x)

F̄ω(t)

)β

dx

]

=
1

β − 1

[
1−

1

(E(X|X > t))β

∫
∞

t

xβ
(
fX(x)

F̄X(t)

)β

dx

]
, (3.2)

and

Hωβ

2 (X; t) =
1

1− β
ln

∫
∞

t

(
fω(x)

F̄ω(t)

)β

dx

=
1

1− β
ln

∫
∞

t

xβ
(
fX(x)

F̄X(t)

)β

dx−
β

1− β
lnE(X|X > t). (3.3)

As β → 1 in (3.2) and (3.3), we can see that they reduce to Hω(X; t) as defined in (3.1). Now,

we can see that

∫
∞

t

xβ
(
fX(x)

F̄X(t)

)β

dx =

∫
∞

t

(∫ x

0

βyβ−1dy

)(
fX(x)

F̄X(t)

)β

dx

= β

∫
∞

t

(∫ t

0

βyβ−1dy +

∫ x

t

βyβ−1dy

)(
fX(x)

F̄X(t)

)β

dx
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= β

[∫
∞

t

(∫ t

0

yβ−1dy

)(
fX(x)

F̄X(t)

)β

dx+

∫
∞

t

(∫ x

t

yβ−1dy

)(
fX(x)

F̄X(t)

)β

dx

]

= β

[
tβ

β

∫
∞

t

(
fX(x)

F̄X(t)

)β

dx+
1

F̄
β
X(t)

∫
∞

y=t

(
yβ−1

∫
∞

t=y

f
β
X(x)dx

)
dy

]
.

Again,

H
β
1 (X; t) =

1

β − 1

[
1−

∫
∞

t

(
fX(x)

F̄X(t)

)β

dx

]
,

and

H
β
2 (X; t) =

1

1− β
ln

∫
∞

t

(
fX(x)

F̄X(t)

)β

dx,

which are equivalent to

∫
∞

t

(
fX(x)

F̄X(t)

)β

dx = 1− (β − 1)Hβ
1 (X; t) ,

∫
∞

t

f
β
X(x)dx = F̄

β
X(t)

[
1− (β − 1)Hβ

1 (X; t)
]
,

and ∫
∞

t

(
fX(x)

F̄X(t)

)β

dx = exp
[
1− (1− β)Hβ

2 (X; t)
]
,

∫
∞

t

f
β
X(x)dx = F̄

β
X(t) exp

[
1− (1− β)Hβ

2 (X; t)
]
.

Therefore, (3.2) can be rewritten as

Hωβ

1 (X; t) =
1

β − 1

[
1−

1

(E(X|X > t))β

(
tβ
[
1− (β − 1)Hβ

1 (X; t)
]
+

β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β [
1− (β − 1)Hβ

1 (X; y)
]
dy

)]
, (3.4)

and (3.3) can be rewritten as

Hωβ

2 (X; t) =
1

1− β
ln
[
tβ exp

[
(1− β)Hβ

2 (X; t)
]
+

β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β

exp
[
(1− β)Hβ

2 (X; y)
]
dy

]

−
β

1− β
lnE(X|X > t). (3.5)

The following theorem characterizes the weighted generalized residual entropy in the

sense that under certain condition the weighted generalized residual entropy uniquely determine

the distribution function.
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Theorem 3.1 Let X be a nonnegative absolutely continuous random variable having probability

density function fX(t) and the survival function F̄X(t). If

(i) H
β
1 (X; t) is increasing in t, then Hωβ

1 (X; t) uniquely determine F̄X(t);

(ii) H
β
2 (X; t) is increasing in t, then Hωβ

2 (X; t) uniquely determine F̄X(t).

Proof : (i) From (3.4), we have

Hωβ

1 (X; t) =
1

β − 1

[
1−

1

(E(X|X > t))β

(
tβ
[
1− (β − 1)Hβ

1 (X; t)
]
+

β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β [
1− (β − 1)Hβ

1 (X; y)
]
dy

)]
,

which is equivalent to

1− (β − 1)Hωβ

1 (X; t) =
1

(E(X|X > t))β

(
tβ
[
1− (β − 1)Hβ

1 (X; t)
]
+

β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β [
1− (β − 1)Hβ

1 (X; y)
]
dy

)

=
I(t)

[g(t)]β
, (3.6)

where g(t) = E(X|X > t) and

I(t) = tβ
[
1− (β − 1)Hβ

1 (X; t)
]
+ β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β [
1− (β − 1)Hβ

1 (X; y)
]
dy.

Differentiating I(t) with respect to t, we get

I ′(t) = −(β − 1)tβ
d

dt
H

β
1 (X; t) + β2rX(t)

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β [
1− (β − 1)Hβ

1 (X; y)
]
dy.

Differentiating (3.6) with respect to t, we get

−(β − 1)
d

dt
Hωβ

1 (X; t) = −β
g′(t)

gβ+1(t)
I(t) +

1

gβ(t)
I ′(t). (3.7)

Again, from (3.2), we have

1− (β − 1)Hωβ

1 (X; t) =
1

gβ(t)

∫
∞

t

xβ
(
fX(x)

F̄X(t)

)β

dx. (3.8)

Differentiating (3.8) with respect to t, we get

−(β − 1)
d

dt
Hωβ

1 (X; t) = −β
g′(t)

gβ+1(t)

∫
∞

t

xβ
(
fX(x)

F̄X(t)

)β

dx+
β

gβ(t)
rX(t)

∫
∞

t

xβ
(
fX(x)

F̄X(t)

)β

dx

−
tβ

gβ(t)
r
β
X(t). (3.9)
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Therefore, from (3.7) and (3.9), we have

−β
g′(t)

gβ+1(t)
I(t) +

1

gβ(t)
I ′(t) = −β

g′(t)

gβ+1(t)

∫
∞

t

xβ
(
fX(x)

F̄X(t)

)β

dx

+
β

gβ(t)
rX(t)

∫
∞

t

xβ
(
fX(x)

F̄X(t)

)β

dx−
tβ

gβ(t)
r
β
X(t),

which is equivalent to

β
g′(t)

gβ+1(t)

[
I(t)−

∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy

]
+

β − 1

gβ(t)
tβ

d

dt
H

β
1 (X ; t)−

β

gβ(t)
rX(t)

[
β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β [
1− (β − 1)Hβ

1 (X ; y)
]
dy −

∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy

]
−

tβ

gβ(t)
r
β
X(t) = 0.

For a fixed t > 0, rX(t) is a solution of A(x) = 0, where

A(x) = β
g′(t)

gβ+1(t)

[
I(t)−

∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy

]
+

β − 1

gβ(t)
tβ

d

dt
H

β
1 (X ; t)−

β

gβ(t)
x

[
β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β [
1− (β − 1)Hβ

1 (X ; y)
]
dy −

∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy

]
−

tβ

gβ(t)
xβ .

Differentiating A(x) with respect to x, we get

A′(x) =
β

gβ(t)

[∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy − β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β [
1− (β − 1)Hβ

1 (X ; y)
]
dy

]

−
βtβ

gβ(t)
xβ−1.

Now, A′(x) = 0 gives

x =

[
1

tβ

(∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy − β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β [
1− (β − 1)Hβ

1 (X ; y)
]
dy

)] 1
β−1

= t0, say.

Again, we see that

A(0) = β
g′(t)

gβ+1(t)

[
I(t)−

∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy

]
+

β − 1

gβ(t)
tβ

d

dt
H

β
1 (X ; t)

=
β − 1

gβ(t)
tβ

d

dt
H

β
1 (X ; t).

Case I : For β > 1, A(0) > 0, if Hβ
1 (X ; t) is increasing in t and A(∞) = −∞. Further it can be seen

that

A′′(x) = −
β(β − 1)tβ

gβ(t)
xβ−2

6 0.
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Therefore, A′(x) is decreasing in x, and A′(t0) = 0, A′(∞) = −∞. Thus, we see that

A′(x) > 0, 0 < x 6 t0,

6 0, x > t0.

Therefore, A(x) = 0 has a unique solution. But we have seen that rX(t) is a solution. Hence, x = rX(t)

is a unique solution of A(x) = 0.

Case II : For β < 1, A(0) < 0, if Hβ
1 (X ; t) is increasing in t and A(∞) = −∞. Further it can be seen

that A′(x) is increasing in t, and A′(t0) = 0, A′(∞) = ∞. Thus, we see that

A′(x) 6 0, 0 < x 6 t0,

> 0, x > t0.

Therefore, A(x) = 0 has a unique solution and x = rX(t) is the unique solution of A(x) = 0.

Therefore, from the two cases it can be conclude that if Hβ
1 (X ; t) is increasing in t > 0 and

A(t0) = 0, then rX(t) is the unique solution of A(x) = 0. Thus, H2(X ; t) determines rX(t) uniquely.

Again, rX(t) uniquely determine F̄X(t). Hence, the result follows.

To prove (ii), we have, from (3.3)

exp
[
(1− β)Hωβ

2 (X ; t)
]

=
1

(E(X |X > t))
β

∫
∞

t

xβ

(
fX(x)

F̄X(t)

)β

dx. (3.10)

Differentiating (3.10) with respect to t, we have

d

dt

(
exp

[
(1− β)Hωβ

2 (X ; t)
])

= −β
g′(t)

gβ+1(t)

∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy +
β

gβ(t)
rX(t)

∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy −
tβ

gβ(t)
r
β
X(t). (3.11)

Again, from (3.5), we have

exp
[
(1− β)Hωβ

2 (X ; t)
]

=
1

(E(X |X > t))
β

(
tβ exp

[
(1− β)Hβ

2 (X ; t)
]
+

β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β

exp
[
(1− β)Hβ

2 (X ; y)
]
dy

)

=
I1(t)

[g(t)]β
, (3.12)

where I1(t) = tβ exp
[
(1− β)Hβ

2 (X ; t)
]
+ β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β

exp
[
(1− β)Hβ

2 (X ; y)
]
dy. Differenti-

ating I1(t) with respect to t, we get

I ′1(t) = tβ(1− β)
d

dt
H

β
2 (X ; t) exp

[
(1− β)Hβ

2 (X ; t)
]
+ β2rX(t)

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β

exp
[
(1 − β)Hβ

2 (X ; y)
]
dy.

Differentiating (3.12) with respect to t, we get

d

dt

(
exp

[
(1− β)Hωβ

2 (X ; t)
])

= −β
g′(t)

gβ+1(t)
I1(t) +

I ′1(t)

gβ(t)

9



=
1

gβ(t)

(
tβ(1− β)

d

dt
H

β
2 (X ; t) exp

[
(1− β)Hβ

2 (X ; t)
]
+ β2rX(t)

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β

exp
[
(1− β)Hβ

2 (X ; y)
]
dy

)
− β

g′(t)

gβ+1(t)
I1(t). (3.13)

From (3.11) and (3.13), we get

β
g′(t)

gβ+1(t)

[∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy − I1(t)

]
+

tβ

gβ(t)
(1− β)

d

dt
H

β
2 (X ; t) +

βrX(t)

gβ(t)
(
β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β

exp
[
(1− β)Hβ

2 (X ; y)
]
dy −

∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy

)
+

tβ

gβ(t)
r
β
X(t) = 0.

For a fixed t > 0, rX(t) is a solution of A1(x) = 0, where

A1(x) =
tβ

gβ(t)
(1− β)

d

dt
H

β
2 (X ; t)−

β

gβ(t)(∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy − β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β

exp
[
(1− β)Hβ

2 (X ; y)
]
dy

)
x+

tβ

gβ(t)
xβ .

Now, A′

1(x) = 0 gives

β
tβ

gβ(t)
xβ−1 −

β

gβ(t)

(∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy − β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β

exp
[
(1− β)Hβ

2 (X ; y)
]
dy

)
= 0,

which is equivalent to

x =

[
1

tβ

(∫
∞

t

yβ
(
fX(y)

F̄X(t)

)β

dy − β

∫
∞

t

yβ−1

(
F̄X(y)

F̄X(t)

)β

exp
[
(1 − β)Hβ

2 (X ; y)
]
dy

)] 1
β−1

= t1, say.

Again, A1(0) =
tβ

gβ(t)
(1− β) d

dt
H

β
2 (X ; t).

CaseI : β > 1, A1(0) < 0, if Hβ
2 (X ; t) is increasing in t and A1(∞) = ∞. By similar way one can say

that A1(x) = 0 has a unique solution. But we have seen that rX(t) is a solution. Hence, x = rX(t) is a

unique solution of A1(x) = 0.

CaseII : β < 1, A1(0) > 0, if Hβ
2 (X ; t) is increasing in t. By similar way one can say that rX(t) is a

solution. Hence, x = rX(t) is a unique solution of A1(x) = 0.

Therefore, from the two cases it can be conclude that if Hβ
2 (X ; t) is increasing in t > 0 and

A1(t1) = 0, then rX(t) is the unique solution of A1(x) = 0. Thus, H2(X ; t) determines rX(t) uniquely.

Again, rX(t) uniquely determine F̄X(t). Hence, the result follows. 2

Di Crescenzo and Longobardi (2006) have been defined two nonparametric classes of distribu-

tions based on the monotonicity properties of weighted entropy are given below.

Definition 3.1 A random variable X is said to have decreasing (resp. increasing) weighted uncertainty

residual life (DWURL (resp. IWURL)) if Hω(X ; t) is decreasing (resp. increasing) in t > 0. 2

Here two nonparametric classes of distributions based on the monotonicity properties of weighted

generalized residual entropy have been introduced.

Definition 3.2 A nonnegative random variable X is said to have

10



(i) decreasing (resp. increasing) weighted uncertainty residual life of first kind of order β [DWURLF(β)

(resp. IWURLF(β))] if Hωβ

1 (X ; t) is decreasing (resp. increasing) in t > 0;

(i) decreasing (resp. increasing) weighted uncertainty residual life of second kind of order β [DWURLS(β)

(resp. IWURLS(β))] if Hωβ

2 (X ; t) is decreasing (resp. increasing) in t > 0. 2

The following counterexample shows that there exist distributions which are not monotone in

terms of Hωβ

1 (X ; t) or Hωβ

2 (X ; t).

Counterexample 3.1 Let X be a random variable having probability density function fX(t) = 2
(1+t)3 ,

t > 0. Then the corresponding survival function is given by F̄X(t) = 1
(1+t)2 , t > 0. Take β = 2. Then,

we see that for all t > 0

Hωβ

1 (X ; t) = 1−
(1 + t)4

(1 + 2t)2

(
2(1 + 5t+ 10t2)

15(1 + t)5

)

= a1(t), say,

which is not monotone in 0 6 t 6 0.5 as shown in Figure 1. Again, we see that for all t > 0

t

1( )a t

Figure 1: Plot of a1(t) for and t ∈ [0, 0.5] (Counterexample 3.1)

Hωβ

2 (X ; t) = − ln

[
(1 + t)4

(1 + 2t)2

(
2(1 + 5t+ 10t2)

15(1 + t)5

)]

= a2(t), say,

which is also not monotone in 0 6 t 6 0.5 as shown in Figure 2. Hence, Hωβ

1 (X ; t) and Hωβ

2 (X ; t) are

not monotone. 2

The following theorem gives the upper (resp. lower) bound to the failure rate function rX(t), in

terms of Hωβ

1 (X ; t) and Hωβ

2 (X ; t). The proof is simple and hence omitted.

Theorem 3.2 (i) If X is IWURLF(β) (resp. DWURLF(β)), then

rX(t) > (resp. 6)
E (X |X > t)

t

[
β
(
1− (β − 1)Hωβ

1 (X ; t)
)] 1

β−1

.

(ii) If X is IWURLS(β) (resp. DWURLS(β)), then

rX(t) > (resp. 6)
E (X |X > t)

t

[
β exp

(
(1− β)Hωβ

2 (X ; t)
)] 1

β−1

,

for all t > 0. 2

11



t

2 ( )a t

Figure 2: Plot of a2(t) for t ∈ [0, 0.5] (Counterexample 3.1)

By taking β → 1, we have the following corollary. The proof is omitted.

Corollary 3.1 If X is IWURL (resp. DWURL), then

rX(t) > (resp. 6)
E (X |X > t)

t
exp [1−Hω (X ; t)] ,

for all t > 0. 2

The following theorem provides a lower bounds for weighted generalized residual entropy. The

proof is omitted.

Theorem 3.3 (i) If the failure rate function rX(t) is decreasing in t > 0, then

Hωβ

1 (X ; t) >
1

β − 1

[
1−

E(Xβ|X > t)

(E(X |X > t))
β
r
β−1
X (t)

]
,

for all β > 0, t > 0.

(ii) If the failure rate function rX(t) is decreasing in t > 0, then

Hωβ

2 (X ; t) >
1

1− β
ln

[
E(Xβ|X > t)

(E(X |X > t))
β
r
β−1
X (t)

]
,

for all β > 0, t > 0. 2

By taking β → 1, we have the following corollary. The proof is omitted.

Corollary 3.2 If the failure rate function rX(t) is decreasing in t > 0, then

Hω (X ; t) > −
E [X lnX |X > t]

E [X |X > t]
− ln

(
rX(t)

E [X |X > t]

)
,

for all β > 0, t > 0. 2
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4 Weighted generalized past entropy

Di Crescenzo and Longobardi (2006) have defined weighted past entropy. The weighted past

entropy at time t of a random lifetime X is defined by

H̄ω(X ; t) = −

∫ t

0

fω(x)

Fω(t)
ln

(
fω(x)

Fω(t)

)
dx

= −

∫ t

0

xfX(x)

E(X |X < t)FX(t)
ln

(
xfX(x)

E(X |X < t)FX(t)

)
dx. (4.1)

Here the weighted version of generalized past entropies of lifetime distribution have been defined.

H̄ωβ

1 (X ; t) =
1

β − 1

[
1−

1

[E(X |X < t)]
β

∫ t

0

xβ

(
fX(x)

FX(t)

)β

dx

]
, (4.2)

and

H̄ωβ

2 (X ; t) =
1

1− β
ln

[
1

[E(X |X < t)]
β

∫ t

0

xβ

(
fX(x)

FX(t)

)β

dx

]
. (4.3)

As β → 1 in (4.2) and (4.3), we can see that they reduce to H̄ω(X ; t) as defined in (4.1). Alternatively,

(4.2) and (4.3) can be written as

H̄ωβ

1 (X ; t) =
1

β − 1

[
1−

1

[E(X |X < t)]
β

(
tβ(1− (β − 1)H̄β

1 (X ; t))

−β

∫ t

y=0

yβ−1

(
F (y)

F (t)

)β [
1− (β − 1)H̄β

1 (X ; y)
]
dy

)]
, (4.4)

and

H̄ωβ

2 (X ; t) =
1

1− β
ln

[
1

[E(X |X < t)]
β

(
tβ exp

(
(1− β)H̄β

2 (X ; t)
)

−β

∫ t

y=0

yβ−1

(
F (y)

F (t)

)β

exp
(
(1− β)H̄β

2 (X ; y)
)
dy

)]
. (4.5)

The following definitions gives two partial orders based on past entropy.

Definition 4.1 A random variable X is said to be larger than another random variable Y in weighted

past entropy order (written as X >WPE Y ) if H̄ω(X ; t) 6 H̄ω(Y ; t). 2

Definition 4.2 A random variable X is said to be larger than another random variable Y in weighted

generalized past entropy of order β (written as X >WGPE Y ) if H̄ωβ

1 (X ; t) 6 H̄ωβ

1 (Y ; t) (or, equivalently,

H̄ωβ

2 (X ; t) 6 H̄ωβ

2 (Y ; t)). 2

The following counterexample show that weighted past entropy order is the subclass of the

weighted generalized past entropy of order β.

Counterexample 4.1 Let X be a random variable having probability density function given by

fX(t) =

{
t
2 , 0 < t < 2,

0, t > 2.
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Again, let Y be another random variable having probability density function given by

fX(t) =






3e−
3
2
t

5
(

1−e
−

3
2

) , 0 6 t 6 1,

3te−2+ t2

2

5
(

1−e
−

3
2

) , 1 6 t < 2,

0, t > 2.

Now, for 1 6 t 6 2

H̄ω(X ; t)− H̄ω(Y ; t) =

∫ 1

0

xe−
3x
2 ln




3xe−
3x
2∫ 1

0

3xe−
3x
2 dx+

∫ t

1

3x2e−2+x2

2 dx




∫ 1

0

xe−
3x
2 dx+

∫ t

1

x2e−2+ x2

2 dx

dx

+

∫ t

1

3x2e−2+ x2

2 ln




3x2e
−2+ x2

2∫ 1

0

3xe−
3x
2 dx+

∫ t

1

3x2e−2+ x2

2 dx




∫ 1

0

3xe−
3x
2 dx+

∫ t

1

3x2e−2+x2

2 dx

dx

−

∫ t

0

3x2

t3
ln

(
3x2

t3

)
dx

= α(t), say,

which is not always negative as shown in Figure 3. Therefore, X �WPE Y . Take β = 1
3 . Then,

t

( )t 

Figure 3: Plot of α(t) for and t ∈ [1, 2] (Counterexample 4.1)
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α1(t)
def
= H̄ωβ

1 (X ; t)− H̄ωβ

1 (Y ; t)

=





− 3
2




∫ t

0

(
xe−

3
2
x
) 1

3

dx





∫ t

0

xe−
3
2
xdx





1
3

− 3
4
3

5 t
2
3



, 0 6 t 6 1,

− 3
2




∫ 1

0

(
xe−

3
2
x
) 1

3

dx+

∫ t

1

(
x2e−2+ x2

2

) 1
3

dx





∫ 1

0

xe−
3
2
xdx +

∫ t

1

x2e−2+ x2

2 dx





1
3

− 3
4
3

5 t
2
3



, 1 6 t 6 2,

−0.0207, t > 2.

From Figure 4, we can see that H̄ωβ

1 (X ; t) 6 H̄ωβ

1 (Y ; t). Again, we see that

t

1( )t 

Figure 4: Plot of α1(t) for and t ∈ [0, 2] (Counterexample 4.1)

κ1(t)
def
= H̄ωβ

2 (X ; t)− H̄ωβ

2 (Y ; t)

=





3
2



ln

(
3

4
3

5 t
2
3

)
− ln




∫ t

0

(
xe−

3
2
x
) 1

3

dx





∫ t

0

xe−
3
2
xdx





1
3






, 0 6 t 6 1,

3
2



ln

(
3

4
3

5 t
2
3

)
− ln




∫ 1

0

(
xe−

3
2
x
) 1

3

dx+

∫ t

1

(
x2e−2+ x2

2

) 1
3

dx





∫ 1

0

xe−
3
2
xdx+

∫ t

1

x2e−2+x2

2 dx





1
3






, 1 6 t 6 2,

−0.01498, t > 2.

From Figure 5, we can see that H̄ωβ

2 (X ; t) 6 H̄ωβ

2 (Y ; t). Therefore, X >WGPE Y . Hence, weighted past

entropy order is the subclass of the weighted generalized past entropy of order β. 2

The following example shows that X >ST Y , but X �WGPE Y . A nonnegative random variable

X is said to be greater than another nonnegative random variable Y in stochastic order (written as

X >ST Y ) if FX(t) 6 FY (t), for all t > 0, where FX(t) and FY (t) are the distribution functions of X

and Y , respectively.
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t

1( )t 

Figure 5: Plot of κ1(t) for and t ∈ [0, 2] (Counterexample 4.1)

Example 4.1 Let X be a random variable having probability density function fX(t) = 1
(1+t)2 , t > 0 and

the corresponding distribution function is given by FX(t) = 1− 1
1+t

, t > 0. Suppose that Y be a random

variable having probability density function fY (t) = 2
(1+t)3 , t > 0 and the corresponding distribution

function is given by FY (t) = 1− 1
(1+t)2 , t > 0. It can be shown that FX(t) 6 FY (t), for all t > 0. Thus,

X >ST Y . Take β = 2. Now, we see that for all t > 0

H̄ωβ

1 (X ; t)− H̄ωβ

1 (Y ; t) =

1
2(1+t)4 − 1

3(1+t)3 − 1
5(1+t)5 + 1

30(
1

2(1+t)2 − 1
1+t

+ 1
2

)2 −

1
(1+t)2 − 1

3(1+t)3 − 1
1+t

+ 1
3(

1
1+t

+ ln(1 + t)− 1
)2

= α2(t), say.

We see that α2(0.5) = −0.1061 and α2(3) = 0.03046. Again, we see that for all t > 0

H̄ωβ

2 (X ; t)− H̄ωβ

2 (Y ; t) = ln




1
2(1+t)4 − 1

3(1+t)3 − 1
5(1+t)5 + 1

30(
1

2(1+t)2 − 1
1+t

+ 1
2

)2


− ln




1
(1+t)2 − 1

3(1+t)3 − 1
1+t

+ 1
3(

1
1+t

+ ln(1 + t)− 1
)2




= κ2(t), say.

We see that κ2(0.5) = −0.0458 and κ2(3) = 0.08406. Hence, X �WGPE Y . 2

The following example shows that X �ST Y , but X >WGPE Y .

Example 4.2 Let X be a random variable having probability density function given by

fX(t) =

{
2(1−t)
1+4t2 + 8t(1−t)2

(1+4t2)2 , 0 6 t 6 1,

0, t > 1.

The corresponding distribution function is given by

FX(t) =

{
1− (1−t)2

1+4t2 , 0 6 t 6 1,

1, t > 1.

Again, let Y be another random variable having probability density function given by

fY (t) =

{
2(1− t)e−t + (1− t)2e−t, 0 6 t 6 1,

0, t > 1.
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The corresponding distribution function is given by

FY (t) =

{
1− (1− t)2e−t, 0 6 t 6 1,

1, t > 1.

Now, we can see that for 0 6 t 6 1

FX(t)− FY (t) = (1− t)2e−t −
(1− t)2

1 + 4t2

=

{
−0.04593, t = 0.1,

0.02663, t = 0.5.

Therefore, X �ST Y . By taking β = 2, we can see that

α3(t)
def
= H̄ωβ

1 (X ; t)− H̄ωβ

1 (Y ; t)

=





3
8
(1−e−2t)+ 5

2
t3(1+t2)e−2t

−
3
4
t(1+t)e−2t

−
19
4
t4(1+2t2)e−2t

1−e−t(1+t−t2+t3)

− (75+900t2+3600t4+4800t6) tan−1 2t−t(3075t5+3744t4−2304t3+1088t2+150)
64(1+4t2)2[2t(8t−3)−2(1+4t2) ln(1+4t2)+3(1+4t2) tan−1 2t] , 0 6 t 6 1,

−0.14175, t > 1,

which is negative as shown in Figure 6. Again, we see that

t

3( )t 

Figure 6: Plot of α3(t) for and t ∈ [0, 1] (Example 4.2)

κ3(t)
def
= H̄ωβ

2 (X ; t)− H̄ωβ

2 (Y ; t)

=





ln
(

3
8
(1−e−2t)+ 5

2
t3(1+t2)e−2t

−
3
4
t(1+t)e−2t

−
19
4
t4(1+2t2)e−2t

1−e−t(1+t−t2+t3)

)

− ln
(

(75+900t2+3600t4+4800t6) tan−1 2t−t(3075t5+3744t4−2304t3+1088t2+150)
64(1+4t2)2[2t(8t−3)−2(1+4t2) ln(1+4t2)+3(1+4t2) tan−1 2t]

)
, 0 6 t 6 1,

−0.10933, t > 1,

which is negative as shown in Figure 7. Hence, X >WGPE Y . 2

Di Crescenzo and Longobardi (2006) have been defined a nonparametric classes of distribution

based on the monotonicity property of weighted past entropy is given below.

Definition 4.3 A random variable X is said to have increasing weighted uncertainty past life IWUPL

if H̄ω(X ; t) is increasing in t > 0. 2
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t

3( )t 

Figure 7: Plot of κ3(t) for and t ∈ [0, 1] (Example 4.2)

Here one nonparametric class of distribution based on the monotonicity property of weighted

generalized past entropy has been introduced.

Definition 4.4 A nonnegative random variable X is said to have

(i) increasing weighted uncertainty past life of first kind of order β [IWUPLF(β)] if H̄ωβ

1 (X ; t) is

increasing in t > 0;

(ii) increasing weighted uncertainty past life of second kind of order β [IWUPLS(β))] if H̄ωβ

2 (X ; t) is

increasing in t > 0. 2

The following counterexample shows that the class IWUPLF(β) or IWUPLS(β) does not coin-

cide, in general, with IWURL class.

Counterexample 4.2 Let X be a random variable having probability density function given by

fX(t) =





3e−
3
2
t

5
(

1−e
−

3
2

) , 0 6 t 6 1,

3te−2+ t2

2

5
(

1−e
−

3
2

) , 1 6 t < 2,

0, t > 2.

Now, for 1 6 t 6 2, the weighted past entropy of the random variable X is given by

H̄ω(X ; t) = −
1

∫ 1

0

3xe−
3
2
x

5
(
1− e−

3
2

)dx+

∫ t

1

3x2e−2+ x2

2

5
(
1− e−

3
2

)dx



∫ 1

0

3xe−
3
2
x

5
(
1− e−

3
2

) ln


 3xe−

3
2
x

5
(
1− e−

3
2

)


 dx+

∫ t

1

3x2e−2+ x2

2

5
(
1− e−

3
2

) ln


 3x2e−2+ x2

2

5
(
1− e−

3
2

)


 dx−



∫ 1

0

3xe−
3
2
x

5
(
1− e−

3
2

)dx+

∫ t

1

3x2e−2+ x2

2

5
(
1− e−

3
2

)dx




ln




∫ 1

0

3xe−
3
2
x

5
(
1− e−

3
2

)dx+

∫ t

1

3x2e−2+ x2

2

5
(
1− e−

3
2

)dx









= α4(t), say.
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We see that α4(1.2) = 0.10925, α4(0.5) = 0.22122 and α4(2) = 0.13153. Therefore, X is not IWURL.

By taking β = 0.5, the weighted generalized past entropy of first kind of the random variable X is given

by

α5(t)
def
= H̄ωβ

1 (X ; t) =






−2


1−

∫ t

0

(
3xe−

3
2
x
)0.5

dx





∫ t

0

3xe−
3
2
xdx





0.5


 , 0 6 t 6 1,

−2


1−

∫ 1

0

(
3xe−

3
2
x
)0.5

dx +

∫ t

1

(
3x2e−2+ x2

2

)0.5
dx





∫ t

0

3xe−
3
2
xdx+

∫ t

1

3x2e−2+ x2

2





0.5


 , 1 6 t 6 2,

0.4350, t > 2,

which is increasing in t > 0 as shown in Figure 8. Again, the weighted generalized past entropy of

t

5 ( )t 

Figure 8: Plot of α5(t) for and t ∈ [0, 2] (Counterexample 4.2)

second kind of the random variable X is given by

κ4(t)
def
= H̄ωβ

2 (X ; t) =





2 ln




∫ t

0

(
3xe−

3
2
x
)0.5

dx





∫ t

0

3xe−
3
2
xdx





0.5


 , 0 6 t 6 1,

2 ln




∫ 1

0

(
3xe−

3
2
x
)0.5

dx+

∫ t

1

(
3x2e−2+x2

2

)0.5
dx





∫ t

0

3xe−
3
2
xdx+

∫ t

1

3x2e−2+ x2

2





0.5


 , 1 6 t 6 2,

0.3936, t > 2,

which is increasing in t > 0 as shown in Figure 9. Hence, X is not IWURL but it is IWUPLF(β), for

β = 0.5. 2

The following theorem characterizes the weighted generalized past entropy in the sense that

under certain condition the weighted generalized residual entropy uniquely determine the distribution

function.
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Figure 9: Plot of κ4(t) for and t ∈ [0, 2] (Counterexample 4.2)

Theorem 4.1 Let X be a nonnegative absolutely continuous random variable having probability density

function fX(t) and the distribution function FX(t). If

(i) H̄
β
1 (X ; t) is increasing in t, then H̄ωβ

1 (X ; t) uniquely determine FX(t);

(ii) H̄
β
2 (X ; t) is increasing in t, then H̄ωβ

2 (X ; t) uniquely determine FX(t).

Proof : (i) From (4.4), we have

1− (β − 1)H̄ωβ

1 (X ; t) =
1

[E(X |X < t)]
β

[
tβ
(
1− (β − 1)H̄β

1 (X ; t)
)

−β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β (
1− (β − 1)H̄β

1 (X ; y)
)
dy

]

=
J(t)

[g1(t)]β
, (4.6)

where g1(t) = E(X |X < t) and

J(t) = tβ
(
1− (β − 1)H̄β

1 (X ; t)
)
− β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β (
1− (β − 1)H̄β

1 (X ; y)
)
dy.

Differentiating J(t) with respect to t, we get

J ′(t) = −(β − 1)tβ
d

dt
H̄

β
1 (X ; t) + β2νX(t)

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β (
1− (β − 1)H̄β

1 (X ; y)
)
dy.

Differentiating (4.6) with respect to t, we get

−(β − 1)
d

dt
H̄ωβ

1 (X ; t) = −β
g′1(t)

g
β+1
1 (t)

J(t) +
J ′(t)

g
β
1 (t)

. (4.7)

Again, from (4.2), we have

1− (β − 1)H̄ωβ

1 (X ; t) =
1

g
β
1 (t)

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy. (4.8)
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Differentiating (4.8) with respect to t, we get

−(β − 1)
d

dt
H̄ωβ

1 (X ; t) = −β
g′1(t)

g
β+1
1 (t)

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

−
β

g
β
1 (t)

νX(t)

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy +
tβ

g
β
1 (t)

ν
β
X(t). (4.9)

From (4.7) and (4.9), we have

β
g′1(t)

g
β+1
1 (t)

J(t)−
J ′(t)

g
β
1 (t)

= β
g′1(t)

g
β+1
1 (t)

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy +
β

g
β
1 (t)

νX(t)

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

−
tβ

g
β
1 (t)

ν
β
X(t),

or, equivalently,

β
g′1(t)

g
β+1
1 (t)

[
J(t)−

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

]
+

β − 1

g
β
1

tβ
d

dt
H̄

β
1 (X ; y)−

βνX(t)

g
β
1 (t)[

β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β (
1− (β − 1)H̄β

1 (X ; y)
)
dy +

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

]
+

tβ

g
β
1 (t)

ν
β
X(t) = 0.

For a fixed t > 0, νX(t) is a solution of B(x) = 0, where

B(x) = β
g′1(t)

g
β+1
1 (t)

[
J(t)−

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

]
+

β − 1

g
β
1

tβ
d

dt
H̄

β
1 (X ; y)−

β

g
β
1 (t)[

β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β (
1− (β − 1)H̄β

1 (X ; y)
)
dy +

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

]
x+

tβ

g
β
1 (t)

xβ .

Differentiating B(t) with respect to x, we get

B′(x) = −
β

g
β
1 (t)

[
β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β (
1− (β − 1)H̄β

1 (X ; y)
)
dy +

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

]

+
βtβ

g
β
1 (t)

xβ−1.

Now, B′(x) = 0 gives

x =

[
1

tβ

(∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy + β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β (
1− (β − 1)H̄β

1 (X ; y)
)
dy

)] 1
β−1

= t2, say.

Again, we see that

B(0) =
β − 1

g
β
1 (t)

tβ
d

dt
H̄

β
1 (X ; t).

Case I : For β > 1, B(0) > 0, since H̄
β
1 (X ; t) is increasing in t and B(x) is convex function with

minimum occurring at x = t2. So B(x) = 0 has unique solution when B(t2) = 0.
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Case II : For β < 1, B(0) < 0, since H̄
β
1 (X ; t) is increasing in t and B(x) is concave function with

maximum occurring at x = t2. So B(x) = 0 has unique solution when B(t2) = 0.

Therefore, from the two cases it can be conclude that if H̄β
1 (X ; t) is increasing in t > 0 and

B(t2) = 0 then B(x) = 0 has unique solution. Since νX(t) is the solution of B(x) = 0 then H̄ωβ

1 (X ; t)

determines νX(t) uniquely. Again, νX(t) uniquely determine FX(t). Hence, the result follows.

To proof (ii), we get, from (4.3)

exp
[
(1− β)H̄ωβ

2 (X ; t)
]

=
1

[E(X |X < t)]
β

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

=
1

g
β
1 (t)

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy. (4.10)

Differentiating (4.10) with respect to t, we get

d

dt

(
exp

[
(1− β)H̄ωβ

2

])
= −β

g′1(t)

g
β+1
1 (t)

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy −
β

g
β
1 (t)

νX(t)

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

+
tβ

g
β
1 (t)

ν
β
X(t). (4.11)

Again, from (4.5), we have

exp
[
(1− β)H̄ωβ

2 (X ; t)
]

=
1

g
β
1 (t)

[
tβ exp

(
(1− β)H̄β

2 (X ; t)
)

−β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β

exp
(
(1 − β)H̄β

2 (X ; y)
)
dy

]

=
J1(t)

g
β
1 (t)

, (4.12)

where J1(t) = tβ exp
(
(1− β)H̄β

2 (X ; t)
)
− β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β

exp
(
(1− β)H̄β

2 (X ; y)
)
dy. Differenti-

ating J1(t) with respect to t, we get

J ′

1(t) = tβ(1− β) exp
(
(1− β)H̄β

2 (X ; t)
) d

dt
H̄

β
2 (X ; t) + β2νX(t)

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β

exp
(
(1− β)H̄β

2 (X ; y)
)
dy.

Differentiating (4.12) with respect to t, we get

d

dt

(
exp

[
(1− β)H̄ωβ

2 (X ; t)
])

=
1

g
β
1 (t)

(
tβ(1 − β) exp

(
(1 − β)H̄β

2 (X ; t)
) d

dt
H̄

β
2 (X ; t)

+β2νX(t)

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β

exp
(
(1− β)H̄β

2 (X ; y)
)
dy

)

−β
g′1(t)

g
β+1
1 (t)

J1(t). (4.13)
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From (4.11) and (4.13), we have

β
g′1(t)

g
β+1
1 (t)

[
J1(t)−

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

]
−

1− β

g
β
1 (t)

[
tβ exp

(
(1− β)H̄β

2 (X ; t)
) d

dt
H̄

β
2 (X ; t)

]

−
β

g
β
1 (t)

νX(t)

[
β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β

exp
(
(1− β)H̄β

2 (X ; y)
)
dy +

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

]

+
tβ

g
β
1 (t)

νXβ(t) = 0.

For a fixed t > 0, νX(t) is a solution of B1(x) = 0, where

B1(x) = β
g′1(t)

g
β+1
1 (t)

[
J1(t)−

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

]
−

1− β

g
β
1 (t)

[
tβ exp

(
(1 − β)H̄β

2 (X ; t)
) d

dt
H̄

β
2 (X ; t)

]

−
β

g
β
1 (t)

[
β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β

exp
(
(1− β)H̄β

2 (X ; y)
)
dy +

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

]
x

+
tβ

g
β
1 (t)

xβ .

Now, B′

1(x) = 0 gives

βtβ

g
β
1 (t)

xβ−1 −
β

g
β
1 (t)

[
β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β

exp
(
(1− β)H̄β

2 (X ; y)
)
dy +

∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy

]
= 0,

which is equivalent to

x =

[
1

tβ

(∫ t

0

yβ
(
fX(y)

FX(t)

)β

dy + β

∫ t

0

yβ−1

(
FX(y)

FX(t)

)β

exp
(
(1− β)H̄β

2 (X ; y)
)
dy

)] 1
β−1

= t3, say.

Again, B1(0) = − 1−β

g
β
1
(t)

tβ exp
(
(1− β)H̄β

2 (X ; t)
)

d
dt
H̄

β
2 (X ; t).

Case I : For β > 1, B1(0) > 0, since H̄
β
2 (X ; t) is increasing in t and B1(x) is convex function with

minimum occurring at x = t3. So B1(x) = 0 has unique solution when B1(t3) = 0.

Case II : For β < 1, B1(0) < 0, since H̄
β
2 (X ; t) is increasing in t and B1(x) is concave function with

maximum occurring at x = t3. So B1(x) = 0 has unique solution when B1(t3) = 0.

Therefore, from the two cases it can be conclude that if H̄β
2 (X ; t) is increasing in t > 0 and

B1(t3) = 0 then B1(x) = 0 has unique solution. Since νX(t) is the solution of B1(x) = 0 then H̄ωβ

2 (X ; t)

determines νX(t) uniquely. Again, νX(t) uniquely determine FX(t). Hence, the result follows. 2

The following theorem gives the upper bound to the reversed failure rate function νX(t), in

terms of H̄ωβ

1 (X ; t) and H̄ωβ

2 (X ; t). The proof is omitted.

Theorem 4.2 (i) If X is IWUPLF(β), then

νX(t) 6
E (X |X < t)

t

[
β
(
1− (β − 1)H̄ωβ

1 (X ; t)
)] 1

β−1

;

(ii) If X is IWUPLS(β), then

νX(t) 6
E (X |X < t)

t

[
β exp

(
(1− β)H̄ωβ

2 (X ; t)
)] 1

β−1

,

for all t > 0. 2

23



By taking β → 1, we have the following corollary. The proof is omitted.

Corollary 4.1 If X is IWUPL, then

νX(t) 6
E (X |X < t)

t
exp

[
1− H̄ω (X ; t)

]
,

for all t > 0. 2

5 Concluding Remarks

In literature, generalized entropy is a very well known concept which can always gives a nonneg-

ative measure of uncertainty. But in many practical situations for modeling statistical data, sometime a

certain amount of information may be lost. With this in mind, here the concept of weighted generalized

entropy has been introduced. In this paper, several results on weighted generalized residual and past

entropies also have been discussed. Here it has been shown that generalized entropy uniquely deter-

mines the distribution of the random variables. Some nonparametric classes of distribution based on

the monotonicity properties of weighted generalized entropy have been defined. A partial order based

on weighted generalized entropy has been given.
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