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Abstract

We consider the random walk on an independent and identically distributed (i.i.d.) random
environment on a Cayley graph of a finitely generated non-abelian free group. Such a Cayley
graph is readily seen to be a regular tree with even degree. Under a non-degeneracy assumption
we show that the walk is always transient.
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1 Introduction

In this short note we show that the random walk in random environment model on a regular tree
with even degree where the environment at each vertex is independent and are also “identically”
distributed is transient. We make this notion of i.i.d.-ness of the environment rigorous by defining
the model on a finitely generated non-abelian free group and then transfer it back to an appropriate
even degree regular tree which is essentially same as a Cayley graph associated with the free group.

1.1 Basic Setup

Cayley Graph: Let G be a finitely generated non-abelian free group and let S = {s1, s2, . . . sd} ⊆
G be a minimal generating set. Note that it is then necessary that s ∈ S ⇒ s−1 ∈ S, that is, S
is a symmetric set. Moreover we must also have d ≥ 4 is an even integer. We further assume the
convention that the elements of S are ordered in such a way that the first d

2 elements are inverses

(respectively) of the second d
2 elements.

We now define a graph Ḡ with vertex set as G and edge set E :=
{
{x, y}

∣∣∣xy−1 ∈ S
}
. Such

a graph Ḡ, is called a (left)-Cayley Graph of G with respect to the generating set S. Since G is a
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free group so it is easy to see that Ḡ is a graph with no loops and is regular with degree d, thus is
isomorphic to Td. We will abuse the terminology a bit and will write Td is the Cayley graph ofG. We
will assume that Td is rooted and we will take the identity element e of G as the root. We will write

N (x) for the set of all neighbors of a vertex x ∈ G. Notationally, N (x) =
{
y ∈ G

∣∣∣xy−1 ∈ S
}
.

Observe that from definition N (e) = S. For x ∈ G define θx : G→ G by θx (y) = yx, then θx is an
automorphism of Td. We will call θx the translation by x.

Random Environment: Let S := Se be a collection of probability measures on the d elements
of N (e) = S. To simplify the presentation and avoid various mesurability issues, we assume that S
is a Polish space (including the possibilities that S is finite or countably infinite). For each x ∈ Td,
Sx denotes a copy of S, with all elements of S translated by θx, so as to have support on N (x).
Formally, an element ω(x, ·) of Sx, is a probability measure satisfying

ω (x, y) ≥ 0 ∀ x, y ∈ Td and
∑

y∈N(x)

ω (x, y) = 1

Let BSx denote the Borel σ-algebra on Sx. The environment space is defined as the measurable
space (Ω,F) where

Ω :=
∏

x∈Td

Sx, F :=
⊗
x∈Td

BSx , (1.1)

An element ω ∈ Ω will be written as
{
ω (x, ·)

∣∣∣x ∈ Td
}
. An environment distribution is a proba-

bility P on this measurable space.

Random Walk:We now turn to define a random walk (Xn)n≥0. Given an environment ω ∈ Ω,
(Xn)n≥0 is a time homogeneous Markov chain taking values in Td with transition probabilities

Pω

(
Xn+1 = y

∣∣∣Xn = x
)
= ω (x, y) .

Let N0 := N∪{0}. For each ω ∈ Ω, we denote by Px
ω the law induced by (Xn)n≥0 on

(
(Td)

N0 ,G
)
,

where G is the σ-algebra generated by the cylinder sets, such that

Px
ω (X0 = x) = 1. (1.2)

Px
ω is called the quenched law of the random walk {Xn}n≥0, starting at x. We will use the notation

Ex
ω for the expectation under the quenched measure Px

ω.
We note that for every G ∈ G, the function

ω 7→ Px
ω (G)

is F-measurable. Hence, we may define the measure Px on
(
Ω× (Td)

N0 ,F ⊗ G
)
from the relation

Px (F ×G) =

∫
F
Px

ω (G)P (dω) , ∀ F ∈ F , G ∈ G.

With a slight abuse of notation, we also denote the marginal of Px on (Td)
N0 by Px, whenever

no confusion occurs. This probability distribution is called the annealed law of the random walk
(Xn)n≥0, starting at x. Note that under Px, the random walk (Xn)n≥0 is not, in general, a Markov
chain. We will use the notation Ex for the expectation under the quenched measure Px
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1.2 Main Results

Throughout this paper we will assume the following hold,

(A1) P is a product measure on (Ω,F) with “identical” marginals, that is, under P the random

probability laws
{
ω (x, ·)

∣∣∣x ∈ Td
}
are independent and “identically” distributed in the sense

that
P ◦ θ−1

x = P, (1.3)

for all x ∈ G.

(A2) For all 1 ≤ i ≤ d,
E [|logω (e, si)|] <∞. (1.4)

Following is our main result.

Theorem 1 Under assumptions (A1) and (A2) the random walk (Xn)n≥0 is transient Pe almost
surely.

An immediate question that arises is whether the above walk has a speed which may be zero.
Following result provides a partial answer to this question with (A2) replaced by the usual uniform
ellipticity condition.

(A3) There exists ε > 0 such that

P (ω (e, si) > ε ∀ 1 ≤ i ≤ d) = 1. (1.5)

Theorem 2 Under assumptions (A1) and (A3) with ε ≥ 1
2(d−1) + δ where δ > 0 we have Pe almost

surely

lim inf
n→∞

|Xn|
n

> 0, (1.6)

where |Xn| denotes the length of the unique path in Td from the root e to Xn.

1.3 Remarks

Random walk in Random Environment (RWRE) models on the one dimensional integer lattice
Z was first introduced by Solomon in [11] where he gave explicit criteria for the recurrence and
transience of the walk for independent and identically distributed (i.i.d.) environment distribution.
Since then a large variety of results have been discovered for RWRE in Zd, yet there are many
challenging problems which are still left open (see [13] and [12]).

Perhaps the earliest known results for RWRE on trees is by Pemantle and Lyons [7]. In that
paper they consider a model on rooted tress, which later got to known as random conductance
model. In that model, the random conductances along each path from vertices to the root are
assumed to be independent and identically distributed. The random walk is then shown to be
recurrent or transient depending on how large is the value of the average conductance. Later [5]
considered the same model under additional assumption of the jump probabilities are also i.i.d.
and have studied the speed of the walk in the recurrent regime.

In our set up, the assumption (A1) essentially says that that the random transition laws{
ω (x, ·)

∣∣∣x ∈ Td
}

are independent and identically distributed (i.i.d.). On Td we introduced the
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group structure to define identically distributed and we made the probability law P invariants under
the translations by the group elements. Hence the RWRE model in this article is different then the
studied random conductance model discussed above. It is interesting to note that the only example
where the two models agree is the deterministic environment of the simple symmetric walk on Td.

There have also been several other contributions on random trees, particularly on random walk
on Galton-Watson trees [6, 8, 9, 2, 10]. It is worth to point out here that a random walk on a
Galton-Watson tree [6] satisfies the assumption (A1) and so does a random walk on a multi-type
Galton-Watson tree [3].

Our last result (Theorem 2) is certainly far from being satisfactory. We strongly believe that

under the assumptions (A1) and (A3) the sequence of random variables
(
|Xn|
n

)
n≥0

has a Pe-almost

sure limit which is non-random and strictly positive. A similar conclusion has been derived for the
special case of random walk on Galton-Watson trees [8]. This and the central limit theorem for
such walks will be studied in future work.

In the entire article we have worked with a regular tree with even degree and considered it as
a Cayley graph of a non-abelian free group. However the same argument presented in the main
theorem of the article will also work if the tree is of odd degree. We did not present the result as
the proof will be largely repetitive once the i.i.d. structure is set up via a torsion element in the
asymmetric set of generators.

2 Proofs of the Main Results

2.1 Proof of Theorem 1

Given an environment ω ∈ Ω, we can define the conductance at a vertex σn where |σn| = n, to be

Φn(σn) = ω(e, x1)
n−1∏
k=2

ω(xk, xk+1)

ω(xk, xk−1)
, (2.1)

where xi’s are the vertices on the unique path from e to σn with x0 = e and xn = σn. Suppose
σn =

∏n
i=1 αn−i+1, with αi ∈ S and αi 6= α−1

i+1. We can re-write Φn(σn) as

Φn(σn) = ω1(e, α1)
n−2∏
k=1

ωk(e, αk)

ωk+1(e, α
−1
k )

, (2.2)

with ωk (e, s) = ω(xk, sxk) for any s ∈ S.
Let BN0 denote the product σ-algebra on SN0 , and µ be a Probability measure on

(
SN0 ,BN0

)
such that the coordinate variables, say, (Yn)n≥1 is a Markov chain on S with

µ
(
Yn = s

∣∣∣Yn−1 = t
)
=

1

d− 1
, s, t ∈ S with s 6= t−1. (2.3)

It is easy to see that the chain (Yn) is an aperiodic, irreducible and finite state Markov chain and
its stationary distribution is the uniform distribution on S. We shall assume that Y0 is uniformly
distributed on S.
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Let ηn =
∏n

i=1 Yi. From equation (2.3) ηn is a uniformly distributed on the set of vertices

Tn
d :=

{
x ∈ Td

∣∣∣ |x| = n
}
. Now

1

n
log Φn(ηn) =

1

n
logω1(e, Y1) +

1

n

n−2∑
k=1

logωk(e, Yk)− logωk+1(e, Y
−1
k )

=
1

n
logω1(e, Y1) +

1

n

d∑
i=1

[

N
Y,si
n∑
j=1

(logωkj (e, si)− logωkj+1(e, s
−1
i ))], (2.4)

where

NY,si
n =

n∑
k=1

1 (Yk = si) . (2.5)

Now consider the product space
(
Ω× SN0 ,BΩ ⊗ BW , P ⊗ µ

)
. By Erdös-Feller-Pollard Theorem [4]

we have P ⊗ µ-almost surely

lim
n→∞

NY,si
n

n
=

1

d
. (2.6)

Further under assumption (A2) and using the Strong Law of Large Numbers for i.i.d. random
variables we have P -almost surely

lim
n→∞

1

NY,si
n

N
Y,si
n∑
j=1

(
logωkj (e, si)− logωkj+1

(
e, s−1

i

))
= E

[
logω1 (e, si)− logω1

(
e, s−1

i

)]
.

As S is a symmetric set of generators for G therefore P ⊗ µ-almost surely,

lim
n→∞

1

n
log Φn(ηn) =

1

d

d∑
i=1

E
[
logω1 (e, si)− logω1

(
e, s−1

i

)]
= 0. (2.7)

So by Fubini’s Theorem, for P -almost surely all ω ∈ Ω, we must have that the equation (2.7) holds
µ-almost surely. Fix such an ω ∈ Ω. Let 1

d−1 < ∆ < 1 be a fixed positive real number. We can
find such a ∆ since d ≥ 3. Since convergence almost surely with respect to µ implies convergence
in probability. So given any 0 < p < 1 we can find Nω

µ (p) ∈ N and Bω
n ⊆ Tn

d such that

Φn(ηn) <

(
1√
∆

)n

∀ ηn ∈ Bω
n , ∀ n ≥ Nω

µ (p)

and

lim
n→∞

#Bω
n

d(d− 1)n
= p.

Let βn = ∆
n
2 then for n ≥ Nω

µ (p)

∑
σn∈Tn

d

βn (Φn(σn))
−1 ≥

∑
ηn∈Bω

n

βn (Φn(σn))
−1 ≥ d(d− 1)n∆n #Bω

n

d(d− 1)n
. (2.8)
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Finally by choice of ∆ we have

lim
n→∞

∑
σn∈Tn

d

βn (Φn(σn))
−1 =∞. (2.9)

So we conclude that for d ≥ 3, there is a positive (non-random) sequence (βn)n≥1 such that
∞∑
n=1

βn <∞ but

lim
n→∞

∑
σn∈Tn

d

βn (Φn(σn))
−1 =∞ P -almost surely. (2.10)

By Corollary 4.2 in [6], the random walk has to be transient. �

2.2 Proof of Theorem 2

Let Dn := |Xn| be the distance from the root e of the position of the walker at time n on the tree
Td. Then

Dn =
n∑

i=1

(Di −Di−1)

=
n∑

i=1

(
Di −Di−1 − Ee

ω

[
Di −Di−1

∣∣∣X0, . . . , Xi−1

])
+

n∑
i=1

Ee
ω

[
Di −Di−1

∣∣∣X0, . . . , Xi−1

]
(2.11)

But then Mn :=
n∑

i=1

(
Di −Di−1 − Ee

ω

[
Di −Di−1

∣∣∣X0, . . . , Xi−1

])
is a martingale with bounded

increments, so by Azuma’s Inequality [1]

Mn

n
→ 0 Pe-almost surely. (2.12)

Further it is easy to see that

n∑
i=1

Ee
ω

[
Di −Di−1

∣∣∣X0, . . . , Xi−1

]
= 1− 21 (Xi−1 6= e) ω

(
Xi−1,

←−
X i−1

)
.

where a vertex x ∈ Td we define ←−x as the parent of x, that is, the first vertex on the unique path
from x to e.

Now under our assumption (A3) with ε ≥ 1
2(d−1) + δ where δ > 0 we have

P

(
ω (x,←−x ) <

1

2
− δ (d− 1) ∀ x ∈ Td

)
= 1.

Thus Pe-almost surely

lim inf
n→∞

1

n

n∑
i=1

(
1− 21 (Xi−1 6= e) ω

(
Xi−1,

←−
X i−1

))
> 2δ (d− 1) > 0. (2.13)
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Finally, by (2.11) Dn = Mn+

n∑
i=1

(1− 21Xi−1 6=eω(Xi−1,
←−
X i−1), so using equations (2.12) and (2.13)

we conclude that (1.6) holds. �
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