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Abstract

Among the designs that are available for treatment comparison experiments,
crossover designs occupy an important place. The application of these designs in
a variety of situations has been widespread and simultaneously, many important
theoretical results have been obtained. The literature is already voluminous and
continues to grow. In this article, we present a review of the major results in
the construction, analysis and optimality of crossover designs.

1 Introduction

1.1 Prologue

In a crossover trial, every experimental subject is exposed to a sequence of treat-
ments over time, one treatment being applied to it at each time point. These
subjects could be humans, animals, machines, plots of land, etc. The different
time points at which the subjects are used are referred to as periods. Consider
a crossover trial with n experimental subjects, each subject being observed for
p periods, resulting in a total of np experimental units. We shall assume at the
design stage that each such experimental unit yields a single response (which
could even possibly be an average or sum over multiple observations). If such a
trial aims at drawing inference on a set of t treatments, then any allocation of
these t treatments to the np experimental units is called a crossover design. In
the literature, such designs have also been referred to as changeover or repeated
measurements designs.

Crossover designs have been extensively applied in a variety of areas in-
cluding pharmaceutical studies and clinical trials, biological assays, weather
modification experiments, sensory evaluation of food products, psychology, bio-
equivalence studies and consumer trials. Throughout this article, a crossover
design with p periods, n subjects and t treatments will be displayed as a p× n
array, with rows of the array representing the periods, columns representing the
subjects and the numerals 1,2, . . . , t denoting the treatments. The following are
two examples of crossover designs.

1NASI Senior Scientist Platinum Jubilee Fellow
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Example 1.
(i) d1 : t = 2 = p, n = 4.

1 2 1 2
2 1 2 1

(ii) d2 : t = 3 = p, n = 6.

1 2 3 1 2 3
2 3 1 3 1 2
3 1 2 2 3 1

The design d1 shown in Example 1 is a two-period two-treatment design,
also called an AB/BA design, where AB stands for the treatment sequence in
which treatment 1 is followed by treatment 2, BA being defined analogously.
Such a design is often used in the context of clinical trials where, for example,
treatment 1 could be the drug under study and 2 could be a placebo or another
drug. An extensive discussion on the analysis of data from such designs is
available in Jones and Kenward (2003). An application of this design in the
context of pharmacokinetic studies can be found in Jones et al. (1999).

An advantage of a crossover design is that, for the same number of obser-
vations, this design requires a fewer number of experimental subjects compared
to a traditional design where each subject gives a single observation. This is
useful in situations where the subjects are scarce or expensive. However, the
very feature of these designs, namely the repeated use of a subject, also brings
in associated problems. For instance, a crossover design results in a longer du-
ration of the experiment compared to a traditional design and, designs with
a large number of periods may not be particularly attractive in some areas of
application.

More importantly, there is a possibility that the effect of a treatment may
continue to linger on in a subject beyond the period in which it is applied.
For instance, in design d2 of Example 1, in the second period, the first subject
may retain some of the effect of treatment 1 applied to it in the first period
and so, the response from the first subject in the second period is affected not
only by the direct effect of treatment 2 but also possibly by the residual or,
carryover effect of treatment 1. Similarly, the response in the third period of
the first subject is influenced by the direct effect of treatment 3, the carryover
effect of treatment 2 and also possibly by the effect of treatment 1 carrying over
across two periods. In particular, an effect carrying over to the immediate next
period is referred to as the first order carryover effect, and extending this idea,
there may be second order or even higher order carryover effects in subsequent
periods.

Thus, there are two types of treatment effects associated with crossover
trials, the direct effects and the carryover effects, the former effects being usually
of primary interest. The presence of carryover effects complicates the design and
analysis of crossover trials. One option of avoiding these is to allow a larger time
gap between two successive applications of treatments, with the expectation
that the carryover effect, if any, would wash out during this gap. Though this

2



strategy may help in avoiding the carryover effect, insertion of such gaps, usually
called the rest (or wash out) periods, increases the total duration of the trial.
Moreover, it can be difficult to determine how long a rest period should be
in order to wash out the carryover effect completely. Another reason why such
wash out periods may make a trial infeasible is apparent in the context of clinical
trials where the subjects are patients. In such trials, adopting a wash out period
is equivalent to denying a patient any treatment during this long gap, and this
may be unacceptable on medical or ethical grounds. So, instead of trying to
eliminate the carryover effects by inserting rest periods, if one accepts their
possible presence, then the challenge is to come up with an effective design of
the trial and its corresponding analysis so that the typical contrasts of interest,
namely, the direct effect contrasts, can be estimated efficiently after properly
adjusting for these carryover effects.

Much of the literature on crossover designs deals with solutions to this prob-
lem under different assumptions on the nature of the carryover effects. In the
following sections, we provide a survey of the major results on the construction
and analysis of efficient/optimal crossover designs. Throughout this paper, we
assume that the responses from a crossover trial are quantitative. However,
there are situations in practice when such responses may be binary or categori-
cal in nature. We do not elaborate on the analysis of crossover trials with binary
or categorical responses and refer the reader to Chapter 6 of Jones and Kenward
(2003) for details and additional references.

1.2 Early history

Crossover trials have a long history and apparently, these were first applied in
agriculture in 1853. We refer the reader to Jones and Kenward (2003, Section
1.4) for details of a crossover experiment in agriculture conducted by John Ben-
net Lawes of Rothamsted, England, in 1853. An early use of crossover trials
in human nutrition was made by Simpson (1938). These trials were related
to experiments on diets for children. In one such trial, four different diets were
compared using 24 pairs of children, one male and one female in each pair. Each
pair received one of all possible 24 permutations of four diets over 4 periods in
such a way that each treatment was given equally often in each period. Simp-
son (1938) was aware of carryover effects and suggested the insertion of a rest
(or, wash out) period between the experimental periods to remove the carryover
effects. He also stated that the insertion of a wash out period to eliminate car-
ryover effects may not always be the best strategy in all situations, especially
when it may be necessary to estimate the carryover effects themselves and sug-
gested the use of suitable designs which allow the estimation of both direct and
carryover effects.

Cochran (1939) observed the existence of carryover effects in long-term agri-
cultural experiments and was one of the first to separate out the direct and car-
ryover effects while considering an appropriate design for experimentation. In a
classic and widely cited paper, Cochran et al. (1941) considered a crossover trial
on Holstein cows for comparing three treatments in three periods. The crossover
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design used was obtained by using orthogonal Latin squares, like the design d2
of Example 1. Cochran et al. appear to be the first to formally describe the
least squares method of estimation of direct and carryover contrasts. Another
early example of an experiment indicating the presence of carryover effects was
quoted by Williams (1949). In this experiment, samples of pulp suspensions
were beaten in a Lampen mill to determine the effect of concentration on the
properties of resulting sheets. Observations of the condition of the mill after
each beating indicated that certain pulp concentrations had an effect on the mill
which might affect the next beating, indicating the presence of carryover effect.
A design balanced for carryover effects was therefore used.

An early use of crossover designs was made in biological assays by Fieller
(1940). He used a 2-period design involving 2 treatments for comparing the
effects of different doses of insulin on rabbits. Finney (1956) also described the
design and analysis of several crossover designs for use in biological assay. In
subsequent years, the use of these designs in many diverse areas, particularly
in clinical trials and pharmaceutical studies, have been extensive. Real life
examples and discussion on various aspects of crossover designs can be found in
the books on this topic by Pocock (1983), Ratkowsky et al. (1992), Jones and
Kenward (2003), Senn (2003) and Bose and Dey (2009). Over the years, several
review papers have been published on these designs, including those by Hedayat
and Afsarinejad (1975), Matthews (1988), Stufken (1996), Kenward and Jones
(1998), Senn (2000) and Bate and Jones (2008). An early technical report due
to Patterson and Lucas (1962) provides tables of useful crossover designs along
with detailed steps of their analysis.

2 A model for studying crossover designs

Consider a crossover trial in which t treatments are to be compared using n
experimental subjects over p time periods. As mentioned earlier, any allocation
of the t treatments to the np experimental units is called a crossover design.
Let Ωt,n,p be the collection of all such crossover designs.

For the analysis of data arising from crossover designs, various models have
been studied in the literature. We first describe a commonly used model in the
following subsection. This model is henceforth called the traditional model.

Even though the traditional model has been widely studied, it has also been
criticized for being unsuitable for some experimental situations. In order to
suit different situations, the traditional model has been variously modified, for
example, by making certain assumptions on the form of the carryover effect or
by assuming a certain structure for the correlation of the error terms. Some of
these modifications will be described in later sections.

2.1 The traditional model

The traditional model described below is an additive linear model, where the
expected response from a subject at any given period is the sum of the cor-
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responding subject and period effects, together with the direct effect of the
treatment applied at that period and the carryover effect of the treatment ap-
plied in the previous period (if any). For the data from a design d ∈ Ωt,n,p, the
traditional model may be expressed as

Yij = µ+ αi + βj + τd(i,j) + ρd(i−1,j) + εij ,

1 ≤ i ≤ p, 1 ≤ j ≤ n, (1)

where Yij is the observable random variable corresponding to the observation
from the jth subject in the ith period, d(i, j) denotes the treatment allocated
to the jth subject in the ith period according to the design d, and µ, αi, βj ,
τd(i,j) and ρd(i−1,j) are, respectively, a general mean, the ith period effect, the
jth subject effect, the direct effect of the treatment d(i, j) and the first order
carryover effect of the treatment d(i − 1, j), 1 ≤ i ≤ p, 1 ≤ j ≤ n; the εij ’s are
the error components, assumed to be uncorrelated random variables with zero
means and constant variance σ2. We define ρd(0,j) = 0, 1 ≤ j ≤ n, to reflect the
fact that there are no carryover effects in the first period. All the parameters in
(1) are considered as fixed, i.e., non-random. In what follows, the same notation
Yij is used for the observation as well as the random variable corresponding to
the observation.

2.2 Information matrices

We first express (1) in a form which is more convenient to study. Towards
this end, let us write the observations from a design d as an ordered vector,
where the first p entries are the p observations on subject 1, the next p are
the observations on subject 2, . . ., and so on. Thus, for any design d ∈ Ωt,n,p,
Y d = (Y11, . . . , Yp1, Y12, . . . , Yp2, . . . , Y1n, . . . , Ypn)

′, is the np×1 vector of obser-
vations arising out of d with Yij as in (1). Here and henceforth, primes denote
transposition. Let α = (α1, . . . , αp)

′, β = (β1, . . . , βn)
′ be respectively, the

p × 1 vector of period effects and the n × 1 vector of subject effects, where αi

and βj are as in (1). Since d(i, j) ∈ {1, 2, . . . , t}, for simplicity in notation, we
denote the direct (respectively, the first order carryover) effect of treatment s
by τs (respectively, ρs), 1 ≤ s ≤ t, and write τ = (τ1, . . . , τt)

′, ρ = (ρ1, . . . , ρt)
′,

ε = (ε11, . . . , εpn)
′ to denote the t× 1 vector of direct effects, the t× 1 vector of

carryover effects and the np× 1 vector of error terms, respectively, where εij is
as in (1). Also, let θ = (µ,α′,β′, τ ′,ρ′)′ with µ as in (1).

Throughout, we let 1a and 0a to denote the a × 1 vectors of all ones and
all zeros, respectively, and Ia to denote the identity matrix of order a, where a
is a positive integer. For positive integers a and b, Oab denotes the a × b null
matrix and Jab, the a×b matrix of all ones; Jaa and Oaa will simply be written
as Ja and Oa, respectively. A square matrix A of order n is called completely
symmetric if A = aIn + bJn for some scalars a, b. For a matrix A, A− denotes
an arbitrary generalized inverse (g-inverse) of A, i.e., AA−A = A. We also
define P⊥(A) = I − A(A′A)−A′, where I stands for the identity matrix of
appropriate order.
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For a design d ∈ Ωt,n,p, let T dj be a p× t matrix with its (i, s)th entry equal
to 1 if subject j receives treatment s in the ith period, and zero otherwise.
Similarly, let F dj be a p× t matrix with its (i, s)th entry equal to 1 if subject j
receives treatment s in the (i−1)th period, and zero otherwise. Since ρd(0,j) = 0
for 1 ≤ j ≤ n, the first row of F dj is zero and for 2 ≤ i ≤ p, 1 ≤ j ≤ n, the ith
row of F dj is the (i− 1)th row of T dj , i.e.,

F dj =

(
0′
p−1 0

Ip−1 0p−1

)
T dj , 1 ≤ j ≤ n. (2)

Define T d = (T ′
d1, . . . ,T

′
dn)

′, F d = (F ′
d1, . . . ,F

′
dn)

′, and let E(·) and D(·)
denote the expectation and dispersion operators, respectively.

With the above notation, model (1) can equivalently be written as

Y d = Xdθ + ε, E(ε) = 0np, D(ε) = σ2Inp, (3)

where the design matrix Xd may be written in the following partitioned form:

Xd = [1np P U T d F d] = [1np X1 X2], say, (4)

P ,U ,T d and F d being the parts of Xd corresponding to the period, sub-
ject, direct and carryover effects respectively, under the design d; and X1 =
[P U ], X2 = [T d F d]. Furthermore, with the ordering of the observations as
in Y d, it is clear that

P = 1n ⊗ Ip and U = In ⊗ 1p,

where ⊗ denotes the Kronecker (tensor) product operator. Henceforth, we will
write (3) to denote the traditional model.

Then, it can be shown (see e.g., Bose and Dey (2009, Section 1.3)) that under
model (3), after eliminating the nuisance parameters α and β, the information
matrix for estimating τ and ρ jointly is of the form

Cd(τ ,ρ) = X ′
2P

⊥(X1)X2

= X ′
2X2 −X ′

2X1(X
′
1X1)

−X ′
1X2

=

[
T ′

dAT d T ′
dAF d

F ′
dAT d F ′

dAF d

]
,

with
A = (In − n−1Jn)⊗ (Ip − p−1Jp). (5)

We may rewrite Cd(τ ,ρ) as

Cd(τ ,ρ) =

[
Cd11 Cd12

Cd21 Cd22

]
, (6)

where

Cd11 = Rd − n−1MdM
′
d − p−1NdN

′
d + (np)−1rdr

′
d,

Cd12 = Zd − n−1MdM̄
′
d − p−1NdN̄

′
d + (np)−1rdr̄

′
d = C ′

d21,

Cd22 = R̄d − n−1M̄dM̄
′
d − p−1N̄dN̄

′
d + (np)−1r̄dr̄

′
d.

(7)
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Here, rd (respectively, r̄d) is the t × 1 replication vector for direct (re-
spectively, carryover) effects; Rd (respectively, R̄d) is the t × t diagonal ma-
trix with diagonal elements given by the elements of rd (respectively, r̄d);
Md (respectively, M̄d) is the t × p direct (respectively, carryover) effect ver-
sus period incidence matrix; Nd (respectively, N̄d) is the t × n direct (re-
spectively, carryover) effect versus subject incidence matrix, and Zd is the
t × t direct effect versus carryover effect incidence matrix. It may be ver-
ified that these are related to the matrices T d and F d, defined earlier as
rd = T ′

d1t, r̄d = F ′
d1t, Rd = T ′

dT d, R̄d = F ′
dF d, Zd = T ′

dF d.
Now, let the information matrices of the direct (respectively, carryover) ef-

fects, eliminating the carryover (respectively, direct) effects be denoted by Cd

and C̄d, respectively. Then, it follows from (7) that

Cd = Cd11 −Cd12C
−
d22Cd21,

C̄d = Cd22 −Cd21C
−
d11Cd12.

(8)

It can be shown that Cd and C̄d as in (8) are invariant with respect to the
choice of g-inverses involved. A crossover design is said to be connected for
direct effects if all contrasts among the direct effects are estimable, a necessary
and sufficient condition for this being Rank(Cd) = t − 1. Connectedness for
carryovers is analogously defined.

We now briefly indicate the analysis of the data arising from a crossover
design under the model (3), assuming that there are no missing observations.
The total sum of squares (Total SS) with np−1 degrees of freedom (df), can be
calculated as usual on the basis of the np individual observations. The sum of
squares due to periods (SSP) and that due to subjects (SSS), with p−1 and n−1
df can also be obtained routinely on the basis of the p period-wise observational
totals and the n subject-wise observational totals, respectively (see e.g., Cochran
and Cox (1957, Section 4.4)). Turning to the direct and carryover effects, we
define the 2t× 1 vector of “adjusted” treatment totals as

Q = X ′
2Y d −X ′

2X1(X
′
1X1)

−X ′
1Y d

=

[
T ′

dAY d

F ′
dAY d

]
=

[
Q1

Q2

]
, (9)

where A is as in (5), Q1 = T ′
dAY d and Q2 = F ′

dAY d. Then the sum of
squares for the direct and carryover effects (jointly) after the elimination of the
period and subject effects is

SS(τ ,ρ) = Q′{Cd(τ ,ρ)}−Q. (10)

For a crossover design which is connected for both direct and carryover effects,
SS(τ ,ρ) has 2(t − 1) df because Q′

11t = Q′
21t = 0. Thus the error sum of

squares (SSE), with (n− 1)(p− 1)− 2(t− 1) df can be obtained as

SSE = Total SS− SSP− SSS− SS(τ ,ρ).
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In order to test the significance of the direct effects, one requires the correspond-
ing adjusted sum of squares as given by

SSadj(τ ) = (Q1 −Cd12C
−
d22Q2)

′(Cd11 −Cd12C
−
d22Cd21)

−(Q1 −Cd12C
−
d22Q2),

with t−1 df, where Cd11,Cd12 and Cd21 are as in (7). On the basis of SSadj(τ )
and SSE, the F -test can now be employed in a straightforward manner for test-
ing the significance of direct effects. The procedure for testing the significance
of carryover effects is similar.

3 Some families of crossover designs

We now introduce a few classes of crossover designs which have been widely
studied in the literature. Apparently, the designs described in Definitions 1 and
2 below were first formally defined and studied by Hedayat and Afsarinejad
(1978) and Cheng and Wu (1980) and systematic construction methods for
these are available. However, in these designs, the numbers of periods often
exceed the numbers of treatments to be compared. In some experiments, it
may be difficult to accommodate a large number of periods and so one may
prefer designs with p < t. Patterson (1952) was probably the first to give
systematic methods of construction for designs with p ≤ t. Freeman (1959),
Patterson and Lucas (1962), Atkinson (1966), Hedayat and Afsarinejad (1975),
Constantine and Hedayat (1982), Afsarinejad (1983, 1985) and Stufken (1991)
also considered designs with p ≤ t. Some designs with p ≤ t are described in
Definitions 3–5. All these designs have nice combinatorial properties and, as a
result, they have simple forms of the information matrix for inference on direct
effects under model (3). Moreover, as will be seen later, they also enjoy excellent
optimality properties.

A design is said to be uniform on periods if in each period, it allocates each
treatment to the same number of subjects. Similarly, a design is uniform on
subjects if for each subject, it allocates each treatment to the same number of
periods. A design is simply said to be uniform if it is uniform on periods as well
as on subjects.

The above definitions imply that for a uniform design d ∈ Ωt,n,p,

rd =
np

t
1t, Rd =

np

t
It, Md =

n

t
J tp, Nd =

p

t
J tn. (11)

3.1 Designs with p ≥ t

Definition 1. A design d ∈ Ωt,n,p is said to be balanced if in the order of
application, no treatment precedes itself and each treatment is preceded by every
other treatment the same number of times.

Definition 2. A design d ∈ Ωt,n,p is said to be strongly balanced if in the order
of application, each treatment is preceded by every treatment (including itself)
the same number of times.
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Clearly, if d is either balanced or strongly balanced, we have

Zd = T ′
dF d =

n(p− 1)

t(t− 1)
(J t − It), or Zd =

n(p− 1)

t2
J t, (12)

respectively. We now give some examples of these designs, where we define the
positive integers λ1, λ2, µ1 and µ2 as λ1 = n(p − 1)/{t(t − 1)}, λ2 = n(p −
1)/t2, µ1 = n/t and µ2 = p/t. Thus, for a balanced design, Zd = λ1(J t − It)
and for a strongly balanced design, Zd = λ2J t.

Example 2. The designs d1 and d2 in Example 1 are both balanced uniform
designs with λ1 = 2. Below we give two examples of strongly balanced designs
with t = 3; the first design has n = 9, p = 6, and the second has n = 6, p = 4.

d3 ≡

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
2 2 2 3 3 3 1 1 1
2 3 1 2 3 1 2 3 1
3 3 3 1 1 1 2 2 2
3 1 2 3 1 2 3 1 2

, d4 ≡

1 2 3 3 1 2
2 3 1 2 3 1
3 1 2 1 2 3
3 1 2 1 2 3

.

The design d3 ∈ Ω3,9,6 is uniform, with µ1 = 3, µ2 = 2 and λ2 = 5, while
d4 ∈ Ω3,6,4 is uniform only on periods with µ1 = 2 and λ2 = 2. Note that d4 is
uniform on subjects in the first 3(= p−1) periods and its last period is obtained
by repeating the allocation in the previous period. Patterson and Lucas (1959)
named a design of the form d4 as an extra-period design.

In view of (11) and (12) it is easy to see that the properties of uniformity
and balance lead to substantial simplifications in the forms of the information
matrices. Consider any two designs in Ωt,n,p, say, d̃ and d∗, which are balanced
uniform and strongly balanced uniform, respectively, Then, on simplification
from (7), one can show that

C d̃11 = µ1pHt, C d̃12 = −λ1Ht, C d̃22 = µ1(p− 1− p−1)Ht,

Cd∗11 = µ1pHt, Cd∗12 = Ot, Cd∗22 = µ1(p− 1− p−1)Ht, (13)

where for a positive integer a,

Ha = Ia − a−1Ja. (14)

From (8), it can be verified that for a balanced uniform design d̃, the matrices
C d̃ and C̄ d̃ are completely symmetric, given by

C d̃ = α1Ht, C̄ d̃ = α2Ht, (15)

where

α1 = µ1p
[
1− (p− 1)2(t− 1)−2(p2 − p− 1)−1

]
,

α2 = µ1

[
(p− 1− p−1)− (p− 1)2(t− 1)−2p−1

]
.
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Since Ht is an idempotent matrix, a g-inverse of Ht is It. Hence, one can
consider g-inverses of C d̃ and C̄ d̃ as given respectively, by

(C d̃)
−
= α−1

1 It, (C̄ d̃)
−
= α−1

2 It. (16)

From (16), it is thus clear that the analysis of a balanced uniform crossover
design becomes extremely simple and this makes such designs attractive to users.
Uniform crossover designs have been used in diverse areas of investigation and,
for references to such work, we refer to Bate and Jones (2008).

From (8) and (13), it is also clear that the analysis of data from a strongly
balanced uniform design d∗ is further simplified owing to the fact that Cd∗12 =
Ot. Thus, the direct and carryover effects are orthogonally estimable under
these designs and

Cd∗ = µ1pHt, C̄d∗ = µ1(p− 1− p−1)Ht. (17)

Such simple forms of the information matrices make it very convenient to study
the statistical properties of these designs.

Again, Definitions 1 and 2 imply that the parameters t, n and p need to
satisfy certain divisibility requirements for these designs to exist. For instance,
a strongly balanced design exists only if t2 divides n(p − 1). To overcome this
problem, Kunert (1983) departed from the requirement of strong balance and
introduced nearly strongly balanced designs where, instead of requiring that each
treatment pair appear equally often in successive periods, he stipulated that each
treatment pair appear in successive periods as equally often as possible. Let us
write Zd = (zdss′), i.e., zdss′ is the number of times treatment s is immediately
preceded by treatment s′. A design d is a nearly strongly balanced design if

(i) zdss′ is equal to either [n(p− 1)/t2] or [n(p− 1)/t2] + 1, for all 1 ≤ s, s′ ≤ t,
and

(ii) ZdZ
′
d is of the form aIt + bJ t for some constants a and b.

In (i) above, [·] is the greatest integer function. Bate and Jones (2006) intro-
duced nearly balanced designs which only require condition (i) above. We give
one example each of these designs; for further details including their optimality
and efficiency properties, we refer to Kunert (1983) and Bate and Jones (2006).

Example 3. The design d5 with t = 3, n = 6 = p, is nearly strongly balanced
while d6 with t = 5, n = 10, p = 15 is nearly balanced.
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d5 ≡

1 2 3 1 2 3
2 3 1 1 2 3
3 1 2 2 3 1
3 1 2 3 1 2
2 3 1 3 1 2
1 2 3 2 3 1

, d6 ≡

5 1 2 3 4 2 3 4 5 1
2 3 4 5 1 1 2 3 4 5
1 2 3 4 5 4 5 1 2 3
4 5 1 2 3 3 4 5 1 2
3 4 5 1 2 3 4 5 1 2
3 4 5 1 2 4 5 1 2 3
4 5 1 2 3 1 2 3 4 5
1 2 3 4 5 2 3 4 5 1
2 3 4 5 1 5 1 2 3 4
5 1 2 3 4 5 1 2 3 4
5 1 2 3 4 5 1 2 3 4
1 2 3 4 5 4 5 1 2 3
4 5 1 2 3 1 2 3 4 5
2 3 4 5 1 3 4 5 1 2
3 4 5 1 2 2 3 4 5 1

.

3.2 Designs with p ≤ t

In this subsection, we consider some designs with p ≤ t. All these designs
enjoy good optimality properties and we will discuss these properties later in
this paper. We begin with the definition of the class of designs considered
by Patterson (1952) which we shall call Patterson designs. These designs are
very popular among experimenters because they involve a moderate number of
subjects for given t and do not involve too many periods. Several families of
such designs are known.

Definition 3. A design d ∈ Ωt,n,p where p ≥ 3, t ≥ 3, will be said to be a
Patterson design if the following conditions hold:
(i) d is uniform on periods, so that n = µ1t for some integer µ1 ≥ 1;
(ii) d is balanced, so that n(p− 1)/{t(t− 1)} = λ1 for some integer λ1 ≥ 1;
(iii) when the subjects of d are viewed as blocks, they form the blocks of a balanced
incomplete block (BIB) design with block size p ;
(iv) when d is restricted to the first p− 1 periods, then again, the subjects of d
form the blocks of a BIB design with block size p− 1 ;
(v) in the set of µ1 subjects receiving a given treatment in the last period, every
other treatment is applied λ1 times in the first p− 1 periods.

Example 4. The design d7 shown below is a Patterson design with t = 4, p =
3, n = 12.

d7 ≡
1 2 3 4 1 2 3 4 1 2 3 4
2 1 4 3 3 4 1 2 4 3 2 1
3 4 1 2 4 3 2 1 2 1 4 3

.

For a Patterson design d, it can be shown that

Cd11 = λ1tHt, Cd12 = −(λ1t/p)Ht,

Cd22 = {λ1(pt− t− 1)/p}Ht. (18)

So, analogously to (15), the information matrices Cd and C̄d are both constant
multiples of Ht, leading to considerable simplification in the analysis.
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Stufken (1991) introduced a new class of designs and proved that they have
good optimality properties in certain subclasses of Ωt,n,p. These designs, labeled
as Stufken designs, are described below. Stronger optimality properties of these
designs were established later by Hedayat and Yang (2004).

Definition 4. A design d ∈ Ωt,n,p will be called a Stufken design if it satisfies
the following properties:
(a) d is uniform on periods;
(b) the first p− 1 periods of d form a BIB design with subjects as blocks;
(c) in the last period of d, θ subjects receive a treatment that was not allocated
to them in any of the previous periods, while the remaining n−θ subjects receive
the same treatment as in period p− 1, where θ is the nearest integer (or one of

the nearest integers) to
n(pt− t− 1)

(p− 1)t
;

(d) zdss′ − p−1
∑n

j=1 ndsjn̄ds′j is independent of s and s′, s 6= s′, where Zd =

(zdss′), Nd = (ndsj), N̄d = (n̄dsj) are as defined earlier;
(e)

∑n
j=1 ndsjnds′j is independent of s and s′, s 6= s′.

We shall describe the optimality properties of Stufken designs in Section 6.5.
Kunert and Stufken (2002) studied a general class of designs called to-

tally balanced designs which satisfy more stringent combinatorial conditions
and have good statistical properties. These designs are quite general in the
sense that, though the number of subjects needs to be a multiple of the number
of treatments, there is no restriction on the number of periods, thus allowing
p < t, p > t or p = t. An attractive feature of these designs is that they have
good optimality properties, even under models more complicated than the one
in (3). We define these designs here and will study them again later.

Definition 5. A design d ∈ Ωt,n,p is called totally balanced if
(a) d is uniform on periods;
(b) each treatment is allocated as equally as possible to each subject in d, i.e.,
each treatment is allocated either [p/t] or [p/t] + 1 times to each subject;
(c) the number of subjects where treatments s and s′ are both allocated [p/t] + 1
times in d, is the same for every pair s 6= s′, 1 ≤ s, s′ ≤ t;
(d) each treatment is allocated as equally as possible to each subject in the first
p − 1 periods of d , i.e., each treatment is allocated either [(p − 1)/t] or [(p −
1)/t] + 1 times to each subject over periods 1, . . . , p− 1;
(e) the number of subjects where treatments s and s′ are both allocated [(p −
1)/t] + 1 times in the first p − 1 periods of d, is the same for every pair s 6=
s′, 1 ≤ s, s′ ≤ t;
(f) d is balanced;
(g) the number of subjects where both treatments s and s′ appear [p/t] + 1 times
in d and the treatment s′ does not appear in the last period is the same for every
pair s, s′, 1 ≤ s, s′ ≤ t; s 6= s′.

Interestingly, some of the earlier designs follow as special cases of these
designs; for instance, when p is a multiple of t, a totally balanced design is a
balanced uniform design. The Patterson design shown in Example 4 is also a
totally balanced design.
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Example 5. The following is a totally balanced design with t = 3, n = 6, p = 4.

d8 ≡

1 2 3 3 1 2
2 3 1 2 3 1
3 1 2 1 2 3
1 2 3 3 1 2

.

3.3 Two-period designs

Clearly, in a crossover design, the number of periods, p is at least two. We
now review some designs with only two periods, i.e., designs with p = 2. These
designs are of substantial interest in clinical trials and have been studied among
others, by Grizzle (1965), Hills and Armitage (1979), Armitage and Hills (1982)
and Willan and Pater (1986).

Hedayat and Zhao (1990) gave an interesting connection between a crossover
design with two periods and a block design. We present this result below, where
we write Cd to denote the information matrix for treatments for an arbitrary
block design d under the usual additive linear model for block designs.

Theorem 1. Let d be a design in Ωt,n,2 and let there be b ≤ t distinct treat-
ments in the first period of d, these treatments being labeled as 1, 2, . . . , b. Then
there exists a block design d0 with t treatments and b blocks of sizes r̄d1, . . . , r̄db,
such that the treatment versus block incidence matrix of d0 equals Zd, and the
relationship

Cd0 = 2Cd, (19)

holds, where Cd is as in (6.8). Conversely, from a block design with t treatments
and b(≤ t) blocks one can obtain a crossover design d in Ωt,n,2, with n equal to
the total number of experimental units in the block design, such that (19) holds.

This connection is helpful in the study of optimality of two-period crossover
designs as one can invoke well known results on optimality of block designs for
this purpose. The following example illustrates Theorem 1.

Example 6. Let d ∈ Ω3,12,2 be as below:

d ≡ 1 2 3 1 2 3 1 2 3 2 3 1
1 2 3 2 3 1 1 2 3 1 2 3

.

This design has r̄d1 = r̄d2 = r̄d3 = 4. Then the corresponding block design
d0 is given by the blocks

d0 ≡
Block I: 1, 1, 2, 3
Block II: 1, 2, 2, 3
Block III: 1, 2, 3, 3

.

Conversely, d can be obtained from d0, and it can be verified that for these
designs, (19) holds.

Again, from (19), it is clear that a design d ∈ Ωt,n,2 is connected for direct
effects if and only if the corresponding block design d0 is connected. Because of
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this fact, it is easy to see that the contrasts among direct effects of treatments
cannot be estimated from the design d1 in Example 1. This is because the block
design d0 corresponding to d1 has the following two blocks:

Block I : (2, 2) and Block II : (1, 1).

The block design with the above two blocks is clearly disconnected, implying
that d1 is disconnected too. However, if d1 is modified to include identical pairs
to give a design d∗ as

d∗ ≡ 1 2 1 2
1 2 2 1

,

then the corresponding block design has blocks

Block I : (1, 2) and Block II : (2, 1),

which is connected, leading to the connectedness of d∗ for direct effects.
There is another aspect of two-period designs which makes it interesting and

we elaborate on this now. In the context of crossover designs, since the same
subject gives multiple responses, it is sometimes reasonable to deviate from the
traditional model with uncorrelated errors and instead, consider a model under
which the observations from the same subject are assumed to be correlated,
these correlations being the same for all subjects, while those from different
subjects remain uncorrelated. Thus, for p = 2, the model is the same as (3)
with the exception that the dispersion matrix of the errors is now σ2Σ, where

Σ = In ⊗ V and V =

(
1 ρ
ρ 1

)
, with ρ (−1 < ρ < 1) representing the

correlation coefficient between the observations arising from the same subject.
An interesting aspect of 2-period crossover designs is that the properties of

these designs under a model with correlated errors can be studied easily. It
turns out that for a design d with p = 2, the information matrix for the joint
estimation of direct and carryover effects under a model with correlated errors
as specified above is proportional to the joint information matrix under (3);
see Lemma 1.3.1 in Bose and Dey (2009). Hence, for p = 2, the optimality
properties of a design under the uncorrelated errors model (3) remain robust
even if the errors are correlated as described above.

3.4 Two-treatment designs

Experiments with only two treatments are often used in practice; for example,
in medical experiments one treatment may be a placebo or the standard drug
while the other treatment could be a newly developed drug. The literature
on two-treatment designs has been enriched by various authors, including Ker-
shner and Federer (1981), Laska and Meisner (1985), Matthews (1987, 1990),
Kunert (1991), Kushner (1997a), Carriere and Reinsel (1992), Carriere and
Huang (2000) and Kunert and Stufken (2008). In this context, a class of de-
signs called dual balanced designs are found to have good statistical properties.
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With two treatments, labeled say 1 and 2, consider a treatment sequence
of length p, every element of the sequence being either 1 or 2. For any such
sequence, its dual is obtained by interchanging the positions of 1 and 2. Then
a dual balanced design is defined as follows.

Definition 6. A design which assigns an equal number of subjects to any treat-
ment sequence and its dual is called a dual balanced design.

Example 7. The following are examples of dual balanced designs.

d9 ≡

1 2
2 1
1 2
2 1

, d10 ≡

1 2 1 2
1 2 2 1
2 1 2 1
2 1 1 2

, d11 ≡

1 2
1 2
1 2
2 1

.

Note that though these designs are called dual balanced, they need not always
be balanced in the sense of Definition 1. For example, d9 is balanced, while d10
is strongly balanced and d11 is neither balanced nor strongly balanced in the
sense of Definitions 1 and 2.

4 Constructions of some families of designs

In this section we give methods for construction for some selected classes of
designs. To see why these methods lead to the designs as claimed, we refer the
reader to the related references.

4.1 Balanced uniform designs

It is clear from Definition 1 (Section 6.3.1) and the definition of uniformity
(Section 6.3) that Ωt,n,p can contain a balanced uniform design only if t, n and
p satisfy the following three conditions:
(i) n = µ1t, for some integer µ1 ≥ 1,
(ii) p = µ2t, for some integer µ2 ≥ 1,
(iii) n(p− 1) = λ1t(t− 1), for some integer λ1 ≥ 1.
Case 1: t even. Williams (1949) gave a method for constructing a balanced
uniform design d ∈ Ωt,t,t, where t is any even integer. Starting with the initial
t× 1 vector

a0 =

(
1, t, 2, t− 1, . . . ,

t

2
− 1,

t

2
+ 2,

t

2
,
t

2
+ 1

)′

,

he obtained t− 1 other vectors as au = a0 + (u, u, . . . , u)′, 1 ≤ u ≤ t− 1, where
all entries in au are reduced modulo t and, every 0 in au is replaced by t. Then
the t× t array

At = [a0,a1, . . . ,at−1]

is a balanced uniform design in Ωt,t,t. As usual, rows of At represent the t
periods and the columns represent the t subjects. The design At is often called
a Williams square.

15



Example 8. The following are two examples of Williams squares, or balanced
uniform designs, in Ωt,t,t, one with t = 4 and a0 = (1, 4, 2, 3)′ and another with
t = 6 and a0 = (1, 6, 2, 5, 3, 4).′

1 2 3 4
4 1 2 3
2 3 4 1
3 4 1 2

,

1 2 3 4 5 6
6 1 2 3 4 5
2 3 4 5 6 1
5 6 1 2 3 4
3 4 5 6 1 2
4 5 6 1 2 3

.

For n = µ1t and p = t, a balanced uniform design can be obtained by
juxtaposing µ1 copies of a Williams square in Ωt,t,t.
Case 2: t odd. Balanced uniform designs with odd t in Ωt,t,t are known for only
a few values of t, for instance, t = 9, 15, 21, 27, 39, 55, 57, while they do not exist
for t = 3, 5, 7. Higham (1998) proved that a balanced uniform design exists in
Ωt,t,t when t is a composite number. The design for t = 21 is shown in Hedayat
and Afsarinejad (1975) and designs for t = 9, 15, 27 are given in Hedayat and
Afsarinejad (1978). The above mentioned papers may be consulted for more
details and references.

However, when n = 2t, a balanced uniform design exists in Ωt,2t,t for all odd
t. Williams (1949) gave a construction starting with two initial vectors. Let

b0 =

(
1, t, 2, t− 1, . . . ,

t+ 5

2
,
t− 1

2
,
t+ 3

2
,
t+ 1

2

)′

,

c0 =

(
t+ 1

2
,
t+ 3

2
,
t− 1

2
,
t+ 5

2
, . . . , t− 1, 2, t, 1

)′

.

Note that c0 is obtained by writing the entries of b0 in the reverse order. Now,
for 1 ≤ u ≤ t− 1, let bu = b0 + (u, . . . , u)′ and cu = c0 + (u, . . . , u)′, where the
elements of bu and cu are reduced modulo t and, thereafter, every 0 therein is
replaced by t. Then a balanced uniform design in Ωt,2t,t is given by the t × 2t
array

Bt = [b0 b1 · · · bt−1 c0 c1 · · · ct−1].

The design d2 with t = 3 in Example 1 is constructed via this method. A design
for t = 5 is shown next.

Example 9. For t = 5, b0 = (1, 5, 2, 4, 3)′ and c0 = (3, 4, 2, 5, 1)′ which lead to
the following balanced uniform design in Ω5,10,5.

1 2 3 4 5 3 4 5 1 2
5 1 2 3 4 4 5 1 2 3
2 3 4 5 1 2 3 4 5 1
4 5 1 2 3 5 1 2 3 4
3 4 5 1 2 1 2 3 4 5

.
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There are several simple modifications of the Williams squares that give
designs with the same balance properties. For a review of such modifications,
we refer the reader to Issac et al. (2001).

4.2 Strongly balanced uniform designs

From the definition of uniformity (Section 6.3.1) and Definition 2 one may check
that a design Ωt,n,p can contain a uniform, strongly balanced design only if the
following conditions hold:
(i) n = µ3t

2, for some integer µ3 ≥ 1 and,
(ii) p = µ2t, for some integer µ2 ≥ 2.

Early examples of these designs with t = 3, n = 18, p = 6 and t = 4, n =
16, p = 8 were given by Quenouille (1953). Later, Berenblut (1964) and Patter-
son (1973) gave general methods of their construction in Ωt,n=t2,p=2t. Cheng
and Wu (1980) generalized the above family to give constructions for situations
where t2 divides n and p is an even multiple of t. The design d3 shown in Exam-
ple 2 is one such design. Starting with designs constructed by Cheng and Wu’s
method, one may obtain a strongly balanced uniform design in Ωt,n=αt2,p=2βt,
where α, β are integers, by juxtaposing copies of this design. Sen and Mukerjee
(1987) gave a construction of strongly balanced uniform designs for cases when
t2 divides n and p is an odd multiple of t. This, together with the construction
of Cheng and Wu (1980) shows that the necessary conditions (i) and (ii) above
are sufficient as well.

Using orthogonal arrays of strength two, Stufken (1996) gave a unified method
of construction of these designs for general µ2, which covers both the odd and
even cases. We describe this construction below.

An orthogonal array, OA(n, p, t, 2) of strength two is an n × p array with
entries from a set of t ≥ 2 symbols, such that any n × 2 subarray contains
each ordered pair of symbols equally often as a row, precisely n/t2 times. An
OA(t2, 3, t, 2) exists for all t ≥ 2, and let such an array be denoted by A0, its
entries being 1, 2, . . . , t. Let B0 be an orthogonal array OA(t2, 2, t, 2), obtained
from A0 by deleting its third column. For 1 ≤ u ≤ t − 1, let Au be a t2 × 3
matrix obtained by adding u to each element of A0 and similarly, let Bu be a
t2 × 2 matrix obtained by adding u to each element of B0, where the elements
of Au and Bu are reduced modulo t, and then every 0 therein is replaced by t.

Finally, let A and B be the 3t× t2 and 2t× t2 matrices defined as

A =
[
A0 A1 · · · At−1

]′
, B =

[
B0 B1 · · · Bt−1

]′
.

Since µ2 ≥ 2, let µ2 = 3α+ 2β for some nonnegative integers α, β. It can then
be verified that the µ2t× t2 array

[A′ · · ·A′ B′ · · ·B′]′

consisting of α copies of A and β copies of B is a strongly balanced uniform
design in Ωt,t2,p=µ2t. Now juxtaposing µ3 copies of this design, we get a strongly
balanced uniform design in Ωt,n=µ3t2,p=µ2t.

17



Example 10. Let t = 3, n = 9, p = 6. We start with A0 ≡ OA(9, 3, 3, 2) as
shown below in transposed form.

A′
0 ≡

 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2

 .

Here µ2 = 2 and so we take α = 0, β = 1. From A0 we obtain B0 and then B1

and B2, leading to the matrix B = (B0,B1,B2)
′ as indicated above. This B

will be the design d3 displayed in Example 2.

4.3 Patterson designs

We now describe methods of construction of some families of Patterson designs
(see Definition 3). Such a family exists in particular when t is a prime or a
prime power. Let u0 = 0, u1 = 1, u2 = x, u3 = x2, . . . , ut−1 = xt−2 be the
elements of GF (t) (a Galois field of order t), where x is a primitive element.
Details on Galois fields may be found e.g., in Lidl and Niederreiter (1986). For
1 ≤ i ≤ t− 1, define a t× t array Li whose (α, β)th element equals uiuα + uβ ,
0 ≤ α, β ≤ t − 1. Then L1, . . . ,Lt−1 form a complete set of (t − 1) mutually
orthogonal Latin squares of order t. Furthermore, Li+1 can be obtained by
cyclically permuting the last t − 1 rows of Li, 1 ≤ i ≤ t − 2. The t × t(t − 1)
array L = [L1 L2 . . . Lt−1] is a Patterson design in Ωt,t(t−1),t. On deleting any
t− p rows of L, where t > p ≥ 3, one obtains a Patterson design in Ωt,t(t−1),p.
The design in Example 4 is obtained by this method, after deleting the last row
of the array L for t = 4.

Patterson (1952) obtained several families of designs which require fewer
subjects than the method described above. In particular, the following families
of designs were obtained by Patterson (1952):
Family I: t = 4m+ 3, n = t(t− 1)/2, p = 3, t a prime or a prime power;
Family II: t = 4u+ 3, n = 2t, p = (t+ 1)/2, t a prime.

Example 11. The following design is a member of Family I with t = 11, n =
55, p = 3.
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1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 1
4 5 6 7 8 9 10 11 1 2 3
1 2 3 4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 1 2 3 4
2 3 4 5 6 7 8 9 10 11 1
1 2 3 4 5 6 7 8 9 10 11
6 7 8 9 10 11 1 2 3 4 5
5 6 7 8 9 10 11 1 2 3 4
1 2 3 4 5 6 7 8 9 10 11
10 11 1 2 3 4 5 6 7 8 9
6 7 8 9 10 11 1 2 3 4 5
1 2 3 4 5 6 7 8 9 10 11
4 5 6 7 8 9 10 11 1 2 3
10 11 1 2 3 4 5 6 7 8 9

.

5 Optimality under the traditional model

Hedayat and Afsarinejad (1978) initiated the study of optimality of crossover
designs. Subsequently, the area of optimal crossover designs has been enriched
by the contributions of a number of authors. Many of these results are with
respect to the universal optimality criterion of Kiefer (1975). It is well known
that universal optimality implies the more common criteria like A-, D- and
E-optimality in the sense that a universally optimal design is also A-, D- and
E-optimal.

Let D be a class of competing designs in a given context and let Ad denote
the information matrix for a set of relevant parametric functions (e.g., contrasts
among the direct or carryover effects in the setup of this paper) under a design
d ∈ D and a given model. Then, a set of sufficient conditions for a design d∗ ∈ D

to be universally optimal over D is that (i) Ad∗ is completely symmetric and
(ii) trace(Ad∗) ≥ trace(Ad) for all d ∈ D. In this section, we present a selection
of results on optimal crossover designs. Throughout this section, we consider
the model (3).

5.1 Balanced uniform designs

It is interesting to note how the optimality results on balanced uniform designs
have been successively strengthened by various authors. The first result on
optimal crossover designs was obtained by Hedayat and Afsarinejad (1978) who
proved that a balanced uniform design (Definition 1) in Ωt,µ1t,t is universally
optimal for the estimation of both direct and carryover effects over the class of
all uniform designs in Ωt,µ1t,t. This result was strengthened by Cheng and Wu
(1980), who removed the restriction of uniformity on the competing designs,
but even then, their results are valid only in some subclasses of Ωt,n,p, t ≥ 3.
For instance, they proved that a balanced uniform design is universally optimal
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for the estimation of carryover effects over the class of designs in which (i)
n = µ1t, p = µ2t for some integers µ1, µ2, (ii) no treatment is assigned to two
consecutive periods on the same subject and (iii) each treatment is equally
replicated in the first p − 1 periods. If in particular, µ2 = 1 also holds (i.e.,
p = t), then restriction (iii) is not needed. For the direct effects, they showed
that a balanced uniform design is universally optimal for the estimation of direct
effects over the class of designs which are uniform on subjects and uniform on
the last period. This result on direct effects by Cheng and Wu (1980) was further
extended by Kunert (1984a) who removed all restrictions on the competing class
and proved that if t = n = p > 2, then a balanced uniform design is universally
optimal for the estimation of direct effects over Ωt,t,t and, if n = 2t, p = t, t ≥ 6,
a balanced uniform design is universally optimal for direct effects over Ωt,2t,t.

A more general result was obtained by Hedayat and Yang (2003) who proved
that for n = µ1t, t = p > 2 and n ≤ t(t−1)/2, a balanced uniform design is uni-
versally optimal for direct effects in Ωt,n,t. On recalling that balanced uniform
designs have completely symmetric information matrices (see (15)), the above
condition n ≤ t(t − 1)/2 is crucial in their result as this is needed to establish
that a balanced uniform design maximizes the trace of the information matrix
for direct effects among all designs in the competing class, thereby establishing
its universal optimality. It may be noted that when this condition is not satis-
fied, universal optimality does not hold in general, though it is indeed true for
t = p = 3, n = 6. Earlier, Street et al. (1990) had shown via a computer search
that a balanced uniform design in Ω3,6,3 is A-optimal for direct effects; Hedayat
and Yang (2004) extended this result to universal optimality. For larger values
of t, they also showed that if 4 ≤ p = t ≤ 12 and n ≤ t(t+2)/2, then a balanced
uniform design is universally optimal for the estimation of direct effects over
Ωt,n,t.

5.2 Stufken and Patterson designs

When we depart from balanced uniform designs, and focus on designs with
uniformity on periods only, several optimality results are again available. For
example, the universal optimality of Stufken designs (see Definition 4) for di-
rect effects in certain subclasses of Ωt,n,p, was established by Stufken (1991).
Kushner (1998) extended these results to show that if n/{t(p−1)} is an integer,
then the Stufken designs are universally optimal for direct effects in the entire
class Ωt,n,p. Hedayat and Yang (2004) improved Kushner’s result to prove that
if a Stufken design exists in Ωt,n,p then it is universally optimal for direct effects
over Ωt,n,p irrespective of whether or not the above divisibility condition holds.
By this result, a Stufken design, which exists for t = p = 3, n = 36, is univer-
sally optimal in Ω3,36,3 and thus it dominates the balanced uniform design in
this class. Note that here the condition n ≤ t(t− 1)/2 in the result of Hedayat
and Yang (2003) mentioned in the earlier subsection, is violated.

The optimality properties of Patterson designs (Definition 3) were studied
by Shah et al. (2005) who showed that these designs are universally optimal
for the estimation of both direct and carryover effects over the subclass of all
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connected designs in Ωt,n,p in which no treatment precedes itself.

5.3 Strongly balanced designs

We now turn to strongly balanced designs. The study of optimality aspects
of such designs was initiated by Cheng and Wu (1980). They proved a very
general result which shows that a strongly balanced uniform design (Definition
2) is universally optimal for the estimation of both direct and carryover effects
over the entire class Ωt,n,p. However, since such a design exists only if t2|n and
t|p, these designs are quite large in size. By relaxing the condition of uniformity
on subjects in the class of competing designs, Cheng and Wu (1980) obtained
optimal designs which are smaller in size compared to strongly balanced uniform
designs. They showed that a strongly balanced design which is uniform on
periods and uniform on the subjects in the first p− 1 periods is also universally
optimal for both direct and carryover effects over the entire class, Ωt,n,p. The
fact that direct and carryover effects become orthogonally estimable in a strongly
balanced design and (17) are instrumental in proving the universal optimality
over the entire class of designs.

5.4 Two-period designs

Hedayat and Zhao (1990) used the connection established between block de-
signs and 2-period crossover designs in Theorem 1 to obtain optimal crossover
designs starting from optimal block designs. It follows from Theorem 1 that if
a block design d0 is optimal in the class of all proper (equal block size) block
designs with t treatments and b ≤ t blocks, then the 2-period crossover design
corresponding to d0 is also universally optimal for direct effects, in the class
of all 2-period designs in which b treatments appear in the first period equally
often. Consider for instance Example 6. There, d0 is a balanced block design
and is universally optimal over the entire class of connected block designs with
t = 3 treatments and b = 3 blocks each of size 4. Hence it follows that the cor-
responding crossover design d is universally optimal for the estimation of direct
effects over the subclass of Ω3,12,2 which are uniform on the first period.

Hedayat and Zhao (1990) also gave a set of necessary and sufficient conditions
for a 2-period crossover design with t treatments and n subjects to be universally
optimal in the entire class Ωt,n,2. Their result is as follows.

Theorem 2. Let n ≡ 0 (mod t). Then a 2-period, t-treatment, n-subject design
d∗ is universally optimal for direct effects over Ωt,n,2 if and only if
(a) fd∗s ≡ 0 (mod t), 1 ≤ s ≤ t, where fd∗s is the number of times treatment s
appears in the first period of d∗, and
(b) zd∗s′s = fd∗s/t, 1 ≤ s′ ≤ t, where zd∗s′s is the number of subjects that receive
treatment s in the first period and treatment s′ in the second period of d∗.

Note that the number of distinct treatments in the first period of the design
d∗ in Theorem 2 may be any number ∈ {1, 2, . . . , t}. Condition (a) of Theorem
2 merely demands that for 1 ≤ s ≤ t, fd∗s = µst, where µs ≥ 0 is an integer,
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subject to
∑t

s=1 fd∗s = n. In particular, one can have an optimal 2-period design
as given by Theorem 2 where the same treatment is used for every subject in
the first period, e.g., the design d12 below.

Example 12. Using Theorem 2, it is easy to see that the designs d12 and
d13 below are universally optimal for direct effects over Ω3,12,2 and Ω6,18,2,
respectively.

d12 ≡ 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 1 2 3 1 2 3 1 2 3

,

d13 ≡ 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

.

For the case when n is not a multiple of t, Hedayat and Zhao (1990) consid-
ered designs with only a single treatment in the first period and all t treatments
allocated as equally as possible in the second period. Using the correspondence
with block designs they showed that such crossover designs are A-optimal for
direct effects over Ωt,n,2.

5.5 Two-treatment designs

Matthews (1990) used the approach of approximate design theory (see Kiefer,
1959) to give an easily implementable method for producing optimal dual-
balanced designs (Definition 6) with two treatments. He showed that for even
p, any design which is optimal for direct effects is also optimal for carryover
effects, while for odd p, any design which is optimal for carryover effects is also
optimal for direct effects. For example, he showed that the designs d9 and d10 in
Example 7 are universally optimal designs for both direct and carryover effects
in Ω2,2,4 and Ω2,4,4, respectively. The designs which he obtained as optimal
for both direct and carryover effects are identical with the strongly balanced
designs, shown to be optimal by Cheng and Wu (1980) and discussed earlier in
this section. However, his designs which are optimal only for direct effects or
only for carryover effects need not be uniform over subjects nor uniform over
subjects in the first p−1 periods, and so are not covered by the results of Cheng
and Wu (1980).

6 Some other models and optimal designs

Now we consider some models other than the traditional one, which have been
studied in the literature. Recall that the traditional model given in (3) makes
some implicit assumptions about the carryover effects. For example, it assumes
that only first-order carryover effects are present, the carryover effect of a treat-
ment in a period always remains the same no matter which treatment is pro-
ducing the direct effect in this period, the carryover effect of a treatment does
not depend on its direct effect, and so on.
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However, in practice, such assumptions need not hold in all situations and
so the validity of the model (3) has been questioned, especially in medical appli-
cations; see e.g., Senn (1992) and Matthews (1994). For examples of situations
in non-medical applications where the simplistic model (3) may not be appro-
priate, see Kempton et al. (2001). For such situations, it becomes necessary
to model the carryover effects differently and several authors have studied the
problem of finding good designs under such modified models.

Moreover, the traditional model (3) also assumes that the errors are uncor-
related, an assumption that may not be met in typical crossover trials where it
might be more realistic to expect that the observations arising from the same
subject over time are correlated. In view of this, models with correlated errors
have been studied too. In the following subsections, we review some of these
models and describe a selection of optimality results under these models.

6.1 Circular model

Recall that in (3), it was assumed that there are no carryover effects in the
first period. Models with carryover effects in the first period too have been
studied by some authors. For this, they proposed the inclusion of a pre-period
or baseline period (‘0’th period) when each subject receives the same treatment
as the one allocated to it in the pth period. Even though no observation is taken
during this pre-period, the treatments applied in this period cause a carryover
effect to be present in the first period, thereby creating a ‘circular’ pattern
of carryovers across the p periods. A model for studying these experiments
is termed a ‘circular’ model, its only change from (3) being that instead of
ρd(0,j) = 0 as in (3), it now has ρd(0,j) = ρd(p,j), 1 ≤ j ≤ n. Consequently, the
matrix F dj defined in (2) in the context of model (3) now takes the form

F dj =

(
0′
p−1 1

Ip−1 0p−1

)
T dj , 1 ≤ j ≤ n.

This leads to a considerable simplification in the analysis, but this simplicity
comes at the expense of having a pre-period of experimentation. This model
has been sporadically used in the literature, the traditional ‘non-circular’ model
being far more popular. For some results on optimality under the circular model,
one may refer to Magda (1980) and Kunert (1984b).

6.2 Model with self and mixed carryovers

In the models described so far, when a treatment is applied to a subject in a
period, the carryover effect of this treatment in the following period is always
the same, irrespective of which treatment follows it. However, in some crossover
trials, for example, in medical applications, such a constant form of the carry-
over may not be realistic and the carryover effect of a treatment may depend
on whether it is being followed by itself, or by a different treatment. For such
situations, Afsarinejad and Hedayat (2002) introduced the self and mixed car-
ryover model where they assumed that the carryover effect of a treatment is of
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two types: if a treatment is followed by itself on a subject, then the carryover
effect of the former treatment is called self carryover effect, while if it is followed
by a different treatment, then it is called mixed carryover effect. They studied
only 2-period designs under this model while a study of designs in Ωt,n,p was
developed by Kunert and Stufken (2002). More recently, Kunert and Stufken
(2008) studied the optimality of two-treatment designs under a model with self
and mixed carryover effects. The model with self and mixed carryovers is as
follows:

Yij =

{
αi + βj + τd(i,j) + νd(i−1,j) + εij , if d(i, j) 6= d(i− 1, j),
αi + βj + τd(i,j) + χd(i−1,j) + εij , if d(i, j) = d(i− 1, j),

,(20)

where χd(i−1,j) is the self carryover effect and νd(i−1,j) is the mixed carryover
effect of treatment d(i− 1, j), νd(0,j) = χd(0,j) = 0, 1 ≤ i ≤ p, 1 ≤ j ≤ n, and
all other terms in (20) are as in (1). Analogous to (3) and remembering that
d(i, j) ∈ {1, . . . , t}, the model in (20) can equivalently be written as

Y d = Pα+Uβ + T dτ +Gdν + Sdχ+ ε, (21)

where χ = (χ1, . . . , χt)
′, ν = (ν1, . . . , νt)

′, and Gd and Sd are the design
matrices for the mixed carryover and self carryover effects, respectively, all other
terms in (21) being as in (3). Model (20) is presented here in the same form
as was considered by Hedayat and Afsarinejad (2002). This model remains
unaffected if, as in (1), a general mean term is included in it. This is because
the column space of P or U includes the vector 1np.

For the simpler case p = 2, Afsarinejad and Hedayat (2002) obtained optimal
2-period designs under (21) by invoking the connection between a block design
and a 2-period crossover design as given in Theorem 1. They proved that a
symmetric balanced incomplete block (BIB) design with t treatments and block
size k can be used to obtain a design which is optimal for direct effects under
(21) over the subclass of designs in Ωt,tk,2 which are uniform on the first period.

The case p > 2 for model (21) was studied by Kunert and Stufken (2002). To
identify the optimal design in this class, they first found an upper bound on the
information matrix for direct effects under (21) (in the Loewner sense) and then
showed that this bound is attained by a totally balanced design (see Definition
5). Next, they maximized the trace of the upper bound and showed that a
totally balanced design again attains this maximum. Thus, they established the
following result.

Theorem 3. For t ≥ 3 and 3 ≤ p ≤ 2t, if a totally balanced design d∗ ∈ Ωt,n,p

exists, then d∗ is universally optimal for the estimation of direct effects over
Ωt,n,p under (21).

By the above theorem, the design shown in Example 5 is universally optimal
for direct effects over Ω3,6,4 under (21).

6.3 Models with direct-versus-carryover interactions

In the earlier model, the carryover effect of a treatment was only of two types,
the mixed carryover effect being the same no matter which treatment followed
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it. One can extend this idea to postulate a model where the treatments allocated
to the same subject in two successive periods may have an interaction effect, in
addition to the usual direct and carryover effects. Such a model was proposed
by Sen and Mukerjee (1987) and is given by

Y1j = µ+ α1 + βj + τd(1,j) + ε1j , 1 ≤ j ≤ n

Yij = µ+ αi + βj + τd(i,j) + ρd(i−1,j) + γd(i,j),d(i−1,j) + εij ,

2 ≤ i ≤ p, 1 ≤ j ≤ n, (22)

where γd(i,j),d(i−1,j) is the interaction effect between treatments d(i, j) and d(i−
1, j), d(i, j) ∈ {1, . . . , t}, and all other terms are as in (1).

Sen and Mukerjee (1987) showed that strongly balanced uniform designs
are universally optimal for direct effects under the non-additive model (22).
However, this result does not have an exact counterpart for the estimation of
carryover effects. Sen and Mukerjee (1987) proved that a strongly balanced
uniform design satisfying certain extra combinatorial conditions is universally
optimal for estimation of carryover effects under the model (22).

Further results on optimal crossover designs under (22) were obtained re-
cently by Park et al. (2011). They considered a particular class of strongly
balanced designs with n = t2 units which are uniform on the periods and ob-
tained a lower bound for the A-efficiency of the designs for estimating the direct
effects. They then showed that such designs are highly efficient for any number
of periods p, 2 ≤ p ≤ 2t.

6.4 Model with carryover proportional to direct effect

In some crossover experiments, it is believed that the carryover effect of a treat-
ment is proportional to its direct effect, thus requiring yet another modification
of the traditional model. The constant of proportionality may be either positive
or negative, but it is generally unknown. Cross (1973) gave an example of such
a situation where subjects were asked to rate the loudness levels of different
sound stimuli and it was found that subjects generally gave a higher rating to a
stimulus when it was preceded by a loud sound and gave a lower rating to the
same sound when it was preceded by a soft sound. Thus, here the constant of
proportionality is positive. Schifferstein and Oudejans (1996) described another
experiment where subjects were asked to rate the saltiness of several saline so-
lutions. It was observed that the subjects rated a solution to be less salty if it
was immediately preceded by a solution with high salt concentration while they
rated the same solution to be more salty when preceded by one with low salt
concentration. Here, the constant of proportionality is negative.

The model where carryover effects are assumed to be proportional to direct
effects is given by

Yij = µ+ αi + βj + τd(i,j) + γτd(i−1,j) + εij , 1 ≤ i ≤ p, 1 ≤ j ≤ n,(23)

where γ is the constant of proportionality and all other terms are as in (1). We
also assume that t ≥ 3, because for t = 2, the model reduces to (1).
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Even though this model has fewer parameters than (1), it is technically
much harder to analyze as it is nonlinear in τ and γ, both being unknown. In
order to linearize (23), Kempton et al. (2001) used a Taylor series expansion
about τ 0 and γ0, the true values of τ and γ, respectively. Then the information
matrix for direct effects can be obtained under the linearized model. However,
this information matrix now depends on the unknowns τ 0 and γ0. Bailey and
Kunert (2006) and Bose and Stufken (2007) also studied this model and we refer
to them for expressions of the information matrices as obtained by them.

To overcome the aforesaid difficulty, Kempton et al. (2001) considered the
distribution of possible vales of τ 0 and studied the performance of a design based
on (a) the Ā-criterion, which is the averaged version of the usual A-criterion,
the average being taken over a multivariate normal distribution of τ 0 with zero
mean vector and dispersion matrix It − t−1J t, and (b) the IA-criterion, where
the A-criterion is averaged over both τ 0 and γ0, with τ 0 distributed as in (a),
γ0 having the uniform distribution on [-1,1], τ 0 and γ0 being independent. Note
that the A-criterion is a local optimality criterion as it depends on γ0. They
proved the following results.
(i) Let d ∈ Ωt,n,p where n = µ1t, µ1 ≥ 1, p = t, be a balanced uniform design.
Then d is Ā-optimal for the estimation of direct effects over the class of all
uniform designs in Ωt,n,p for all γ0.
(ii) Let d ∈ Ωt,n,p where n = µ1t, µ1 ≥ 1, p = t + 1, be a strongly balanced
design which is uniform on periods and uniform on subjects in the first p − 1
periods. Then d is IA-optimal for the estimation of direct effects over Ωt,n,p.

Additional optimality results under (23) were obtained by Bailey and Kunert
(2006). Among other things, they showed that if d∗ is a totally balanced design
with t ≥ p ≥ 3 or t ≥ 3, p = 2, then for all γ0 ∈ [−1, 1], d∗ is Ā-optimal for
direct effects over all designs in Ωt,n,p which do not assign the same treatment
to successive periods in any subject.

Bose and Stufken (2007) obtained optimal designs under the model (23)
when γ is known and not necessarily restricted to the interval [−1, 1]. Under
this assumption, the model (23) becomes linear and the more stringent universal
optimality criterion can be used for obtaining optimal designs for given γ. While
we refer the reader to the original source for details, we give below some examples
of universally optimal designs under (23).

Example 13. Let t = 3 = n = p. The following designs are universally optimal
for direct effects over Ω3,3,3 for any γ in the intervals (0.52, 11.48), (−4.73,−1.27)
and (−1.27, 0.52), respectively.

1 2 3
2 3 1
2 3 1

,
1 2 3
2 3 1
1 2 3

,
1 2 3
2 3 1
3 1 2

.
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6.5 Mixed effects models and models with correlated er-
rors

Several authors considered models with random subject effects. This leads to
a mixed effects version of model (1). With p = 2 periods, Carriere and Rein-
sel (1993) considered the situation where the t2 possible treatment sequences
are assigned to the subjects at random, the lth sequence being assigned to nl

subjects, 1 ≤ l ≤ t2. Accordingly, they modified model (1) to the following
form:

Yijl = µ+ αi + τd(i,l) + ρd(i−1,l) + βjl + εijl, (24)

where d(i, l) is the treatment in the period i in the sequence l, Yijl is the response
obtained in period i from the jth subject assigned to the sequence l, βjl is the
random subject effect of the jth subject assigned to sequence l, and µ, αi, τs, ρs
are as in model (1). The random subject effects and the errors εijl are assumed
to be mutually uncorrelated random variables with means zero and variances
σ2
β and σ2, respectively, 1 ≤ i ≤ 2, 1 ≤ j ≤ nl, 1 ≤ l ≤ t2. Thus, (24) is a

mixed effects model.
Then for any d ∈ Ωt,n,2, the information matrix for the direct effects, Cd,

under the model (24) is given by

σ2Cd = (1 + ν)−1{Rd − ν2R̄d − n−1(1− ν2)r̄dr̄
′
d −ZdR̄

−
d Z

′
d}, (25)

where ν = σ2
β/(σ

2 + σ2
β) and Rd, R̄d, r̄d and Zd are as defined in Section 6.2.2.

Using (25), Carriere and Reinsel (1993) proved, among other things, that a
strongly balanced 2-period design which is uniform on periods is universally
optimal for direct effects over Ωt,n,2.

A mixed effects model for general p(≥ 2) was studied by Mukhopadhyay and
Saha (1983), who assumed that the βj ’s in model (1) are mutually uncorrelated
random variables with means zero and constant variances; these being also
uncorrelated with the error variable. Under this mixed effects model, they
studied the optimality of balanced and strongly balanced uniform designs, when
the variances are known. This mixed effects model has been considered more
recently by Hedayat et al. (2006) who obtained optimal and efficient crossover
designs under such a model.

As has been mentioned earlier, in the context of crossover designs, the as-
sumption of independent errors may not be realistic in some situations and a
model with correlated errors may seem more appealing. To incorporate the
correlations among observations within subjects, we may modify the traditional
model (3) to

Y d = Xdθ + ε, E(ε) = 0, D(ε) = In ⊗ V , (26)

where V is a positive definite matrix of order p, representing the dispersion
matrix of the errors corresponding to observations from the same subject and
all other terms are as in (3). So, now the responses from different subjects
are uncorrelated while those from the same subject can be correlated, these
correlations being the same for all subjects. We may take various forms of V to
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reflect the actual error structure in different situations; for V = Ip we are back
to the traditional model. After some algebra it can be seen that the information
matrix for direct effects under model (26) for a design d is given by

Cd = T ′
d(In ⊗ V −1/2)P⊥{(In ⊗ V −1/2)[P U F d]}(In ⊗ V −1/2)T d. (27)

As in Section 3.3, for the special case p = 2, the problem of finding an
optimal design under a correlated model with V = (1 − ρ)I + ρJ and given
ρ is equivalent to that of finding an optimal design under (3), where ρ is the
correlation coefficient between a pair of observations from the same subject. For
p > 2, finding optimal/efficient designs under the model (26) becomes simpli-
fied for the particular case t = 2. In this case, using the approximate theory
approach, Kushner (1997a) gave a set of necessary and sufficient conditions for
a dual balanced design to be universally optimal for direct effects. He also gave
an expression for computing the efficiency of a dual balanced design for direct
effects. Some authors have assumed that the errors within each subject follow
a stationary first order autoregressive process. This reflects the belief that the
correlation between the observations from different periods on the same subject
diminish with time. So, V is of the form

V =


1 ρ ρ2 . . . ρp−1

ρ 1 ρ . . . ρp−2

ρ2 ρ 1 . . . ρp−3

. . . . . . . . . . . . . . .
ρp−1 . . . ρ2 ρ 1

 , (28)

or a multiple of this. For model (26) with such a V , several authors (see
e.g., Matthews (1987), Kunert ( 1991) and Kushner (1997a)) have studied the
problem of obtaining efficient or optimal designs, mainly using the approximate
theory.

For example, if we consider the following two pairs of dual sequences

1 2 1 2
1 2 2 1
2 1 2 1

,

then, a design which allocates a proportion of ρ/(3ρ − 1) subjects to each of
the first two sequences and a proportion of (ρ − 1)/{2(3ρ − 1)} to each of
the last two sequences, is universally optimal for direct effects for all ρ ∈
(−1, 0]. Similarly, if we consider the following two pairs of dual sequences
(1, 2, 1)′, (2, 1, 2)′, (1, 2, 2)′, (2, 1, 1)′ then, a design which allocates a proportion
of ρ2/(3 + ρ)2 subjects to each of the first two sequences and a proportion of
(6ρ− ρ2 +9)/{2(3+ ρ2)} to each of the last two sequences, is optimal for direct
effects for all ρ ∈ (0, ρ1), where ρ1 ≈ 0.464 (Matthews, 1987). In practice, how-
ever, ρ is unknown. Taking cognizance of this fact, Matthews (1987) showed
that if we simply consider the four sequences given above and allocate each to
one subject, then the resulting design in Ω2,4,3 has an efficiency of at least 90%
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when −0.8 ≤ ρ ≤ 0.8. Thus for a large range of possible ρ values, this dual
balanced design is efficient, even when errors are correlated. He also gave tables
of efficiencies of several dual balanced designs with three and four periods and,
for several values of ρ. These tables can be used to choose an efficient design for
experimentation in situations where the parameter combinations are such that
an optimal design is not available. Kunert (1991) too identified efficient designs
and gave a method for constructing such efficient designs for any given value of
ρ and p. Again, these efficient designs are dual balanced designs.

For arbitrary t and p, Kushner (1997b, 1998) gave a general approximate
theory approach for identifying optimal designs under the model (26). Kunert
(1985), Gill (1992), Donev (1998), among others, studied optimality under the
exact theory approach and under various assumptions. Martin and Eccleston
(1998) studied variance balanced crossover designs which allow all elementary
contrasts of direct effects to be estimated with a constant variance and also
ensure the same for all elementary contrasts of carryover effects under the model
(26). They showed that such a design in Ωt,n,p can be constructed from an
orthogonal array of type I of strength two. Recall that a u × v matrix having
entries from a set of t ≥ 2 symbols is called a type I orthogonal array of strength
two, if in any 2 × v subarray, all t(t − 1) ordered 2-tuples without repetition
occur equally often. A type I orthogonal array of strength two will be denoted
by OAI(v, u, t, 2) and an example is given below.

Example 14. A type I orthogonal array OAI(6, 3, 3, 2) is as follows.

0 1 2 0 1 2
1 2 0 2 0 1
2 0 1 1 2 0

.

Kunert and Martin (2000) obtained a general result on the optimality of
designs given by an OAI(n, p, t, 2) under model (26). Their result is as follows.

Theorem 4. For t ≥ p > 2, let d∗ ∈ Ωt,n,p be a crossover design given by
a type I orthogonal array, OAI(n, p, t, 2), with rows of the array representing
the periods and the columns representing the subjects of d∗. Then under (26)
where V is any known positive definite matrix, d∗ is universally optimal for
the estimation of direct effects over the class of designs which are binary over
subjects.

Kunert and Martin (2000) also showed that these designs are quite efficient
even over the general class. Moreover, these designs often require fewer subjects
than that required by the optimum design obtained through an approximate
theory approach for the same number of treatments and periods.

Hedayat and Yan (2008) extended the self and mixed carryover model (21)
to one with correlated errors as in model (26). They considered two forms
of V , one where the errors within each subject follow a stationary first order
autoregressive process, as in (28) and another, where they follow a stationary
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first order moving average process. In the second case,

V = Ip + ρW , ρ ∈ (−1/2, 1/2), (29)

with W = ((wij)), wij = 1 if |i− j| = 1, and = 0 otherwise, 1 ≤ i, j ≤ p. They
studied the performance of the designs in Ωt,n,p given by an OAI(n, p, t, 2) and
proved the following theorem.

Theorem 5. For p = 3 and t ≥ 3, let d∗ ∈ Ωt,n,3 be a design given by a type
I orthogonal array, OAI(n, 3, t, 2). Then d∗ is universally optimal for direct
effects over Ωt,n,3 under a model with self and mixed carryover effects and with
dispersion structure of errors within each subject given by either
(a) V as in (28) and any ρ ∈ (−1, 1),or
(b) V as in (29) and any ρ ∈ (−1/2, 1/2).

Example 15. The array given in Example 14 may be looked upon as a design
in Ω3,6,3. By Theorem 5, this design is universally optimal for direct effects in
Ω3,6,3 under the model (6.26) with correlated errors, the error structure being
given by either (28) or (29) and the correlations as specified in (a) and (b) above.

7 Some other developments

7.1 Crossover trials for comparing treatments versus con-
trol

A problem that arises often in practice concerns the evaluation of the perfor-
mance of a number of test treatments vis-a-vis a standard treatment, called
control. The test treatments for instance, could be a number of new drugs,
whose efficacy has to be evaluated relative to an established drug, which acts
as the control treatment. For direct effects, the parametric function of interest
in the present context is the contrast vector

 τ0 − τ1
· · ·

τ0 − τt

 =


1 −1 0 · · · 0
1 0 −1 · · · 0
...
1 0 0 · · · −1

 τ = Bτ (say),

where τ0 is the direct effect of the control treatment and for 1 ≤ i ≤ t, τi is the
direct effect of the ith test treatment. The contrasts of interest for carryover
effects can be defined similarly. Let Ωt+1,n,p be the class of all crossover designs
involving t test treatments and a control. For a design d ∈ Ωt+1,n,p, if Id is the
information matrix for Bτ under the model (3), then it can be shown that

Id = Ī
′
CdĪ,

where Ī = (0t, It)
′ and Cd is as given by (8) under a design involving t + 1

treatments.
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For the test-control experiments, the A- and MV -optimality (see Chapter
3) criteria seem to be natural and are frequently used. A design d∗ ∈ Ωt+1,n,p is
A-optimal for Bτ if it minimizes trace(I−1

d ) over Ωt+1,n,p and, is MV -optimal
if it minimizes {max Var(τ̂0 − τ̂i) : 1 ≤ i ≤ t}, where for 1 ≤ i ≤ t, τ̂0 − τ̂i is
the best linear unbiased estimator of τ0 − τi. The problem of finding A- and
MV -optimal crossover designs has been addressed by several authors and we
describe below some of their results.

Majumdar (1988) showed that if t = c2 for some positive integer c and
d0 ∈ Ωc2+c,n,p is a strongly balanced uniform crossover design, then a design d∗

obtained from d0 by replacing each of the treatment labels c2+1, c2+2, . . . , c2+c,
by the control treatment label 0, keeping everything else unchanged, is an A- and
MV -optimal design for direct effects for comparing c2 test treatments with a
control, under the model (3). Following the approach of Majumdar (1988), Ting
(2002) also obtained additional optimal/efficient crossover design for comparing
several test treatments with a control. Hedayat and Zhao (1990) considered 2-
period designs for the problem and starting from designs as given by Theorem 2,
they obtained A- and MV -optimal designs when the number of test treatments
is of the form c2. Following Hedayat and Zhao (1990) for example, the design
in Example 16 below with 4 test treatments and a control is A- and MV -
optimal for direct effects over Ω4+1,18,2, where the control treatment is labeled
0. This design is obtained from design d13 in Example 12 by replacing the
treatment labels 5 and 6 by the control treatment label 0, keeping everything
else unchanged.

Example 16.

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 2 3 4 0 0 1 2 3 4 0 0 1 2 3 4 0 0

.

For some other results on 2-period designs for comparing test treatments with
a control, see Koch et al. (1989) and Hedayat and Zhao (1990).

The problem of finding optimal designs when 3 ≤ p ≤ t + 1, has been
addressed by Hedayat and Yang (2005, 2006), Yang and Park (2007) and Yang
and Stufken (2008). Hedayat and Yang (2005) defined a class of designs called
totally balanced test-control incomplete crossover designs and showed that if
such a design satisfies a certain additional condition, then it is A- and MV -
optimal over the subclass of designs for which (a) the control treatment appears
equally often in the p periods and (b) no treatment precedes itself. Hedayat and
Yang (2005) also gave construction procedures of these optimal designs. Two
such designs are given in the next example.

Example 17. Suppose t = 4 test treatments are to be compared with a control.
Then, the following design, obtained on replacing the treatment symbol 5 by
the control treatment label 0 in the uniform design shown in Example 9 is A-
and MV -optimal over the subclass of Ω4+1,10,5 satisfying (a) and (b) above:
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1 2 3 4 0 3 4 0 1 2
0 1 2 3 4 4 0 1 2 3
2 3 4 0 1 2 3 4 0 1
4 0 1 2 3 0 1 2 3 4
3 4 0 1 2 1 2 3 4 0

.

Example 18. Suppose t = 3 test treatments are to be compared with a control.
Then, the following design is isA- andMV -optimal over the subclass of Ω3+1,10,5

satisfying (a) and (b) above:

0 0 0 2 3 1 2 3 1
1 2 3 0 0 0 1 2 3
2 3 1 1 2 3 0 0 0

For some more results on optimal crossover designs for test-control com-
parisons, see Hedayat and Yang (2005, 2006). Yang and Park (2007) obtained
designs which are optimal or efficient over a wider class of competing designs,
but their results are only for 3-period designs. Yang and Stufken (2008) obtained
further efficient and optimal crossover designs under a wide variety of models
including (3), (20) and some variants of these. They also gave two algorithms
for generating highly efficient designs under several models.

Extending the results of Hedayat and Yang (2005) to the case of random
subject effects, Yan and Locke (2010) showed that under the model (3), totally
balanced test-control designs with p = 3, 4, 5 periods are highly efficient in the
class of designs in which the control treatment appears equally often in all
periods and no treatment is immediately preceded by itself.

Before concluding this section, we comment on the replication numbers of the
control vis-a-vis test treatments in the optimal designs studied here. Commonly,
under the absence of carryover effects, optimal designs for control versus test
treatments have the control replicated more often than the test treatments.
However, this is not necessarily true for crossover designs. For instance, in
Example 16 with only two periods, the overall replication of the control is less
than that of each test treatment but in the second period the control is replicated
twice as many times as each test treatment. Again, in Example 17, the control
treatment is replicated as often as each test treatment while in Example 18 the
control is replicated more often. This may be attributed to the versatility of the
approaches underlying the identification and construction of optimal designs;
see the references cited for further details.

7.2 Optimal designs when some subjects drop out

In practice, it may happen that a crossover trial cannot be performed for the
initially planned p periods for all the subjects. Such a situation arises, for ex-
ample, in clinical trials where certain patients drop out from the study before
the entire sequence of p treatments assigned to them can be completed. When
subjects drop out before the trial is completed, the final “implemented” design
is a truncated version of the originally “planned” design. If these two designs
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are denoted by dimp and dplan, respectively, then dimp may not remain opti-
mal/efficient even if dplan is an optimal design and in certain extreme cases,
dimp may not even remain connected. Therefore, while choosing dplan, the pos-
sibility of subjects dropping out has to be taken into consideration.

Low et al. (1999, 2003) suggested a computer intensive method to ascertain
the robustness of dplan with p > 2 when the subjects drop out at random. They
used the means and standard deviations of certain performance measures based
on the A- and MV -optimality criteria and used these to assess the performance
of dplan. This line of work was further enriched by Majumdar et al. (2008)
who started with a dplan which is a balanced uniform design in Ωt,µ1t,t and
explored the situation where all subjects remain in the experiment in the first
t−u periods, and then start dropping out at random, 1 ≤ u ≤ t−1. The design
consisting of the first t−u periods was called by them as minimal and denoted by
dmin. They obtained a sufficient condition for dmin, and hence dimp, to remain
connected, and also gave an upper bound on the maximum loss of efficiency
due to subject drop outs in the last u periods when dplan is a balanced uniform
design in Ωt,µ1t,t. The following example illustrates some of their findings.

Example 19. Consider the following balanced uniform designs for t = 3, 4, 5:

d14 ≡
1 2 3 2 3 1
3 1 2 3 1 2
2 3 1 1 2 3

, d15 ≡

4 1 2 3
1 2 3 4
3 4 1 2
2 3 4 1

,

d16 ≡

1 2 3 4 5 3 4 5 1 2
5 1 2 3 4 4 5 1 2 3
2 3 4 5 1 2 3 4 5 1
4 5 1 2 3 5 1 2 3 4
3 4 5 1 2 1 2 3 4 5

.

If these designs are used as dplan, then Majumdar et al. (2008) showed that if
no observation is taken in the last period, the dimp designs arising out of d14
and d16 remain connected but that arising out of d15 becomes disconnected. A
similar observation was made by Low et al. (1999) too.

Bose and Bagchi (2008) studied the optimality aspects of the designs dmin

when dplan belongs to a class of designs, say D1, consisting of locally balanced
crossover designs, introduced by Anderson and Preece (2002). Among other
things, they showed that a design dplan ∈ D1 is itself universally optimal for
direct and carryover effects over the binary subclass in Ωt,n,t and furthermore,
dmin obtained from a member of D1 remains optimal over the binary subclass
in Ωt,n,t−u when dmin consists of t− u ≥ 3 periods.

Example 20. For example, the design dmin obtained from the following design
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with t = 5 = p, n = 20 is optimal for t− u ≥ 3:

1 2 3 4 5 2 3 4 5 1 1 2 3 4 5 2 3 4 5 1
2 3 4 5 1 4 5 1 2 3 5 1 2 3 4 5 1 2 3 4
5 1 2 3 4 5 1 2 3 4 2 3 4 5 1 4 5 1 2 3
3 4 5 1 2 1 2 3 4 5 4 5 1 2 3 3 4 5 1 2
4 5 1 2 3 3 4 5 1 2 3 4 5 1 2 1 2 3 4 5

.

For some more results on efficient crossover designs when subjects drop out
at random, see Zhao and Majumdar (2012). In a recent paper, Zheng (2013)
obtained necessary and sufficient conditions for a crossover design to be univer-
sally optimal in approximate design theory in the presence of subject dropout.
He also provided an algorithm to derive efficient exact designs.

7.3 Optimal designs via approximate theory

Most of the results on optimal crossover designs described earlier concern exact
designs where each subject is allocated a sequence of treatments over the p
periods and thus, the number of subjects assigned to a treatment sequence is a
non-negative integer. It follows then that the proportion of subjects receiving a
treatment sequence is of the form u/n where 0 ≤ u ≤ n and n is the total number
of subjects. Because of the discreteness of u, this approach does not allow
the use of techniques based on calculus and one has to employ combinatorial
arguments to arrive at optimal designs. In contrast to the exact theory, one can
often achieve considerable simplicity by allowing the above stated proportions
to vary continuously over [0, 1], such that the sum of these proportions over
all treatment sequences is unity. As a result, one now has a continuous design
framework, which allows the development of an approximate design theory and
methods based on calculus can be employed to determine these in an optimal
fashion.

For t = 2 treatments, the approximate design theory was used by Laska et
al.(1983), Matthews (1987, 1990) and Kushner (1997a) and we have already
described some of the results obtained by these authors earlier in this paper. A
more detailed study of optimal crossover designs using the approximate theory
was made by Kushner (1997b, 1998), who obtained optimality results for direct
effects with arbitrary number of treatments under a correlated errors model as
given by (26). Note that the approach of Kushner (1997b) can be employed to
arrive at optimal designs under the uncorrelated errors model as well. Based
on the methods of Kushner (1997b), Bose and Shah (2005) obtained optimal
designs for the estimation of carryover effects under (3). A detailed exposition
of these methods based on approximate theory is beyond the scope of this paper
and an interested reader may refer to the above stated references or, Chapter 4
of Bose and Dey (2009) for more details.
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