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Abstract. Search for simple reliable estimators of the Gini index has

lead to numerous publications. Most of these papers focus on the bias

and the standard error of the estimator of the Gini index. In this paper,

we propose a simple estimator of Gini index based on U-statistics. A

simulation study shows that our estimator performs ’well’ compared to

other estimators in terms of bias and mean squared error.

1. Introduction

The celebrated Gini index is a widely used indicator of income inequality

in a population. The estimation problem of Gini index mainly concentrated

on finding plug-in estimators of the Gini index with reliable standard errors.

This is achieved by expressing Gini index in different forms (see Yitzhaki

(1998)) and then find the plug-in estimator with minimal distributional as-

sumptions. Hence, the discussion of the sampling variance of the Gini index

has produced vast amount of research in statistics and economics. Some

recent references of interest are Bhattacharya (2007), Xu (2007), Davidson

(2009), Peng (2011), Ceriani and Verme (2012) and Langel and Tille (2013).

Even though the inference on Gini index has been widely discussed, most

of the estimators are either complicated or the bias and standard error are

unreliable. Calculation of standard error is essential when confidence inter-

vals or tests are to be constructed for this coefficient. Ogwang (2000) have
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proposed the jackknife technique to get a large-sample approximation for

the standard error.

However, as the Gini coefficient can be obtained from a simple ordinary

least square regression based approach (see Ogwang (2000)), Giles (2004)

noted that the adoption of the jackknife technique is unnecessary, and the

construction of an appropriate standard error for the Gini coefficient is triv-

ial. In fact, Giles (2004) claimed that the ordinary least square standard

error from this regression could be used directly in order to compute the

standard error of the Gini index itself. See Ogwang (2004, 2006) and Giles

(2006) for further discussion and criticism on this point.

Modarres and Gastwirth (2006) hit a cautionary note on the use of Giles’s

approach, showing by simulation that the standard errors it produces are

quite inaccurate. Also they recommend to use the complex or computation-

ally intensive methods used previously. Based on sample empirical process

theory and the functional delta method, Bhattacharya (2007) has developed

techniques of asymptotic inference for Lorenz curves and the Gini index with

stratified and clustered survey data. Davidson (2009) noted that these ap-

proach produce a formula for the variance of an estimated Gini index, which

is very difficult to implement. Using delta method, Davidson (2009) showed

how to compute an asymptotically correct standard error for an estimated

Gini index. Davidson (2009) also discussed the use jackknife and bootstrap

method for bias correction and variance estimation and noted that bootstrap

can yield reasonably reliable inference compared to former.

The survey paper by Xu (2004) pointed out that there is a clear sepa-

ration between publications from the field of statistics and publications in

economic journals. He noted that the papers from one field are seldom cited

in the other, it seems evident that researchers from these two fields do not

necessarily read each others work. Xu (2007) has given overview of the use of

U-statistics in inference for the Gini index. Ceriani and Verme (2012) have

given an overview on the origin and development of Gini index and given
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complete review of all the expressions of the Gini index. Recently, Langel

and Tille (2013) have discussed the variance estimation of the Gini index

in historical point of view. They reviewed several linearization methods for

approximating the variance of a non-linear statistic.

The estimation of the Gini index based on U-statistic has long history

since Halmos (1946) and Hoeffding (1948). Hoeffding (1948) expressed the

Gini index in terms of two U-statistics and then studied the asymptotic

properties. This idea was adopted by Glasser (1962) and Gaswirth (1972)

for studying both the Lorenz curve and the Gini index. Other papers on

similar lines are due to Gail and Gastwirth (1978), Sandstrom et al. (1988),

Bishop et al. (1997, 1998, 2001), Xu and Osberg (2002). Zheng et al. (2000)

and Biewen (2002) considered statistical inference for the Gini index.

We discuss a non-parametric estimator of the Gini index using U-statistics

with motivation from the papers of Xu (2007), Davidson (2009) and Langel

and Tille (2013).

The rest of the paper is organized as follows. In Section 2, we express

the Gini index in terms of the expectation of maximum of pairs of random

variables. We use the expression to obtain a simple estimator of the Gini

index based on U-statistics. The asymptotic properties of the estimator are

studied in Section 3. In Section 4, we carry out a simulation study to find

the bias and the standard error of the proposed estimator and compare it

to the other estimators available in literature.

2. A simple estimator of Gini index

Gini index is usually defined either by the Lorenz curve or by covariance

identity involving cumulative distribution function. Let X be a random

variable representing the income of a member of the population under study,

clearly 0 < X < ∞. Let F be the absolutely continuous cumulative

distribution function of X. Assume that X has finite mean µ, given by
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µ =
∫∞
0 ydF (y). The Lorenz curve denoted by L(.) is defined by the equa-

tion

L(F (x)) =
1

µ

∫ x

0
ydF (y). (1)

Then Gini index is defined as

G = 2

∫ 1

0
(z − L(z)))dz

= 1− 2

∫ 1

0
L(z)dz. (2)

In fact, from equation (2), it can be seen that the Gini index is the twice

the area between the Lorenz curve and egalitarian line. By simple algebra,

we can show that the expression given in (2) is same as

G =
2

µ

∫ ∞

0

∫ x

0
yF (y)dF (y)− 1.

One can also write the above expression as follows:

G =
2

µ
Cov(X,F (X)).

That is, for given F , the Gini index is simply the covariance between X and

F (X). We use this form for finding a simple estimator of Gini index. The

choice of an estimator is based on the research objective. If one is mainly

interested in studying the stochastic dominance, then the natural choice is

the area based formula (Atkinson and Bourguignon (2000)). However, if the

interest lies in the decomposition of the population Gini, then it is more

convenient to use the covariance based estimator. Consider

G =
2

µ
Cov(X,F (X))

=
2

µ
E((X − µ)F (X)))

=
2

µ
E(XF (X))− 1

=
2

µ

∫ ∞

0
yF (y)dF (y)− 1. (3)
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Let X1, X2, ..., Xn be n independent and identical copies of X. Then the

distribution of X(n) = max(X1, X2, ..., Xn), is given by

FX(n)
(x) = (F (x))n.

Hence

E(X(n)) = n

∫ ∞

0
y(F (y))n−1dF (y).

In Particular, when n = 2

E(X(2)) = 2

∫ ∞

0
yF (y)dF (y). (4)

Substituting (4) in (3), we find

G =
E(X(2))

µ
− 1. (5)

The last expression is used to find a simple reliable estimator of the Gini in-

dex. Our approach is based on U-statistics. For a recent review on inference

of Gini index based on U-statistics see Xu (2007).

Let X1, X2, ..., Xn be i.i.d. random variables from F . Then, U1 =

1
n

∑n
i=1Xi is an unbiased and a consistent estimator of µ.

Consider the symmetric kernel h(x1, x2) = max(x1, x2). Then a U-

statistic estimate of E(X(2)) is given by

U2 =
1(
n
2

) ∑
1≤i<j≤n

max(Xi, Xj).

Therefore a natural estimator of G is

Ĝ =
U2

U1
− 1. (6)

After simplification, we obtain

Ĝ =
2
∑n−1

i=1 ix(i+1)

(n− 1)
∑n

i=1Xi
− 1, (7)

whereX(i), i = 1, 2, ...n, is the ith order statistics based on i.i.d. observations

X1, X2, ..., Xn.
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Remark 2.1. The expression for the estimator given by (7) is used for

calculation purposes. The expression (6) is convenient for studying the as-

ymptotic properties of the estimator of Gini index.

Remark 2.2. When the mean income of the population is known, an unbi-

ased estimator of the Gini index G is given by

Ĝu =
U2

µ
− 1.

3. Asymptotic Distribution of the estimator of Gini index

The proposed estimator of the Gini index given in (6) is based on U-

statistics. Hence, we use the asymptotic theory of U-statistics (Lee (1990))

to discuss the limiting distribution of Ĝ.

Theorem 3.1. The distribution of
√
n(U2−E(X(2)), as n → ∞, is Normal

with mean zero and variance 4σ2
1 with

σ2
1 = (A)− (B)2, (8)

where

A =

∫ ∞

0
x2F 2(x)dF (x)− 2

∫ ∞

0
xF (x)

{∫ x

0
ydF (y)

}
dF (x)

+

∫ ∞

0

{∫ x

0
ydF (y)

}2
dF (x).

B =

∫ ∞

0
xF (x)dF (x)−

∫ ∞

0

{∫ x

0
ydF (y)

}
dF (x).

Proof: We have

σ2
1 = V ar

(
h1(X,X2)

)
,

where h1(x,X2) = E(max(x,X2)).
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Consider

h1(x, Y ) = E(h(x, Y )) = E(xI(Y < x) + Y I(Y > x))

= xF (x) +

∫ ∞

x
ydF (y)

= xF (x) + µ−
∫ x

0
ydF (y).

V ar(h1(X)) = V
(
XF (X)−

∫ X

0
ydF (y)

)
= V (XF (X)− k(X))

= E(XF (X)− k(X))2 −E2(XF (X)− k(X)), (9)

where k(x) =
∫ x
0 ydF (y). The first term in the equation (9) can be expanded

as

E(XF (X)−k(X))2 = E(X2F 2(X))−2E(XF (X)k(X))+E(k2(X)). (10)

Consider

E(X2F 2(X)) =

∫ ∞

0
x2F 2(x)dF (x) (11)

E(XF (X)k(X)) =

∫ ∞

0
xF (x)

{∫ x

0
ydF (y)

}
dF (x) (12)

and

E(k2(X)) =

∫ ∞

0

{∫ x

0
ydF (y)

}2
dF (x). (13)

Substituting (11), (12) and (13) in (10), we obtain

E(XF (X)− k(X))2 =

∫ ∞

0
x2F 2(x)dF (x)

−2

∫ ∞

0
xF (x)

{∫ x

0
ydF (y)

}
dF (x)

+

∫ ∞

0

{∫ x

0
ydF (y)

}2
dF (x). (A)
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Similarly,

E(XF (X)− k(X)) =

∫ ∞

0
xF (x)dF (x)−

∫ ∞

0

{∫ x

0
ydF (y)

}
dF (x) (B)

Inserting (A) and (B) in (9), we find

σ2
1 = V ar(h1(X)) = [(A)− (B)2].

Then the result follows using the central limit Theorem of U-statistics.

Corollary 3.1.

√
n

µ
(U2 − E(X(2))) → N

(
0,

4σ2
1

µ2

)
as n → ∞. (14)

The following lemma is useful for proving the asymptotic normality of Ĝ.

Lemma 3.1. Suppose that Vn converges to V in distribution as n → ∞ and

E(Wn − Vn)
2 → 0 as n → ∞. Then Wn converges in distribution to V as

n → ∞.

Theorem 3.2.
√
n(Ĝ − G) → N

(
0, 4

σ2
1

µ2

)
as n → ∞, provided P (U1 =

0) = 0.

Proof: Let Vn =
√
n
µ (U2 − E(X(2))) and Wn =

√
n(Ĝ − G). Note that

U1 is a consistent estimator of µ. The proof is an immediate consequence of

Lemma 3.1 and Theorem 3.1.

Theorem 3.3. σ̂2
1 = Â − B̂2, where Â and B̂ as given in equations (15)

and (16) below are consistent estimators of A and B, respectively.

Proof: (A) can be written as

1

3

∫ ∞

0
x2dF 3(x)−

∫ ∞

0
x
{∫ x

0
ydF (y)

}
dF 2(x) +

∫ ∞

0

{∫ x

0
ydF (y)

}2
dF (x).
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Hence, a consistent estimator of A is

Â =
1

3

n∑
i=1

x2(i)

[
(
i

n
)3 − (

i− 1

n
)3
]
−

n∑
j=1

{ 1

n

j∑
i=1

x(i)

}
x(j)

[
(
j

n
)2 − (

j − 1

n
)2
]

+
1

n

n∑
l=1

{ 1

n

l∑
i=1

x(i)

}{ 1

n

l∑
j=1

x(j)

}

=
1

3n3

n∑
i=1

x2(i)(3i
2 − 3i+ 1)− 1

n3

n∑
j=1

{ j∑
i=1

x(i)

}
x(j)(2j − 1)

+
1

n3

n∑
l=1

{ l∑
i=1

x(i)

}{ l∑
j=1

x(j)

}
. (15)

A consistent estimator of B is given by

B̂ =
1

2

n∑
i=1

x(i)

[
(
i

n
)2 − (

i− 1

n
)2
]
− 1

n2

n∑
j=1

{ j∑
i=1

x(i)

}

=
1

2n2

n∑
i=1

x(i)(2i− 1)− 1

n2

n∑
j=1

{ j∑
i=1

x(i)

}
. (16)

(17)

Remark 3.1. As n → ∞,
√
n(Ĝ−G) is a zero mean random variable, hence

Ĝ is asymptotically unbiased for G.

Remark 3.2. It is easy to see that Ĝ is a consistent estimator of G.

In the next section we will compare these estimates in term of bias and mean

square error (MSE) and noted that our estimate produce less bias comparing

to other estimates available in literature.

4. Simulation

In this section, we carried out a simulation study to evaluate the performance

of the estimator. We compare our estimator with that proposed by Davidson

(2009) in terms of bias and MSE. As Davidson (2009) estimator outplays

the other estimator in performance, we compare our estimator only with

Davidson’s estimator. The estimator obtained by Davidson (2009) is given
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by

ĜD =
2

n2µ̂

n∑
i=1

x(i)(i−
1

2
)− 1, (18)

where µ̂ = 1
n

∑n
i=1 xi and x(i), i = 1, 2, ...n, are the ith order statistics. Note

that the above expression is equivalent to

ĜD =
2
∑n

i=1 ix(i)

n
∑n

i=1 xi
− (n+ 1)

n
, (19)

and Langel and Tille (2013) pointed out that the expression (15) can be

found in Sen (1973).

In our study, we first generate random sample from the exponential dis-

tribution with cumulative distribution function F (x) = 1− exp(−x), x ≥ 0.

Note that the Gini index for this distribution is 0.5. To find the bias and the

MSE, 10000 estimate of Gini index is obtained by taking the sample size 10,

25, 50, 75 and 100. The bias of our estimator when the sample size is 10 is

0.0009882803 and that of Davidson is -0.04911055. The MSE of our estima-

tor is 0.009281472 and that of Davidson is 0.009929047. When the sample

size is 100, the bias and MSE of our estimator are given by 0.0001007844 and

0.0008533806 respectively. The bias of Davidson estimator is -0.004900223

while the MSE is 0.0008604006. The similar behaviour shows in the case

n = 25, 50 and 75. It is interesting to see that the bias and MSE are less in

each of these cases so that our estimator perform better. The comparison

is given in Table 1.

Table 1. Bias and MSE of estimate of Gini; Exponential distribution

Sample size Bias MSE Bias(Davidson) MSE(Davidson)

n=10 0.001364229 0.009411404 -0.04877219 0.01000046

n=25 0.001140615 0.003541781 -0.01890501 0.003620306

n=50 -0.0004959606 0.001677818 -0.01048604 0.001721097

n=75 0.0004012898 0.001132957 -0.006627073 0.001146863

n=100 0.0001007844 0.0008533806 -0.004900223 0.0008604006

The Pareto distribution is considered as the best model for income data as

it capture heavy tail behaviour. For our study consider Pareto distribution

with cumulative distribution function F (x) = 1−xλ, x ≥ 1, λ > 1. The Gini
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index is 1/(2λ − 1). For different values of λ and for n = 10 and n = 100,

the MSE and bias are given in Table 2 and 3. The bias of our estimator is

less to that of Davidson estimator. For small values of λ MSE is also less.

Table 2. Bias and MSE of estimate of Gini; Pareto distribution

Value of λ Bias MSE Bias (Davidson) MSE(Davidson)

20 -0.0002880765 9.556528e-05 -0.002823371 8.531208e-05

10 -0.0007268856 0.0004351083 -0.005917355 0.0003870248

5 -0.003397838 0.002143008 -0.01416917 0.00192725

4 -0.006087871 0.003556633 -0.0197648 0.003241499

3 -0.01275642 0.007485633 -0.03148078 0.006922594

2 -0.04731666 0.01847661 -0.07591833 0.01891616

1.5 -0.1178946 0.04079824 -0.1561052 0.04615709

Table 3. Bias and MSE of estimate of Gini; Pareto distribution

Value of λ Bias MSE Bias (Davidson) MSE(Davidson)

20 -8.229567e-05 9.671476e-06 -0.000337883 9.586541e-06

10 -4.284207e-05 4.400358e-05 -0.0005687294 4.344956e-05

5 -0.0004339889 0.0002454435 -0.00154076 0.0002427485

4 -0.0008790373 0.000456129 -0.002298818 0.0004515792

3 -0.002024038 0.001153597 -0.004003797 0.001142656

2 -0.01104456 0.004570213 -0.01426745 0.004563271

1.5 -0.04198776 0.01207977 -0.04656788 0.01228006

Finally we compare our estimator when the sample came from lognormal

distribution. We assume the mean is zero and the comparison is done for

σ = 0.5, 1, 1.5. Corresponds to these values of σ, the true Gini index are

0.2763, 0.5205 and 0.7112. The Table 4 and 5 gives the comparison of bias

Table 4. Bias and MSE of estimate of Gini; Lognormal distribution

Value of σ Bias MSE Bias (Davidson) MSE(Davidson)

0.5 -0.003421048 0.004292636 -0.03070894 0.004410595

1 0.02509187 0.01302708 -0.07463268 0.015612

1.5 -0.06126468 0.01994048 -0.1262582 0.02905271

and MSE for n = 10 and n = 100 respectively. In this case also our estimator

performs well in terms of bias and MSE.

Table 5. Bias and MSE of estimate of Gini; Lognormal distribution

Value of σ Bias MSE Bias (Davidson) MSE(Davidson)

0.5 -0.0004200164 0.0004135257 -0.003178816 0.0004152285

1 -0.003065953 0.001664766 -0.008240294 0.001690326

1.5 -0.01240101 0.003062635 -0.019389 0.003226897
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5. Conclusion

In this paper we find a new expression for the Gini index in terms of the

expectation of maximum of paired observations. This leads us to a simple

estimator of the Gini index based on U-statistics. The theory of U-statistics

is used to prove that the proposed estimator is consistent and asymptotically

normal. We obtained an expression for asymptotic variance of the estimator

of the Gini index. This asymptotic variance can easily be estimated. The

proposed estimator has less bias and MSE compared to the other estimators

available in literature.
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