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Abstract. This paper deals with symmetric random matrices whose upper di-
agonal entries are obtained from a linear random field with heavy tailed noise. It
is shown that the maximum eigenvalue and the spectral radius of such a random
matrix with dependent entries converge to the Frechét distribution after appro-
priate scaling. This extends a seminal result of Soshnikov (2004) when the tail
index is strictly less than one.

1. Introduction

In this article, we study the asymptotic behaviour of the maximum eigenvalue of
an n× n symmetric random matrix An, whose upper diagonal entries are given by
the linear random field

(1.1) Yk,l :=
∞∑
i=0

∞∑
j=0

cijXi+k,j+l, 1 ≤ k ≤ l ≤ n,

where {ci,j}i,j≥0 is a sequence of real numbers satisfying

(1.2)
∞∑
i=0

∞∑
j=0

|ci,j|δ < ∞

for some δ ∈ (0, α), and {Xi,j, i, j ∈ N} is a family of i.i.d. positive random variables
with distribution function F satisfying

(1.3) 1− F (x) = L(x)x−α, x > 0

for some slowly varying function L and for some 0 < α < 1. It is easy to check,
following the arguments of Cline (1983) (see also Davis and Resnick (1985)), that
(1.2) ensures the almost sure convergence of the series in (1.1).

Random matrices with heavy tailed entries have generated considerable inter-
est in the recent years; see Soshnikov (2004), Ben Arous and Guionnet (2008),
Belinschi et al. (2009), Auffinger et al. (2009), Davis et al. (2011), Bordenave et al.
(2011). Soshnikov (2004) investigated the edge behavior of Wigner matrices with
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i.i.d. heavy tailed upper diagonal entries whose distribution function F satisfies
(1.3) for some 0 < α < 2. It was established that in this case, the largest eigenvalue
converges to Frechét distribution after scaling by

(1.4) bn := inf

{
x : 1− F (x) ≤ 2

n(n+ 1)

}
.

This result was later extended by Auffinger et al. (2009) to the case 2 ≤ α < 4 with
centered entries. One of the important features of the proof of the above results
is that eigenvalues behave similar to the largest entries of the matrix in absolute
value, and as a consequence, the point process of the normalized positive eigenvalues
converges to a Poisson point process.

This edge behavior is drastically different from the case of α > 4 which is supposed
to be governed by the Tracy-Widom law; see, for example, Lee and Yin (2013). For
a relaxation of identically distributed condition and further results on edge univer-
sality see Bourgade et al. (2013). Few similar results are also known for sample
covariance matrices; see, for example, Yin et al. (1988) and Auffinger et al. (2009).
Davis et al. (2011) studied the edge behavior for sample covariance matrix XXT ,
where the rows of X are independent copies of a linear process with heavy tailed
noise. Dependence across both rows and columns have also been investigated in
the context of bulk asymptotics of sample covariance matrices whose entries have
lighter tails; see Hachem et al. (2005) and Pfaffel and Schlemm (2012). For a review
of the existing literature on random matrices, we refer the readers to the articles
Ben Arous and Guionnet (2011), Erdős and Yau (2012).

Consider the Hilbert space l2 := {(an : n ∈ Z) ⊂ R :
∑

n∈Z a
2
n < ∞}. We shall

define an operator T on l2 as follows. For i, j ∈ Z, let

(1.5) T (i, j) :=

 ci+1,j−1, i ≤ −1, j ≥ 1 ,
cj+1,i−1, j ≤ −1, i ≥ 1 ,
0, otherwise .

T acts on l2 in the natural way by (Ta)i :=
∑∞

j=−∞ T (i, j)aj, i ∈ Z . By the

Cauchy-Schwarz inequality, the operator norm ‖T‖ of T can be bounded above

by
(
2
∑∞

i=0

∑∞
j=0 c

2
i,j

)1/2
, which is finite because of (1.2). Let ρ(An) and λmax(An)

denote the spectral radius (same as the spectral norm in this case) and the max-
imum eigenvalue of An, respectively. With these notations, we can now state the
main result of this paper.

Theorem 1.1. Let An be as above and bn be as in (1.4), then for all x > 0,

lim
n→∞

P
(
λmax(An) ≤ ‖T‖ bnx

)
= lim

n→∞
P
(
ρ(An) ≤ ‖T‖ bnx

)
= e−x−α

.

Note that we partially recover Theorem 1.1 of Soshnikov (2004) as a consequence
of the above result by choosing cij = 1 when i = j and cij = 0 when i 6= j. However
our methods are limited to 0 < α < 1 and the case 1 ≤ α < 4 is still open. We
would also like to point that in general, it is very difficult to calculate ‖T‖. In the
following special case, it can be computed using Lemma 3.2 below.

Corollary 1.2. Let An, bn be as in Theorem 1.1 with cij = αiβj, where {αi}i≥0 and
{βj}j≥0 satisfy the summability conditions

∑∞
i=0 |αi|δ < ∞ and

∑∞
j=0 |βj|δ < ∞,
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respectively, for some δ ∈ (0, α). Then for all x > 0,

lim
n→∞

P
(
λmax(An) ≤ ‖α‖2‖β‖2 bnx

)
= lim

n→∞
P
(
ρ(An) ≤ ‖α‖2‖β‖2 bnx

)
= e−x−α

,

where ‖ · ‖2 denotes the `2 norm.

The setup of Davis et al. (2011) can be thought of as a special case of the above
example (except that their random matrix X is not necessarily symmetric) with
only nonzero αi being α0 = 1. They also obtained a similar constant in the limit.

In the rest of the paper, we prove Theorem 1.1. In Section 2, we deal with the
finite linear random fields and then using a truncation argument pass on to the
infinite case in Section 3. The novel technique used in this paper is the well-known
fact from linear algebra that for any matrix norm |||·|||,

(1.6) ρ(A) = lim
r→∞

∣∣∣∣∣∣A2r
∣∣∣∣∣∣ 1

2r .

In this paper, for any n× n matrix M , the (i, j)th entry is denoted by M(i, j) and
the matrix norms ‖·‖∞ and max(·) are defined by ‖M‖∞ = max1≤i≤n

∑n
j=1 |M(i, j)|

and max (M) = max1≤i,j≤n |M(i, j)|, respectively.

2. Finite linear random field

In this section, we first show an upper bound of the spectral radius of An using
(1.6) and by splitting the matrix A2r

n into two parts, one having entries only with the
2rth powers and the other with lower order terms. The matrix with lower order terms
has negligible contribution and the main contribution comes from the 2rth powers.
A careful analysis of the coefficient matrices leads to the upper bound. Then we
prove a lower bound of maximum eigenvalue using the Rayleigh’s characterisation.

For each N ≥ 1, let A
(N)
n be the n × n symmetric matrix whose upper diagonal

elements are given by the finite linear random field

(2.1) Y
(N)
k,l :=

N∑
i=0

N∑
j=0

cijXi+k,j+l, 1 ≤ k ≤ l ≤ n,

where {Xi,j, i, j ∈ N} and {cij}i,j≥0 are as in Section 1 and CN be the matrix

(2.2) CN :=

[
0 ĈN

Ĉ T
N 0

]
,

where ĈN is the (N + 1)× (N + 1) matrix whose (i, j)th entry is cN+1−i,N+1−j.

2.1. Upper bound for spectral radius. Our first lemma gives an upper bound for

the spectral radius of A
(N)
n and is the most crucial step towards proving Theorem 1.1.

Lemma 2.1.

(2.3) lim
n→∞

P

(
ρ(A

(N)
n )

max1≤k,l≤n |Xk,l|
> ρ(CN) + ε

)
= 0 ,

for all ε > 0.
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Proof. Fix an integer r ≥ 1. Write
(
A

(N)
n

)2r
= Un + Vn, where Un contains the

terms X2r
k,l with their coefficients and Vn consists of the cross terms. For all n > 2N ,

we shall decompose Un further into the sum of two matrices Wn and Zn, show that
Wn gives the correct upper bound and ‖Zn‖∞, ‖Vn‖∞ have negligible contributions.
These steps are elaborated below.

Step 1: Decomposition of Un.

Fix n > 2N . Let k, l be integers such that N < k < l−N ≤ n−N and T̃ be the
set of all pairs (k, l) satisfying these inequalities. Define C̃U to be the n× n matrix
whose (N + 1) × (N + 1) submatrix formed by the (l − N)th, (l − N + 1)th, . . . ,

lth rows and (k −N)th, (k −N + 1)th, . . . , kth columns is ĈN defined as above and
the other entries are all zero. The condition k < l − N ensures that C̃U is upper
triangular with diagonal entries zero. Set C̃k,l := C̃U +C̃T

U . Thus, C̃k,l is a symmetric

matrix, and the coefficient of X2r
k,l in the (i, j)th entry of Un equals C̃2r

k,l(i, j). It is

easy to see that C̃2r
k,l(i, j) is zero unless (i, j) belongs to either [k −N, k]× [l − n, l]

or [l − N, l] × [k − n, k]. Write Un = Wn + Zn , where Wn contains the entry X2r
k,l

(with its coefficient) if and only if (k, l) ∈ T̃ and the remaining entries are in Zn.

Step 2: Bound for ‖Wn‖∞.

Define an n×n symmetric matrix Bn whose (u, v)th upper diagonal entry is X2r
u,v.

Fix 1 ≤ i, j ≤ n. Clearly, if (k, l) /∈ Sij, the union of [i, i + N ] × [j, j + N ] and
[j, j +N ]× [i, i+N ], then the coefficient of X2r

k,l in Wn(i, j) is zero. Thus,

(2.4) |Wn(i, j)| ≤
∑

(k,l)∈Sij∩T̃

C̃2r
k,l(i, j)X

2r
k,l ≤ max(C2r

N )
∑

(k,l)∈Sij∩T̃

X2r
k,l .

Using the above inequality, we have that for each i,

n∑
j=i

|Wn(i, j)| ≤ max(C2r
N )

∑
(k,l)∈T̃

#{j ∈ [i, n] : (k, l) ∈ Sij}Bn(k, l).

Since (k, l) ∈ Sij ∩ T̃ and i ≤ j yield k−N ≤ i ≤ k < l−N ≤ j ≤ l ≤ n, the above
upper bound can be further bounded by

≤ max(C2r
N )

i+N∑
k=i

n∑
l=1

#{j ∈ [i, n] : (k, l) ∈ Sij}Bn(k, l) ≤ (N + 1)2max(C2r
N )‖Bn‖∞ .

Similarly, using the symmetry of Bn,
∑i−1

j=1 |Wn(i, j)| can also be bounded by the

same quantity. Thus, we have ‖Wn‖∞ ≤ 2(N + 1)2max(C2r
N )‖Bn‖∞, from which

using equation (34) in Soshnikov (2004) it follows that

lim
n→∞

P

(
‖Wn‖∞

max1≤k≤l≤nX2r
k,l

> 2(N + 1)2 max(C2r) + ε

)
= 0
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for all ε > 0.

Step 3: Negligibility of ‖Zn‖∞.

Let us now try to upper bound ‖Zn‖∞. For all 0 ≤ k ≤ N , let C̄k be a symmetric
(k+N+1)×(k+N+1) matrix whose (i, j)th upper triangular entry is cN+1−i,N+k+1−j

whenever 1 ≤ i ≤ N + 1 and k + 1 ≤ j ≤ N + k + 1 (with i ≤ j) and other upper
triangular entries are all zero. By a reasoning similar to the proof of (2.4), it follows
that

|Zn(i, j)| ≤ max
0≤k≤N

max(C̄k)
∑

(u,v)∈T̃ c

X2r
u,v ,

for all 1 ≤ i, j ≤ n, where T̃ c := {(u, v) : 1 ≤ u ≤ v ≤ n +N} \ T̃ . It is easy to see

that the cardinality of T̃ c and the number of non-zero entries of Zn are both O(n).
Therefore, there exists a constant K independent of n such that

‖Zn‖∞ ≤
n∑

i=1

n∑
j=1

|Zn(i, j)| ≤ Kn
∑

(u,v)∈T̃ c

X2r
u,v,

which implies ‖Zn‖∞ = op
(
n4r/α

)
.

Step 4: Negligibility of ‖Vn‖∞.

We shall show that

(2.5) P [‖Vn‖∞ > b2rn ε] → 0 as n → ∞.

To this end, note that a typical entry of Vn has the following form:

V (k, l) =

n∑′

i1,i2,··· ,i2r−1=1

N∑′

m1,···m2r=0

n1,··· ,n2r=0

2r∏
i=1

cmi,ni
Xm1+k,n1+i1 · · ·Xm2r+i2r−1,n2r+l,

where
∑′

denotes that the sum is over all those indices which do not give 2r-th

power. To simplify the notations we denote by I the set of indices 1 ≤ l ≤ n, {ik, 1 ≤
k ≤ 2r} and {mi, ni}1≤i≤2r such that ik ∈ {1, · · · , n} and mi, ni ∈ {0, · · · , N} with
the constraint that (m1+k, n1+ i1) 6= · · · 6= (m2r+ i2r−1, n2r+ l). Also for any index
j ∈ I we denote the product of random variables Xm1+k,n1+i1 · · ·Xm2r+i2r−1,n2r+l by

Zj and product of coefficients
∏2r

i=1 cmi,ni
by cj.

Now note that for any u ∈ I, if {Yi, 1 ≤ i ≤ 2r} are i.i.d. random variables with

regularly varying tail of index −α then, Zu
d
= Y l1

1 · · ·Y l2r
2r for some 0 ≤ li ≤ 2r − 1

satisfying l1 + l2 + · · ·+ l2r = 2r. It is easy to see that Zu is regularly varying with
index −α/k for some 1 ≤ k ≤ 2r − 1. Now partition I into equivalence classes Ck

such that for any u ∈ Ck, Zu is regularly varying −α/k. Also note that there exists
constants Lk such that, |Ck | ≤ LkN

4rn2r. As
∑n

l=1 |V (k, l)| ≤
∑

u∈I |cu|Zu, it is

enough to show that for some δ > 0, we have P
[∑

u∈I |cu|Zu > b2rn η
]
≤ Cn−(1+δ),

where C does not depend on k.
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For k ≥ 2 and r ≥ 2 denote

βα,r(k) :=
k(4r − (1 + 2r)α)

α(k − α)
> 0.

Let δ1 = 4r/α if r = 1 and also for k = 1. For k ≥ 2 choose δk ∈ (0, βα,r(k)).

P

[∑
u∈Ck

|cu|Zu > b2rn η

]
≤ P

[∑
u∈Ck

|cu||Zu|I(|Zu ≤ nδk) > b2rn ε

]

+ P

[
max
u∈Ck

Zu > nδk

]
=: P1 + P2.

First we bound P2. Choose κ such that κ > (2r+1
δk

∧ α
k
).

P

[
max
u∈Ck

|Zu| > nδk

]
≤
∑
u∈Ck

P
[
|Zu| > nδk

]
≤ n−δkκ

∑
u∈Ck

E[|Zu|κ]

≤ lkn
2r−δkκ = lkn

−(1+ε1).

Where we have used that |Ck | ≤ LkN
4rn2r and lk = LkN

4r. Also note that
ε1 = δkκ− 2r − 1 > 0.

Now to bound P1 choose γ > (1 ∧ α
k
). Using Hölder’s inequality we get,

P

[∑
u∈Ck

|cu||Zu|I(|Zu| ≤ nδk) > b2rn ε

]

≤ P

[∑
u∈Ck

|cu|γ|Zu|γI(|Zu| ≤ nδk) > K1b
2γr
n n2r(γ−1)

]
≤ K2b

−2γr
n n−2rγE[|Zu|γI(|Zu| ≤ nδk)].

By Karamata’s theorem (see Theorem 2.1 in Resnick (2007)), we get,

E[|Zu|γI(|Zu| ≤ nδk)] ∼ K3n
γδkn− δkα

k .

As b2γrn ∼ n
4γr
α L1(n) for some slowly varying function L1 we have

b−2γr
n n−2rγE[|Zi|γI(|Zi| ≤ nδk)] ∼ n− 4γr

α
−2rγ+γδk−

δkα

k Ll(n).

Now choosing appropriately γ and using the fact that α < 1 it easily follows that,
P1 ≤ l′jn

−(1+ε2) for some ε2 > 0. Note that the constants only depend on ε,N, r. So

there exists C independent of k such that, P
[∑

u∈I |cu|Zu > b2rn η
]
≤ Cn−(1+δ) This

establishes (2.5).

Step 5: Combine Steps 1 - 4.

Combining the above steps, we get that there is K > 0 such that for all r ≥ 1
and ε > 0,

lim
n→∞

P

(
ρ(An)

max1≤k≤l≤n |Xk,l|
> K1/r max(C2r)1/2r + ε

)
= 0,
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from which (2.3) follows using (1.6). �

2.2. Lower bound for maximum eigenvalue. Let us now proceed to lower

bound λmax(A
(N)
n ).

Lemma 2.2.

lim
n→∞

P

(
λmax(A

(N)
n )

|Xi∗,j∗|
≤ λmax(CN)− ε

)
= 0 .

Proof. Let (i∗, j∗) := argmax1≤i≤j≤n |Xi,j| and En := {(i∗, j∗) ∈ T̃}, where T̃ is as
defined in Step 1 of the proof of Lemma 2.1. It’s easy to see that

(2.6) lim
n→∞

P (En) = 1 .

Let v ∈ Rn be the unit vector whose (i∗ − N)th, (i∗ − N + 1)th, . . . , i∗th and (j∗ −
N)th, (j∗−N+1)th, . . . , j∗th coordinates are 1/

√
2(N + 1) and the other coordinates

are zero. Now it is easy to see that on En we have,∣∣vTA(N)
n v − |Xi∗,j∗ |vTCNv

∣∣ ≤ ∑
(k,l)∈([i∗−N,i∗]×[j∗−N,j∗])\{(i∗,j∗)}

|ukl||Xk,l| ,

where uk,l are fixed numbers independent of n. Thus by Rayleigh’s characterization,
we have that for fixed ε > 0,

P

(
λmax(A

(N)
n )

|Xi∗,j∗ |
≤ λmax(CN)− ε

)

≤ P (Ec
n) + P

 ∑
(k,l)∈([i∗−N,i∗]×[j∗−N,j∗])\{(i∗,j∗)}

|ukl||Xk,l| > ε|Xi∗,j∗|

 ,

from which Lemma 2.2 follows using (2.6) since for each (k, l) in [i∗ −N, i∗]× [j∗ −
N, j∗]), the ratio Xk,l/Xi∗,j∗ converges to zero in probability. �

3. Infinite linear random field

Let {Xi,j} be as before, that is, regularly varying −α with α ∈ (0, 1) and it is
easy to see that bn satisfies

n2P (Xi,j > bnx) → x−α.

Note that bn = n
2
α L̃(n) for slowly varying function L̃(n). The following lemma

asserts that if the truncation level of the linear random field goes to infinity then
one can approximate the original matrix An with the matrix with truncated entries.

Lemma 3.1. Let A
(N)
n and An are n × n symmetric matrices with entries given

by (2.1) and (1.1), respectively. Then the following holds,

lim
N→∞

lim sup
n→∞

P
(
|ρ(An)− ρ(A(N)

n )| > bnη
)
= 0,

and,

lim
N→∞

lim sup
n→∞

P
(
|λmax(An)− λmax(A

(N)
n )| > bnη

)
= 0.
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Proof. It is well known that∣∣λmax(An)− λmax(A
(N)
n )

∣∣ ≤ ∣∣ρ(An)− ρ(A(N)
n )

∣∣ ≤ 2 max
1≤k≤n

n∑
l=k

|Yk,l − Y
(N)
k,l |.

Therefore, it is enough to show the following two limits

(3.1) lim
N→∞

lim sup
n→∞

n∑
k=1

P

(
n∑

l=k

N∑
i=0

∞∑
j=N+1

|ci,j|Xi+k,j+l > bn
η

4

)
= 0,

and

(3.2) lim
N→∞

lim sup
n→∞

n∑
k=1

P

(
n∑

l=k

∞∑
i=N+1

∞∑
j=0

|ci,j|Xi+k,j+l > bn
η

4

)
= 0.

To establish (3.1), note that the expression inside the limits can be bounded by

n∑
k=1

n∑
l=k

N∑
i=0

∞∑
j=N+1

P
(
|ci,j|Xi+k,j+l > bn

η

4

)

+
n∑

k=1

n∑
l=k

N∑
i=0

∞∑
j=N+1

4|ci,j|
bnη

E
(
Xi+k,j+lI(|ci,j|Xi+k,j+l ≤ bn

η

4
)
)
.

Since α ∈ (0, 1), by Karamata’s theorem each E (Xi+k,j+lI(Xi+k,j+l ≤ t)) ∼ α
1−α

t(1−
F (t)) as t → ∞ and hence by applying Potter bound (see Proposition 2.6 in Resnick
(2007)) on both the terms above, we can bound their sum by

≤
n∑

k=1

n∑
l=k

N∑
i=0

∞∑
j=N+1

O(n−2)|cij|δ,

from which (3.1) follows using (1.2) as the O(n−2) term above does not depend on
i, j, k and l. Similarly, we can also establish (3.2). This completes the proof. �

The next lemma evaluates the limit of spectral radius and maximum eigenvalue
of the coefficient matrix CN defined in (2.2). This result was applied to establish
Corollary 1.2 and will be used in the proof of Theorem 1.1 as well.

Lemma 3.2. Let CN be as in (2.2) and the coefficients satisfy (1.2) with 0 < α < 1.
Then we have,

(a) As N → ∞, ρ(CN) → ‖T‖ where T is defined in (1.5) and ‖ · ‖ denotes the
operator norm.

(b) λmax(CN) = ρ(CN) and hence the convergence of maximum eigenvalue fol-
lows from (a).

Proof. Part (b) is obvious from the structure of the matrix CN and hence we just
briefly sketch a proof of Part (a). To this end, note that by pre and post-multiplying
CN by a permutation matrix, it is easy to see that for all N ≥ 1, ρ(CN) = ρ(TN),
where TN(i, j) := T (i, j)1(|i| ∨ |j| ≤ N) with T is given by (1.5). Furthermore, TN
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is a self adjoint operator, and hence by Spectral Theorem, its spectral radius and
operator norm are equal. As N → ∞ we have,

‖TN − T‖2 ≤
∑
i,j

(TN(i, j)− T (i, j))2 =
∑

(i,j)∈Z2:|i|∨|j|>N

T (i, j)2 → 0,

from which Part (a) follows. �

3.1. Proof of Theorem 1.1. We denote by Zα a Frechét random variable with
parameter α. Using Proposition 1.11 of Resnick (1987) and Lemmas 2.1, 2.2 and
3.2 above, we have that for each fixed truncation level N when n → ∞, both

λmax(A
(N)
n )/bn and ρ(A

(N)
n )/bn converge weakly to ρ(CN)Zα, which in turn converges

to ‖T‖Zα when N → ∞. Therefore by Lemma 3.1, Theorem 1.1 follows.

Remark 3.1. The proofs of Lemma 3.1 and Step 4 of Lemma 2.1 rely heavily on
the fact that 0 < α < 1. If these can be established (with additional assumptions if
necessary) for higher values of α, then our result can be extended.

Acknowledgment. The authors are thankful to Robert Adler, Debashish Goswami,
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C. Bordenave, P. Caputo, and D. Chafäı. Spectrum of non-Hermitian heavy tailed
random matrices. Comm. Math. Phys., 307(2):513–560, 2011.

P. Bourgade, L. Erdős, and H.-T. Yau. Edge universality for beta ensembles. arXiv:
1306.5728, 2013.

D. B. H. Cline. Infinite series of random variables with regularly vary-
ing tails. Technical Report 83–24, Insitutute of Applied Mathematics and
Statistics, University of British Columbia, Vancouver, B. C., 1983. URL
http://www.stat.tamu.edu/~dcline/Papers/infiniteseries.pdf.

R. A. Davis and S. I. Resnick. Limit theory for moving averages of random variables
with regularly varying tail probabilities. The Annals of Probability, 13(1):179–195,
1985.

R. A. Davis, O. Pfaffel, and R. Stelzer. Limit theory for the largest eigenvalues
of sample covariance matrices with heavy-tails. arXiv:1108.5464, to appear in
Stochastic Processes and their Applications, 2011.
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