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Abstract

Choice experiments are often used to gather information on preferences of consumers for prod-

ucts and services when the choice alternatives can be described in terms of attributes, each

such attribute having two or more settings or, levels. We assume that each attribute has two

levels and the interest is to find optimal or efficient designs for estimating the main effects of

the attributes and possibly some interactions as well. In this paper we provide such efficient

designs for estimating all the main effects and a subset of two-factor interactions among the

attributes.
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1 Introduction and Preliminaries

Choice experiments are now widely used to gather information on preferences for products and

services. In a choice experiment, respondents are presented sets of profiles, called choice sets,

and asked to select the one they consider best. The design and analysis of choice experiments

has been studied quite extensively in recent years and for an excellent discussion on these

aspects, one might refer to Street and Burgess (2007), where more references can be found.

This paper deals with finding designs for choice experiments where the choice sets are

Pareto optimal (Pareto optimal choice sets are defined later in this section). We assume that

all the options in each choice set are described by several attributes (or, factors) and that

each attribute has two levels. In valuation studies, some profiles are better than others, or

dominating, while some profiles are worse, or dominated by others. Choosing a dominating

alternative, or not choosing a dominated one, does not involve an economic choice. If a choice

1NASI Senior Scientist Platinum Jubilee Fellow

1



set has a dominating profile, the respondent’s choice is trivially made. Similarly, if a choice set

has a dominated profile, it will never be selected. In view of this, in this paper we restrict our

attention to choice sets with no dominating or dominated profiles. Such choice sets are known

as Pareto Optimal (PO) subsets. If choice sets have a large number of profiles, then they may

be difficult to implement. In view of this, one desires strategies for reducing the number of

profiles. In this paper, we attempt to provide such a strategy. We consider a situation where

apart from the main effects of the attributes, a subset of two-factor interactions is also of

interest. Specifically, we consider two-factor interactions that have one attribute in common.

Consider a choice experiment with m attributes each at two levels, coded as, 0, 1. Each

profile consists of a specific level of each of the m attributes. Each choice set is a subset of

k profiles, k ≤ 2m. Let Ω be the set of all 2m profiles and let a typical profile be denoted

as x = x1x2 · · ·xm, xj = 0, 1, 1 ≤ j ≤ m. Without loss of generality, let us suppose that the

profiles are lexicographically ordered. Let yx denote the proportion of respondents choosing

the profile x ∈ Ω. We consider a linear model that includes the general mean µ, all the main

effects and the two-attribute interaction effects with one common attribute. The model can

be written as

yx1x2...xm = µ+
m∑
i=1

βFi
xi

+
m∑
j=2

βF1Fj
x1xj

+ εx1...xm (1)

where yx1...xm is the proportion of respondents choosing profile x = (x1, . . . , xm) from a given

choice set, xi = 0, 1, µ is a general mean, βFi
xi

is the effect of attribute Fi at level xi, β
F1Fj
x1xj

is the two-factor interaction component (without loss of generality) between the attribute F1

and Fj and εx1...xm is the random error term.

According to Raghavarao and Wiley (1998), a design for a choice experiment is said to

be connected if the β parameters as in (1) are all estimable under the design. Chen and

Chitturi (2012) proved that the PO choice sets S∗
1 = {100 · · · 0, 010 · · · 0, 000 · · · 1} and S∗

2 =

{x1x2 · · ·xm|
∑m

j=1 xj = 2, x1 + xn 6= 0} give a PO connected design under the model (1).

Note that these designs are saturated in the sense that the number of unknown parameters

equals the total number of available responses. They also provided a formula for obtaining

Information Per Profile (IPP) and showed that for a 23 design, the IPP is 0.4 and for a 25

design it is 0.1818. In this paper, we provide alternative PO designs under the model (1) which

are highly efficient.

2 Main results

In this section, we deal with the derivation of PO designs based on Hadamard matrices under

model (1). Recall that a square matrix Hn of order n with entries ±1 is called a Hadamard

matrix if HnH
′
n = nIn = H ′

nHn, where In is the identity matrix of order n and primes denote

transposition. Without loss of generality, one can assume that the first row and first column
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of Hn consists of only +1’s and in that case, we say that Hn is in its normal form. Also, let

J denote a matrix (of appropriate order) whose elements are all 1, 1u be a u× 1 vector of all

ones and 0u, a u× 1 null vector. We consider three possible values of m.

Case 1: m = 2r, r ≥ 2 an integer.

Suppose our objective is to obtain PO designs with m = 2r, for some integer r(≥ 2)

attributes. To that end, we begin with H4, the following Hadamard matrix of order 4:

H4 =


−1 1 1 1

−1 1 −1 −1

−1 −1 1 −1

−1 −1 −1 1

 .

For obtaining the desired choice sets, we define the following matrices:

Hm = H2 ⊗ · · · ⊗H2 ⊗H4, (2)

where

H2 =

 1 1

1 −1


appears r − 2 times in the above expression and ⊗ denotes the Kronecker (tensor) product of

matrices. Clearly, Hm, where m = 2r, is a Hadamard matrix of order m. Furthermore, let

Um = (1/2)[Hm + J ], Ūm = (1/2)[−Hm + J ], Lm =

 Um

Ūm

 . (3)

With the above background, one can construct PO choice sets for appropriate number of at-

tributes. Raghavarao andWiley (1998) noted that the choice sets Sl = {x = x1x2 · · ·xm|
∑

xj =

`}, ` = 0, 1, · · · ,m are PO. Moreover, for any fixed `, ` = 0, 1, · · · ,m, it is easy to observe that

any subset of S` is also a PO choice set. The following theorem shows that the procedure

stated above can be used to obtain PO choice sets from Hadamard matrices of order m (≥ 4).

Theorem 1. For any m = 2r, r ≥ 2, the above stated procedure provides set of profiles Um

such that one can obtain the PO choice sets S∗
m/4 ⊂ Sm/4, S

∗
m/2 ⊂ Sm/2 and S∗

3m/4 ⊂ S3m/4

with cardinality 4, 2(m− 4), and 4 respectively.

Proof. Take r = 2. Then,

U ′
4 =


0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

 , Ū ′
4 =


1 1 1 1

0 0 1 1

0 1 0 1

0 1 1 0

 , L′
4 =


0 0 0 0 1 1 1 1

1 1 0 0 0 0 1 1

1 0 1 0 0 1 0 1

1 0 0 1 0 1 1 0

 ,
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which in turn give the PO choice sets S∗
1 = {1000, 0100, 0010, 0001} and S∗

3 = {1110, 1101,
1011, 0111}.
In continuation of (3), define

L̄m =

 Ūm

Um

 . (4)

Now suppose r = 3. Then from (2) and (3), we get

U8 =

 U4 U4

U4 Ū4

 , Ū8 =

 Ū4 Ū4

Ū4 U4

 , L8 =

 U8

Ū8

 =

 L4 L4

L4 L̄4

 .

It is then easy to observe that L8 provides the subsets S∗
2 ⊂ S2, S

∗
4 ⊂ S4 and S∗

6 ⊂ S6 with

cardinalities 4, 8, and 4 respectively. Suppose Theorem 1 is true for some arbitrary k, k > 2.

Let m1 = 2k and m2 = 2k+1 = 2m1. Then from (2) and (3), we have

Um2 =

 Um1 Um1

Um1 Ūm1

 , Ūm2 =

 Ūm1 Ūm1

Ūm1 Um1

 , Lm2 =

 Um2

Ūm2

 =

 Lm1 Lm1

Lm1 L̄m1

 . (5)

Since Theorem 1 holds for m = m1, Lm1 gives the PO choice sets S∗
m1/4

⊂ Sm1/4, S
∗
m1/2

⊂ Sm1/2

and S∗
3m1/4

⊂ S3m1/4 with cardinalities 4, 2(m1 − 4) and 4, respectively. This implies that the

set of profiles given by (Lm1 , Lm1) provides PO choice sets S∗
m2/4

⊂ Sm2/4, S
∗
m2/2

⊂ Sm2/2 and

S∗
3m2/4

⊂ S3m2/4 with cardinalities 4, 2(m1 − 4) and 4, respectively. Again, the set of profiles

given by (Lm1 , L̄m1) provides choice set S∗
m2/2

⊂ Sm2/2 with cardinality 2m1. Hence the set of

profiles given by (5) provides PO choice sets S∗
m2/4

⊂ Sm2/4, S
∗
m2/2

⊂ Sm2/2 and S∗
3m2/4

⊂ S3m2/4

with cardinalities 4, 2(m2 − 4) and 4, respectively. This completes the proof of Theorem 1.

Case 2: m = 3(2k+1), k > 1.

Consider

H12 =



− − − − − − + − − + − +

− − − + − − − + − − + −
− − + − + − + + + − − −
− − + − − + − − + − + +

− − + + + + − − − + − −
− + − + + − − − + − − +

− + − − − + − + + + − −
− + − − + + + − − − + −
− + + + − + + + − − − +

− + + + − − + − + + + −
− + + − + − − + − + + +

− − − + + + + + + + + +



, (6)

4



and let

Hm = H2 ⊗ · · · ⊗H2 ⊗H12, (7)

where m = 3(2k+1), k > 1, H2 appears in (7) (k−1) times and + and − in (6) stand for +1 and

−1, respectively. Also, define the matrices Um, Ūm and Lm, as in Case 1, with m = 3(2k+1).

We then have the following result.

Theorem 2. Starting from a Hadamard matrix of order 12 as given by (6) and following (2) and

(3) withH4 there replaced byH12, one can obtain a series of choice sets withm = 3(2k+1), k > 1

attributes. These PO choice sets are S∗
3m/12 ⊂ S3m/12, S

∗
5m/12 ⊂ S5m/12, S

∗
6m/12 ⊂ S6m/12,

S∗
7m/12 ⊂ S7m/12, and S∗

9m/12 ⊂ S9m/12 with cardinalities 3, 9, 2(m− 12), 9 and 3 respectively.

Case 3: m = m = 5(2k+1), k > 1.

Consider

H20 =



− − − − − − − + − − + + − − − − + − + −
− − − − + − + − − + + − − − − + − + − +

− − + − − + + − − + − − + + − − − − + −
− + − − − + − − + − − + + − − − − + − +

− − − + + − − + − + − + + + + − − + − −
− − − + + + − − + + − − − − + − + − + +

− − + − + + + + + − − + − − + + − − − −
− − + + − − − + + − − − − + − + − + + +

− − + + − + − − − − + − + − + + + + − −
− + + − − − − − − + − + − + + + + − − +

− + − − + − − − + − + − + + + + − − + −
− + − + − − + + + + − − + − − + + − − −
− + − + − + + + − − + − − + + − − − − +

− − + + + − + − + − + + + + − − + − − +

− + + + − − + − + + + + − − + − − + + −
− + + − + + − + + + + − − + − − + + − −
− + + − + − + + − − − − + − + − + + + +

− + − + + + + − − − − + − + − + + + + −
− + + + + + − + − + + + + − − + − − + +

− − − − − + + + + + + + + + + + + + + +



, (8)

and let

Hm = H2 ⊗ · · · ⊗H2 ⊗H20, (9)

where H2 appears(k − 1) times in (9) and +1 and −1 in (8), as before, stand for +1 and −1,

5



respectively. The matrices Um, Ūm and Lm are defined as earlier, with the appropriate value

of m in this case. We then have the following result.

Theorem 3. Starting from a Hadamard matrix of order 20 as in (8) and following (2) and (3),

one can obtain a series of choice sets with m = 5(2k+1), k > 1 attributes. These PO choice sets

are S∗
5m/20 ⊂ S5m/20, S

∗
7m/20 ⊂ S7m/20, S

∗
9m/20 ⊂ S9m/20, S

∗
10m/20 ⊂ S10m/20, S

∗
10m/20 ⊂ S10m/20,

S∗
11m/20 ⊂ S11m/20, S

∗
13m/20 ⊂ S13m/20 and S∗

15m/20 ⊂ S15m/20 with cardinality 2, 4, 14, 2(m−20),

14, 4 and 2 respectively.

The proofs of Theorems 2-3 follow along the line of the proof of Theorem 1.

The next theorem presents a series of PO choice sets with m = 4t− 1, t ≥ 1 attributes and

a total of n = 2(4t− 1) profiles.

Theorem 4. Let H be a Hadamard matrix of order 4t, t ≥ 1 in its normal form and Bm be a

square matrix of order m = 4t − 1 obtained from H after deleting the first row and the first

column. Define, as earlier,

Um = (1/2)[Bm + J ], Ūm = (1/2)[−Bm + J ], Lm =

 Um

Ūm

 .

Then the set of 2m profiles can be partitioned into two PO choice sets S∗
(m−2)/2 ⊂ S(m−1)/2 and

S∗
(m+1)/2 ⊂ S(m+1)/2 with cardinalities m each.

Proof. The proof of this theorem follows by noting that in each column of Bm, there are

exactly (m+ 1)/2 -1’s and (m− 1)/2 +1’s.

3 Efficiency

In this section, we examine the properties of the proposed designs based on the IPP criterion.

Let us write the design matrix of model (1) as

X = [1n X1] = [1n XM XI ],

where XM is the design matrix corresponding the main effects and XI , the design matrix

corresponding to the two-factor interaction effects included in the model. It is easy to see that

information matrix under (1) (including µ) is given by

I =

 n 1′
nX1

X ′
11n X ′

1X1

 ,

and the information matrix after eliminating µ is

I∗ = X ′
1X1 − n−1X ′

11n1
′
nX1
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To compare designs obtained from different PO choice sets, we define along the line of

Raghavarao and Wiley (1998), the Information Per Profile (θ) in the design as an optimality

criterion. According to them, the Information Per Profile (IPP(θ)) is given by

IPP(θ) =
2m− 1

n trace(I∗−1)

Theorem 5. The choice sets obtained through Theorems 1-3 with a total of n = 2m profiles

and m attributes are connected main effects plans and are capable of estimating two-attribute

interaction effects that includes one attribute in common. Moreover, for these designs, we have

IPP(θ) = 1 and thus these designs are optimal.

Proof. The proof of this theorem follows from the fact that

I∗ = nI2m−1.

Theorem 6. The choice sets obtained through Theorem 4 with a total of n = 2m profiles and

m = 4t − 1, t ≥ 1 attributes are connected main effects plans and are capable of estimating

two-attribute interaction effects that includes one attribute in common.

Proof. Without loss of generality, let us suppose that the model includes interaction effects

with the first attribute and the rest. Let us rewrite the design matrix of model (1) as

X = [1n x1 x2 · · · xm x1 � x2 x1 � x3 . . .x1 � xm],

where for two vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn), a�b = (a1b1, a2b2, . . . , anbn).

It is to be noted that

1′
nxj = 0, 1 ≤ j ≤ m; 1′

n(x1 � xj) = −2, 2 ≤ j ≤ m; x′
jxj = n, 1 ≤ j ≤ m,x′

jxk = −2,

1 ≤ j < k ≤ m, x′
1(x1 � xj) = 0, 2 ≤ j ≤ m, x′

j(x1 � xk) = 0, 2 ≤ j, k ≤ m,

(x1 � xj)
′(x1 � xj) = n, (x1 � xj)

′(x1 � xk) = −2, 2 ≤ j < k ≤ m.

Thus we get

I = X ′X =


n 0′

m −21′
m−1

0m (n+ 2)Im − 2J O

−21m−1 O (n+ 2)Im−1 − 2J

 ,

which gives

I∗ =

 (n+ 2)Im − 2J O

O (n+ 2)Im−1 − 2(1 + 2/n)J

 ,
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I∗−1 =

 1
n+2

[Im + J ] O

O 1
n+2

[Im−1 + J ]

 ,

The Information Per Profile (IPP(θ)) is

IPP(θ) =
2m− 1

n trace(I∗−1)
=

n+ 2

2n
.
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