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Abstract

In this work we consider the infinite color urn model associated
with a bounded increment random walk on Zd. This model was first
introduced in [2]. We prove that the rate of convergence of the ex-
pected configuration of the urn at time n with appropriate centering

and scaling is of the order O
(

1√
logn

)
. Moreover we derive bounds sim-

ilar to the classical Berry-Essen bound. Further we show that for the
expected configuration a large deviation principle (LDP) holds with a
good rate function and speed logn.
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1 Introduction

Pólya urn scheme is one of the most well studied stochastic process which
has plenty of applications in various different fields. Since the time of its
introduction by Pólya [17] there has been a vast number of different variants
and generalizations [12, 11, 1, 15, 13, 14, 10, 16] studied in literature. In
general one considers the model with finitely many colors and then it can
be described simply by

Start with an urn containing finitely many balls of different col-
ors. At any time n ≥ 1, a ball is selected uniformly at random
from the urn, and its color is noted. The selected ball is then
returned to the urn along with a set of balls of various colors
which may depend on the color of the selected ball.

In [6] Blackwell and MacQueen introduced a version of the model with pos-
sibly infinitely many colors but with a very simple replacement mechanism.
Recently the authors of this work has introduced [2] a new generalization of
the classical model with infinite but countably many colors with replacement
mechanism corresponding to random walks in d-dimension. This general-
ization is essentially different than that of the classical Pólya urn scheme,
as well as the model introduced in [6], where the replacement mechanism is
diagonal. The generalization by [2] considers replacement mechanism with
non-zero off diagonal entries and provides a novel connection between the
two classical models, namely, Pólya urn scheme and random walks on d-
dimensional Euclidean space has been demonstrated. In the current work
we exploit this connection to derive the rate of convergence and the large

deviation principle for the (n+ 1)th selected color in the infinite color gen-
eralization of the Pólya urn scheme. In the following subsection we describe
the specific model which we study.

1.1 Infinite Color Urn Model Associated with RandomWalks

Let (Xj)j≥1 be i.i.d. random vectors taking values in Zd with probability

mass function p (u) := P (X1 = u) ,u ∈ Zd. We assume that the distribution
of X1 is bounded, that is there exists a non-empty finite subset B ⊆ Zd such
that p (u) = 0 for all u 6∈ B. Throughout this paper we take the convention
of writing all vectors as row vectors. Thus for a vector x ∈ Rd we will write
xT to denote it as a column vector. The notations 〈·, ·〉 will denote the usual
Euclidean inner product on Rd and ‖ · ‖ the the Euclidean norm. We will
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always write
µ := E [X1]
Σ := E

[
XT

1 X1

]
e (λ) := E

[
e〈λ,X1〉

]
, λ ∈ Zd.

(1)

When the dimension d = 1 we will denote the mean and variance simply by
µ and σ2 respectively.

Let Sn := X0 +X1 + · · ·+Xn, n ≥ 0 be the random walk on Zd starting
at X0 and with increments (Xj)j≥1 which are independent. Needless to say

that (Sn)n≥0 is Markov chain with state-space Zd, initial distribution given
by the distribution of X0 and the transition matrix R := ((p (u− v)))u,v∈Zd .

In [2] the following infinite color generalization of Pólya urn scheme was
introduced where the colors were indexed by Zd. Let Un := (Un,v)v∈Zd ∈
[0,∞)Z

d
denote the configuration of the urn at time n, that is,

P
(
(n+ 1)th selected ball has color v

∣∣∣Un, Un−1, · · · , U0

)
∝ Un,v, v ∈ Zd.

Starting with U0 which is a probability distribution we define (Un)n≥0 re-
cursively as follows

Un+1 = Un + Cn+1R (2)

where Cn+1 = (Cn+1,v)v∈Zd is such that Cn+1,V = 1 and Cn+1,u = 0 if
u 6= V where V is a random color chosen from the configuration Un. In
other words

Un+1 = Un +RV

whereRV is the V th row of the replacement matrixR. Following [2] we define
the process (Un)n≥0 as the infinite color urn model with initial configuration
U0 and replacement matrix R. We will also refer it as the infinite color urn
model associated with the random walk (Sn)n≥0 on Zd. Throughout this
paper we will assume that U0 = (U0,v)v∈Zd is such that U0,v = 0 for all but

finitely many v ∈ Zd.

It is worth noting that
∑
u∈Zd

Un,u = n+ 1 for all n ≥ 0. So if Zn denotes

the (n+ 1)th selected color then

P
(
Zn = v

∣∣∣Un, Un−1, · · · , U0

)
=

Un,v

n+ 1
⇒ P (Zn = v) =

E [Un,v]

n+ 1
. (3)

In other words the expected configuration of the urn at time n is given by
the distribution of Zn.
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1.2 Outline of the Main Contribution of the Paper

In [2] the authors studied the asymptotic distribution of Zn, in particular,
it has been proved (see Theorem 2.1 of [2]) that as n → ∞,

Zn − µ log n√
log n

d−→ Nd (0, Σ) . (4)

In Section 2 we find the rate of convergence for the above asymptotic and
show that classical Berry-Essen type bound hold at any dimension d ≥ 1,

which is of the order O
(

1√
logn

)
.

It is easy to see that (4) implies

Zn

log n

d−→ µ as n → ∞ ⇒ Zn

log n

p−→ µ as n → ∞. (5)

So it is then natural to ask whether the sequence of measures
(
P
(

Zn
logn ∈ ·

))
n≥2

satisfy a large deviation principle (LDP). In Section 3 we show that the
above sequence of measures satisfy a LDP with a good rate function and
speed log n. We also give an explicit representation of the rate function in
terms of rate function of a marked Poisson process with intensity one and
the markings given by the i.i.d. increments (Xj)j≥1.

1.3 Fundamental Representation

We end the introduction with the following very important observation made
in [2] (see Theorem 3.1 in [2])

Zn
d
= Z0 +

n∑
j=1

IjXj (6)

where (Xj)j≥1 are as above and (Ij)j≥1 are independent Bernoulli variables

such that Ij ∼ Bernoulli
(

1
j+1

)
and are independent of (Xj)j≥1. Z0 ∼ U0

and is independent of
(
(Xj)j≥1 , (Ij)j≥1

)
.

Note that using this representation the asymptotic normality (4) follows
immediately as an application of the Lindeberg Central Limit Theorem [5].
We use this representation to derive the Berry-Essen type bounds and also
the LDP.
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2 Berry-Essen Bounds for the Expected Configu-
ration

In this section we show that the rate of convergence of (4) is of the order

O
(

1√
logn

)
. In fact we show that the Berry-Essen type bound holds for the

color of the (n+ 1)th-selected ball.

2.1 Berry-Essen Bound for d = 1

We first consider the case when the associated random walk is a one dimen-
sional walk and the set of colors are indexed by the set of integers Z.

Theorem 1. Suppose U0 = δ0 then

sup
x∈R

∣∣∣∣P(Zn − µhn√
nρ2

≤ x

)
− Φ(x)

∣∣∣∣ ≤ 2.75×
√
nρ3

ρ
3/2
2

= O
(

1√
log n

)
, (7)

where hn :=

n∑
j=1

1

j + 1
, Φ is the standard normal distribution function and

ρ2 :=
1

n

σ2hn − µ2
n∑

j=1

1

(j + 1)2

 (8)

and

ρ3 :=
1

n

 n∑
j=1

1

j + 1
E

[∣∣∣∣X1 −
µ

j + 1

∣∣∣∣3
]
+ |µ|3

n∑
j=1

j

(j + 1)4

 . (9)

Proof. We first note that when U0 = δ0 then (6) can be written as

Zn
d
=

n∑
j=1

IjXj (10)

where (Xj)j≥1 are i.i.d. increments of the random walk (Sn)n≥0, (Ij)j≥1

are independent Bernoulli variables such that Ij ∼ Bernoulli
(

1
j+1

)
and are

independent of (Xj)j≥1.
Now observe that

nρ2 =
n∑

j=1

E
[
(IjXj −E [IjXj ])

2
]
and nρ3 =

n∑
j=1

E
[
|IjXj −E [IjXj ]|3

]
.
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Thus from the Berry-Essen Theorem for the independent but non-identical
increments (see Theorem 12.4 of [4]) we get

sup
x∈R

∣∣∣∣∣P
(∑n

j=1 IjXj − µhn
√
nρ2

≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ 2.75×
√
nρ3

ρ
3/2
2

. (11)

The equations (10) and (11) implies the inequality in (7).
Finally to prove the last part of the equation (7) we note that from

definition nρ2 ∼ C1 log n and nρ3 ∼ C2 log n where 0 < C1, C2 < ∞ are
some constants. Thus

√
nρ3

ρ
3/2
2

= O
(

1√
logn

)
.

This completes the proof of the theorem.

Following result follows easily from the above theorem by observing the
facts hn ∼ log n and nρ2 ∼ C1 log n.

Theorem 2. Suppose U0,k = 0 for all but finitely many k ∈ Z then there
exists a constant C > 0 such that

sup
x∈R

∣∣∣∣P(Zn − µ log n

σ
√
log n

≤ x

)
− Φ (x)

∣∣∣∣ ≤ C ×
√
nρ3

ρ
3/2
2

= O
(

1√
log n

)
, (12)

Φ is the standard normal distribution function and ρ2 and ρ3 are as defined
in (8) and (9) respectively.

It is worth noting that unlike in Theorem 1 the constant C which appears
in (12) above, is not a universal constant, it may depend on the increment
distribution, as well as on U0.

2.2 Berry-Essen bound for d ≥ 2

We now consider the case when the associated random walk is d ≥ 2 dimen-
sional and the colors are indexed by Zd. Before we present our main result
we introduce few notations.

Notations: For a vector x ∈ Rd we will write the coordinates as(
x(1), x(2), · · · , x(d)

)
. For example the coordinates of µ will be written as(

µ(1), µ(2), · · · , µ(d)
)
. For a matrix A = ((aij))1≤i,j≤d we denote by A (i, j)

6



the (d− 1)× (d− 1) sub-matrix of A, obtained by deleting the ith row and
jth column. Let

ρ
(d)
2 :=

1

n

n∑
j=1

1

(j + 1)

det
(
Σ − 1

j+1M
)

det
(
Σ(1, 1)− 1

j+1M(1, 1)
) , (13)

where M :=
((
µ(i)µ(j)

))
1≤i,j≤d

and

ρ
(d)
3 :=

1

nd

n∑
j=1

d∑
i=1

γ3n (i)βj (i) , (14)

where

γ2n(i) := max
1≤j≤n

det
(
Σ(i, i)− 1

(j+1)M(i, i)
)

det
(
Σ(1, 1)− 1

j+1M(1, 1)
)

and

βj(i) =
1

j + 1
E

∣∣∣∣∣X(i)
1 − µ(i)

j + 1

∣∣∣∣∣
3
+

j

(j + 1)4

∣∣∣µ(i)
∣∣∣3 .

For any two vectors x and y ∈ Rd we will write x ≤ y, if the inequality holds
coordinate wise. Finally for a positive definite matrix B, we write B1/2 for
the unique positive definite square root of it.

Theorem 3. Suppose U0 = δ0 then there exists an universal constant
C (d) > 0 which may depend on the dimension d such that

sup
x∈Rd

∣∣∣P((Zn − µhn)Σ
−1/2
n ≤ x

)
− Φd (x)

∣∣∣ ≤ C (d)

√
nρ

(d)
3(

ρ
(d)
2

)3/2 = O
(

1√
log n

)
,

(15)

where Σn :=
∑n

j=1
1

j+1

(
Σ − 1

j+1M
)
and Φd is the distribution function of

a standard d-dimensional normal random vector.

Proof. Like in the one dimensional case, we start by observing that when
U0 = δ0 then (6) can be written as

Zn
d
=

n∑
j=1

IjXj (16)
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where (Xj)j≥1 are i.i.d. increments of the random walk (Sn)n≥0, (Ij)j≥1

are independent Bernoulli variables such that Ij ∼ Bernoulli
(

1
j+1

)
and are

independent of (Xj)j≥1.
Now the proof of the inequality in (15) follows from equation (D) of [3]

which deals with d-dimensional version of the classical Berry-Essen inequal-
ity for independent but non-identical summands, which in our case are the
random variables (IjXj)j≥1. It is enough to notice that

βj(i) = E

[∣∣∣IjX(i)
1 −E

[
IjX

(i)
j

]∣∣∣3] ,
and

Σn =

n∑
j=1

E
[
(IjXj −E [IjXj ])

T (IjXj −E [IjXj ])
]
.

Finally to prove the last part of the equation (15) just like in the one

dimensional case we note that from definition nρ
(d)
2 ∼ C ′

1 logn and nρ
(d)
3 ∼

C ′
2 logn where 0 < C ′

1, C
′
2 < ∞ are some constants. Thus

√
nρ3

ρ
3/2
2

= O
(

1√
logn

)
.

This completes the proof of the theorem.

Remark 1. If we define that Σ (1, 1) = 1 and M (1, 1) = 0 when d = 1
then Theorem 1 follows from the above theorem except in Theorem 1 the
constant is more explicit.

Just like in the one dimensional case the following result follows easily
from the above theorem by observing hn ∼ logn.

Theorem 4. Suppose U0 = (U0,v)v∈Zd is such that U0,v = 0 for all but

finitely many v ∈ Zd then there exists a constant C > 0 which may depend
on the increment distribution, such that

sup
x∈Rd

∣∣∣∣P((Zn − µ log n√
log n

)
Σ−1/2 ≤ x

)
− Φd (x)

∣∣∣∣ ≤ C×
√
nρ

(d)
3(

ρ
(d)
2

)3/2 = O
(

1√
log n

)
,

(17)
where Φd is the distribution function of a standard d-dimensional normal
random vector.
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3 Large Deviations for the Expected Configura-
tion

In this section we discuss the asymptotic behavior of the tail probabilities
of Zn

logn . Following standard notations are used in rest of the paper. For any

subset A ⊆ Rd we write A◦ to denote the interior of A and Ā to denote the
closer of A under the usual Euclidean metric.

Theorem 5. The sequence of measures P
(

Zn
logn ∈ ·

)
n≥2

satisfy a LDP with

rate function I (·) and speed log n, that is,

− inf
x∈A◦

I (x) ≤ lim
n→∞

logP
(

Zn

logn ∈ A
)

log n
≤ lim

n→∞

logP
(

Zn

log n ∈ A
)

log n
≤ − inf

x∈Ā
I (x)

(18)

where I(·) is the Fenchel-Legendre dual of e (·)− 1, that is for x ∈ Rd,

I(x) = sup
λ∈Rd

{〈x,λ〉 − e(λ) + 1}. (19)

Moreover I(·) is convex and a good rate function.

Proof. We start with the representation (6)

Zn
d
= Z0 +

n∑
j=1

IjXj

where as earlier (Xj)j≥1 are i.i.d. increments of the random walk (Sn)n≥0 on

Zd and (Ij)j≥1 are independent Bernoulli variables such that Ij ∼ Bernoulli
(

1
j+1

)
and are independent of (Xj)j≥1. Z0 ∼ U0 and is independent of

(
(Xj)j≥1 , (Ij)j≥1

)
.

Now without loss of any generality we may assume that Z0 = 0 with prob-
ability one, that is, U0 = δ0.

Consider the following scaled logarithmic moment generating function of
Zn,

Λn (λ) :=
1

log n
logE

[
e〈λ,Zn〉

]
. (20)

From (6) it follows that

E
[
e〈λ,Zn〉

]
=

1

n+ 1
Πn (e (λ))

9



where Πn (z) =
∏n

j=1

(
1 + z

j

)
, z ∈ C. Using Gauss’s formula (see page 178

of [8]) we have

lim
n→∞

Πn(z)

nz
Γ(z + 1) = 1 (21)

and the convergence happens uniformly on compact subsets of C\{−1,−2, . . .}.
Therefore we get

Λn (λ) −→ e (λ)− 1 < ∞ ∀ λ ∈ Rd. (22)

Thus the LDP as stated in (18) follows from the Gärtner-Ellis Theorem (see
Remark (a) on page 45 of [9] or page 66 of [7]).

We next note that I(·) is a convex function because it is the Fenchel-
Legendre dual of e (λ)− 1 which is finite for all λ ∈ Rd.

Finally, we will show that I (·) is good rate function, that is, the level
sets A (α) = {x : I(x) ≤ α} are compact for all α > 0. Since I is a rate
function so by definition it is lower semicontinuous. So it is enough to prove
that A(α) is bounded for all α ∈ R.

Observe that for all x ∈ Rd,

I(x) ≥ sup
‖λ‖=1

{〈x,λ〉 − e(λ) + 1} .

Now the function λ 7→ e (λ) is continuous and {λ : ‖λ‖ = 1} is a compact
set. So ∃ λ0 ∈ {λ : ‖λ‖ = 1} such that sup|λ|=1 e (λ) = e (λ0). Therefore for
‖x‖ 6= 0 choosing λ = x

‖x‖ , we have I(x) ≥ ‖x‖ − e (λ0) + 1. So if x ∈ A(α)
then

‖x‖ ≤ (α+ e (λ0)− 1) .

This proves that the level sets are bounded, which completes the proof.

Our next result is an easy consequence of (19) which can be used to
compute explicit formula for the rate function I in many examples in one
or higher dimensions.

Theorem 6. The rate function I is same as the rate function for the large
deviation of the empirical means of i.i.d. random vectors with distribution
corresponding to the distribution of the following random vector

W =

N∑
i=1

Xi, (23)

where N ∼ Poisson (1) and is independent of (Xj)j≥1 which are the i.i.d.
increments of the associated random walk.
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Proof. We first observe that logE
[
e〈λ,W 〉] = e (λ)−1. The rest then follows

from (19) and Cramér’s Theorem (see Theorem 2.2.30 of [9]).

Remark 2. Using Theorem 6 we can conclude that the tail of the asymptotic
distribution of Zn can be approximated by the tail of a marked Poisson pro-
cess with intensity one where the markings are given by the i.i.d. increments
of the associated random walk.

For d = 1, one can get more information about the rate function I, in
particular following result it follows from Theorem 6 and Lemma 2.2.5 of
[9].

Proposition 7. Suppose d = 1 then I(x) is non-decreasing when x ≥ µ and
non-increasing when x ≤ µ. Moreover

I(x) =


sup
λ≥0

{xλ− e(λ) + 1} if x ≥ µ

sup
λ≤0

{xλ− e(λ) + 1} if x ≤ µ.
(24)

In particular, I(µ) = infx∈R I(x).

Following is an immediate corollary of the above result and Theorem 5.

Corollary 8. Let d = 1 then for any ε > 0

lim
n→∞

1

log n
logP

(
Zn

log n
≥ µ+ ε

)
= −I (µ+ ε) (25)

and

lim
n→∞

1

logn
logP

(
Zn

log n
≤ µ− ε

)
= −I (µ− ε) . (26)

We end the section with explicit computations of the rate functions for
two examples of infinite color urn models associated with random walks on
one dimensional integer lattice.

Example 1. Our first example is the case when the random walk is trivial,
which moves deterministically one step at a time. In other words X1 = 1
with probability one. In this case µ = 1 and σ2 = 1. Also the moment
generating function of X1 is given by e (λ) := eλ, λ ∈ R. By Theorem 6 the
rate function for the associated infinite color urn model is same as the rate
function for a Poisson random variable with mean 1, that is

I(x) =


+∞ if x < 0

1 if x = 0

x log x− x+ 1 if x > 0

(27)
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Thus for this example one can prove a Poisson approximation for Zn.

Example 2. Our next example is the case when the random walk is the
simple symmetric random walk on the one dimensional integer lattice. For
this case we note that µ = 0, σ2 = 1 and the moment generating function
X1 is e (λ) = coshλ, λ ∈ R. The rate function for the associated infinite
color urn model turns out to be

I(x) = x sinh−1 x−
√

1 + x2 + 1. (28)
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[13] Raúl Gouet. Strong convergence of proportions in a multicolor Pólya
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