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Abstract

Box-Behnken designs (Box and Behnken, 1958, 1960) form a very

popular class of 3-level second-order designs when the number of fac-

tors is small, typically, seven or less. For larger number of factors these

designs are not so popular because then, these designs require a large

number of runs. This paper provides a catalog of 3-level second-order

designs for 5-11 factors with run sizes ≤ 100. All the designs reported

can be orthogonally blocked and are seen to have high D-efficiencies.

Keywords: D-efficiency; Response surface designs; Regular graph de-

signs; Resolvable incomplete block designs; Rotatability measure Q∗.
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1 Introduction

Box and Behnken (1958, 1960) introduced a class of 3-level second-order de-

signs, known as Box-Behnken designs (hereafter called BBDs) for fitting a

second-order response surface model. BBDs and the central composite de-

signs (CCDs) of Box and Wilson (1951) subject to the appropriate choice

of factor levels satisfy several goodness properties judged as essential for

a second order design, such as requiring a minimum number of levels for

each of the factors, being rotatable or near-rotatable, being able to be or-

thogonally blocked, ensuring simplicity of calculation leading to simplicity

in the interpretation of the results (see Box and Draper, 2007). As such

BBDs, particularly those with 3–7 factors are very popular second order de-

signs. BBDs with eight or more factors are less popular as these designs

require an excessive number of runs (128–324 runs without center runs for

8–16 factors). Smaller orthogonally blocked 3-level second order designs have

been proposed recently by several authors; see e.g., Nguyen and Borkowski

(2007), Dey (2009) and Dey and Kole (2013), where more references can

also be found. The purpose of this paper is to provide additional orthogo-

nally blocked 3-level designs for 5-11 factors in 100 runs or less with high

D-efficiency and Q∗ rotatability measure (Draper and Pukelsheim, 1990).

2 Method of construction

All designs in this paper are constructed from resolvable incomplete block

designs (IBDs). Recall that an IBD with parameters (v, k, r) is an arrange-

ment of v treatments in b (= vr/k) blocks, each of size k (< v) such that

each treatment occurs in r blocks and each treatment occurs at most once in

any block. An IBD is said to be t-resolvable if its blocks can be divided into

s replicate sets of blocks, each of which is an IBD with parameters (v, k, t),

i.e., r = ts. A 1-resolvable IBD is a resolvable IBD. See e.g., Dey (2010)

for more on IBDs or Nguyen and Blagoeva (2010) for a brief introduction to

this subject. The advantage of using a resolvable IBD in conjunction with

the runs of a 2-level factorial with levels ±1 or, a suitable fraction of a 2-
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level factorial is that orthogonal blocking can be achieved without any extra

effort. Note that since the information matrix of an orthogonally blocked

response surface design under a model that includes the block effects, apart

from the surface parameters, equals the information matrix under a model

with no block effects, the efficiency of an orthogonally blocked design equals

the corresponding efficiency of an unblocked design.

Let λij (i 6= j) be the number of blocks in an IBD in which both treat-

ments i and j concur. If the λij’s differ by at most one, the IBD is called

a regular graph design (RGD) (John and Mitchell, 1977), who conjectured

that D-, A- and E-optimal IBDs are also RGDs. The class of RGDs thus

includes balanced IBDs (IBDs whose λij’s are all the same) and all IBDs

whose λij’s differ by one. All IBDs used in this paper are RGDs.

All BBDs except the one for 11 factors are constructed by superimposing

the 2-level factorials with levels ±1 onto treatments in each block of an

IBD (which can be resolvable or non-resolvable). On the other hand, all

designs in this paper are constructed by superimposing a 2-level fractional

factorial and its fold-over onto treatments in each block of a resolvable IBD.

As an example, suppose we start with the following 2-resolvable RGD with

parameters (v, k, r)=(6, 3, 4), whose treatments are labeled 0, 1, . . . , 5 and

the blocks are

(2, 3, 4), (0, 5, 2), (0, 1, 3), (1, 4, 5); (0, 4, 5), (1, 3, 5), (0, 1, 2), (2, 3, 4).

Here, the first 4 blocks constitute a replicate set and the next four blocks

constitute the second replicate set. Each treatment appears twice within a

replicate set. If we now impose a half fraction of a 23 factorial, say (1, 1, 1),

(1, -1, -1), (-1, 1, -1) and (-1, -1, 1) onto treatments in each odd block and

its fold-over in each even block, we get the following 6-factor 3-level second
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order design in two orthogonal blocks (without the center points):

0 0 ±1 ±1 ±1 0

∓1 0 ∓1 0 0 ∓1

±1 ±1 0 ±1 0 0

0 ∓1 0 0 ∓1 ∓1

±1 0 0 0 ±1 ±1

0 ∓1 0 ∓1 0 ∓1

±1 ±1 ±1 0 0 0

0 0 ∓1 ∓1 ∓1 0

Here (±1± 1± 1) represents the four points of a half fraction of a 23, (∓1∓
1∓ 1) represents the fold-over of this half fraction and 0 represents a column

vector of four 0’s. At least one center point has to be added in each block to

ensure the non-singularity of the information matrix and, an equal number

center runs are to be added to each block to ensure orthogonal blocking. It

is easy to verify that this orthogonally blocked design has
∑

x2
ix

2
j =

1
2
23 λij

where λij is the concurrencies of the mentioned RGD.

With reference to an n-run second order design d involving m factors, let

Xd denote the n × p design matrix of d, where the ith row of Xd is written

as

(1, x2
i1, x

2
i2, . . . , x

2
im, xi1, xi2, . . . , xim, xi1xi2, . . . , xi,m−1xim)

and p = (m + 2)(m + 1)/2. Then, the X ′
dXd matrices of the designs in this

paper, the augmented-pair designs (Morris, 2000) and small CCDs (Nguyen

and Lin, 2011) have the form

 A 0

0 B

 , (1)

where A is a square matrix of order m+1 and B is a square matrix of order

m + (m2 ) (=
1
2
m(m + 1)). The quadratic effects of these designs are always

orthogonal to all main- and interaction effects. Nguyen and Lin (2011) called

this property the orthogonal quadratic effect (OQE) property. Unlike BBDs

(except the one for 11 factors) and CCDs, where the matrix B in (1) is a
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diagonal matrix, certain
∑

xixjxl terms in the off-diagonal elements of B will

be non-zero.

To construct the designs in this paper we first construct a large number

of resolvable RGDs using the algorithm of Nguyen (1994). For each RGD

we construct an orthogonally blocked 3-level second order design using the

method in the previous paragraphs and compute its D-efficiency relative to a

D-optimal continuous (approximate) design measure over anm-ball of radius

unity (see e.g., Dey, 2009 and Dey and Kole, 2013 for the computation of

this D-efficiency). The design with the highest D-efficiency is then selected.

Since the D-efficiency is computed relative to a hypothetical (approximate)

D-optimal design, the efficiencies reported in Table 1 are in fact a lower

bound to the actual D-efficiency of the design.
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3 Results and Discussion

Table 1. Goodness measures of new designs

m p Design t (v, k, r) n (n0†) D-eff Q∗

5 21 5a 3 (5, 3, 6) 42 (2) 87.93 0.9351

5b 3 (5, 3, 9) 63 (3) 94.39 0.9802

5c 2 (6, 3, 4) 34 (2) 68.97 0.9644

5d 2 (6, 3, 6) 51 (3) 73.88 0.9835

5e 2 (6, 3, 8) 68 (4) 75.66 0.9908

6 28 6a 2 (6, 3, 4) 34 (2) 75.95 0.9240

6b 2 (6, 3, 6) 51 (3) 91.49 0.9643

6c 2 (6, 3, 8) 68 (4) 96.38 0.9858

7 36 7a 3 (7, 3, 6) 58 (2) 99.93 1

7b 3 (7, 3, 9) 87 (3) 97.67 0.9854

8 45 8a 3 (8, 3, 6) 66 (2) 84.99 0.9479

8b 3 (8, 3, 9) 99 (3) 93.32 0.9720

8c 3 (8, 4, 6) 98 (2) 82.57 0.9778

8d 2 (8, 4, 6) 99 (3) 83.14 0.9778

8e 1 (9, 3, 5) 65 (5) 69.43 0.9581

8f 1 (9, 3, 6) 78 (6) 72.97 0.9770

8g 1 (9, 3, 8) 100 (4) 82.81 0.9985

9 55 9a 1 (9, 3, 5) 65 (5) 79.07 0.9465

9b 1 (9, 3, 6) 78 (6) 85.35 0.9710

9c 2 (9, 3, 8) 100 (4) 98.18 0.9985

10 66 10a 3 (10, 3, 6) 82 (2) 80.63 0.9466

10b 3 (10, 5, 6) 98 (2) 80.81 0.9563

11 78 11a 3 (11, 3, 6) 90 (2) 70.64 0.9334

11b 2 (12, 3, 6) 99 (3) 67.06 0.9393

†Number of center points (which is also the number of

orthogonal blocks).

Table 1 displays 24 orthogonally blocked 3-level second order designs for

5-11 factors with 100 runs or less. This table includes for each design, the

number of factorsm, the number of parameters p in the second-order response

surface model, the design identification, the associated t-resolvable RGD with

parameters (v, k, r), the total number of runs n, the number of center runs

n0 (which is also the number of orthogonal blocks of each design), the D-

efficiency and rotatability measure Q∗ (see Draper and Pukelsheim (1990)
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for the computation of this measure). Below are some general observations

for the new designs in Table 1:

(i) Although all the designs in Table 1 are available with at most 100 runs,

they have reasonably high D-efficiencies and rotatability measures in most

cases. With the exception of two designs 5b and 11b, the D-efficiencies

of these designs are between 70-100%. As stated earlier, the D-efficiencies

reported in Table 1 are in fact a lower bound to the actual D-efficiency of

the design.

(ii) Designs 5a, 5d, 5c, 6b, 6c, 8a, 8b, 9a, 10a, 11a also appear in Dey and

Kole (2013). With the exception of two designs 9a and 8a, the new designs

show substantial improvement in D-efficiency over the corresponding designs

of Dey and Kole. For example, while the D-efficiencies of our designs 8b (for

eight factors in 99 runs and three orthogonal blocks) and 10a (for 10 factors

in 82 runs and two orthogonal blocks) are 93.32% and 80.63% respectively,

the ones of the corresponding Dey-Kole designs are only 82.85% and 67.35%,

respectively.

(iii) Designs 7a and 9c were constructed from resolvable balanced IBDs with

repeated blocks. While 7a could be obtained from the algoithm, 9c was

constructed manually. These designs are not new: 7a with a different number

of center runs has appeared in Box and Behnken (1960) and Dey and Kole

(2013), 9c with a different number of center runs has appeared in Nguyen

and Borkowski (2007).

(iv) Designs 5c, 5d, 5e, 8e, 8f, 8g and 11b were obtained by deleting one

column from designs with larger number of factors. Some new designs in

Morris (2000) and Dey (2009) were constructed this way.

(v) Some designs in Table 1 use resolvable RGDs with block sizes other than

three and fractional factorial other than a half fraction of a 23 : designs 8c

and 8d use resolvable RGDs with block size four and a half fraction of a 24,

design 10b uses a resolvable RGD with block size five and a quarter fraction

of a 25.
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4 Concluding remarks

This paper gives a catalog of 24 orthogonally blocked 3-level second order

designs for 5-11 factors involving 100 runs or less. All designs have the

QDF property and reasonably high D-efficiencies. Design with the number

of factors larger than 11 can also be constructed by the method in this paper.

However, these designs require more than 100 runs which might not be useful

in practice. For experiments with a large number of factors, we recommend

the use of the first-order designs in the first stage or screening stage and the

designs in this paper only in the second stage of the experiment. All designs

in this paper are available at http://designcomputing.net/smallBBD/.
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