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FROM RANDOM MATRICES TO LONG RANGE

DEPENDENCE

ARIJIT CHAKRABARTY, RAJAT SUBHRA HAZRA, AND DEEPAYAN SARKAR

Abstract. Random matrices whose entries come from a stationary
Gaussian process are studied. The limiting behavior of the eigenvalues
as the size of the matrix goes to infinity is the main subject of interest
in this work. It is shown that the limiting spectral distribution is deter-
mined by the absolutely continuous component of the spectral measure
of the stationary process, a phenomenon resembling that in the situation
where the entries of the matrix are i.i.d. On the other hand, the discrete
component contributes to the limiting behavior of the eigenvalues in a
completely different way. Therefore, this helps to define a boundary be-
tween short and long range dependence of a stationary Gaussian process
in the context of random matrices.

1. Introduction

The notion of long range dependence is of significant importance in the
field of stochastic processes. Consider any stationary stochastic process
indexed by Z. If the process is an i.i.d. collection, then it does not have
any memory, and hence it is short range dependent. For a general stochastic
process which is not necessarily i.i.d., whether it is long or short range
dependent is determined by how much it resembles an i.i.d. collection. In
order to make the idea of resemblance precise, different functionals of the
process are studied. If the behavior of a functional of interest is close to that
in the i.i.d. setup, then the process is short range dependent, otherwise it
is long range dependent. Therefore, the definition of long range dependence
varies widely with context, and it is no wonder that there are numerous
definitions of this concept in the literature, which are not equivalent. The
survey article by Samorodnitsky (2006) describes in detail this notion from
various points of view.

The current paper is an attempt to understand long range dependence in
yet another context, namely that of random matrices. Let {Xj,k : j, k ∈ Z}
be a real stationary Gaussian process with zero mean and positive variance.
That means,

E(Xj,k) = 0 ,

E
(
X2

j,k

)
> 0 ,

2010 Mathematics Subject Classification. Primary 60B20; Secondary 60B10, 46L53.
Key words and phrases. Random matrix, long range dependence, stationary Gaussian

process, spectral density.

1



2 A. CHAKRABARTY, R. S. HAZRA, AND D. SARKAR

and

E (Xj,kXj+u,k+v)

is independent of j and k for all fixed u, v ∈ Z. For N ≥ 1, define a N ×N
matrix WN by

(1.1) WN (i, j) := Xi,j +Xj,i ,

for all 1 ≤ i, j ≤ N . Clearly, WN is symmetric by construction, and hence
its eigenvalues are all real. For any N × N symmetric matrix A, denote
its eigenvalues by λ1(A) ≤ . . . ≤ λN (A), and define its empirical spectral
distribution, henceforth abbreviated to ESD, by

ESD(A) :=
1

N

N∑
j=1

δλj(A) .

Section 2 lists the main results of the paper. That section is divided
into three subsections. In Subsection 2.1, the results that study the limit
of ESD(WN/

√
N) as N → ∞ are listed, the main result being Theorem

2.1. In Subsection 2.2, a variant of the ESD called eigen measure is defined.
The main result of that subsection, Theorem 2.6, studies the limit of the
eigen measure of WN/N as N → ∞. The above two theorems motivate a
natural definition of long range dependence, which is discussed in Subsection
2.3. The proofs of the results mentioned in Section 2 are given in Section
3. Finally, in Section 4, the paper is concluded with a corollary and a few
examples.

We end this section by pointing out that Theorem 2.1 is actually an ex-
tension of the classical result by Wigner which says that ifXi,j are i.i.d. stan-

dard normal random variables, then ESD(WN/
√
N) converges to the Wigner

semicircle law (defined in (2.5)). Relaxation of the independence assumption
has previously been investigated by Chatterjee (2006), Götze and Tikhomirov
(2005), Hofmann-Credner and Stolz (2008) and Rashidi Far et al. (2008).
The articles by Adamczak (2011), Hachem et al. (2005), Naumov (2012),
Nguyen and Rourke (2012) and Pfaffel and Schlemm (2012) have studied
the sample covariance matrix and non-symmetric matrices after imposing
some dependence structures. A work by Anderson and Zeitouni (2008),
which is related to the current paper, considered the ESD of Wigner matrices
where on and off diagonal elements form a finite-range dependent random
field; in particular, the entries are assumed to be independent beyond a fi-
nite range, and within the finite range the correlation structure is given by a
kernel function. The results of the current paper, however, are more general
than those therein.

2. The results

Define

R(u, v) := E (X0,0Xu,v) , u, v ∈ Z .
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The Herglotz representation theorem asserts that there exists a finite
measure ν on (−π, π]2 such that

(2.1) R(u, v) =

∫
(−π,π]2

eι(ux+vy)ν(dx, dy) for all u, v ∈ Z ,

where ι :=
√
−1. Let νac, νcs and νd denote the components of ν which

are absolutely continuous with respect to the Lebesgue measure, continuous
and singular with respect to the Lebesgue measure, that is, supported on
a set of measure zero, and discrete, that is, supported on a countable set,
respectively. Since νac is absolutely continuous with respect to the Lebesgue
measure, there exists a function f from [−π, π]2 to [0,∞) such that

(2.2) νac(dx, dy) = f(x, y)dxdy .

The one and only assumption of this paper is that the continuous and
singular component is absent, that is,

νcs ≡ 0 .

As a consequence, it follows that

(2.3) ν = νac + νd .

2.1. The empirical spectral distribution. Denote

(2.4) µN := ESD(WN/
√
N), N ≥ 1 ,

where WN is as in (1.1).
The task of this subsection is to list the results that study the limiting

spectral distribution (henceforth LSD) of WN/
√
N , that is, the limit of the

random probability measures µN as N → ∞. The first result, Theorem 2.1
below, establishes that the limit exists.

Theorem 2.1. There exists a deterministic probability measure µf , deter-
mined solely by the spectral density f which is as in (2.2), such that

µN → µf ,

weakly in probability as N → ∞. By saying that the LSD µf is determined
by f , the following is meant. If for two stationary processes satisfying as-
sumption (2.3), the absolutely continuous component of the corresponding
spectral measures match, then the LSD of the scaled symmetric random ma-
trices formed by them also agree.

The exact description of µf is complicated, and will come much later in
Remark 3.1. However, a natural question at this stage is “When is µf the
probability measure degenerate at zero?”. The following result answers this
question.

Theorem 2.2. The second moment of the probability measure µf is given
by ∫

R
x2µf (dx) = 2

∫
[−π,π]2

f(x, y)dxdy .
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The next result relates some properties of µf with those of f . Some
new notations will be needed for stating that result, which we now intro-
duce. Fix m ≥ 1 and σ ∈ NC2(2m), the set of non-crossing pair parti-
tions of {1, . . . , 2m}. Let (V1, . . . , Vm+1) denote the Kreweras complement
of σ, which is the maximal partition σ of {1, . . . , 2m} such that σ ∪ σ is a
non-crossing partition of {1, 1, . . . , 2m, 2m}. Although the Kreweras com-
plement is a partition of {1, . . . , 2m}, for the ease of notation, V1, . . . , Vm+1

will be thought of as subsets of {1, . . . , 2m}, that is, the overline will be
suppressed. In order to ensure uniqueness in the notation, we impose the
requirement that the blocks V1, . . . , Vm+1 are ordered in the following way.
If 1 ≤ i < j ≤ m + 1, then the maximal element of Vi is strictly less than
that of Vj . Let Tσ be the unique function from {1, . . . , 2m} to {1, . . . ,m+1}
satisfying

i ∈ VTσ(i), 1 ≤ i ≤ 2m.

For example, if

σ := {(1, 4), (2, 3), (5, 6)} ,
then Tσ(1) = 2, Tσ(2) = 1, Tσ(3) = 2, Tσ(4) = 4, Tσ(5) = 3, Tσ(6) = 4. For
any function f from [−π, π]2 to R, define the function Lσ,f from [−π, π]m+1

to R by

Lσ,f (x) :=
∏

(u,v)∈σ

[
f
(
xTσ(u),−xTσ(v)

)
+ f

(
−xTσ(v), xTσ(u)

)]
,

for all x ∈ [−π, π]m+1.

Theorem 2.3. 1. For m ≥ 2, the (2m)-th moment of µf is finite if ‖f‖m <
∞. Here ‖f‖p denotes the Lp norm of f for all p ∈ [1,∞].
2. If ‖f‖∞ < ∞, then µf is compactly supported, and∫

R
x2mµf (dx) = (2π)m−1

∑
σ∈NC2(2m)

∫
[−π,π]m+1

Lσ,f (x)dx for all m ≥ 1 .

Remark 2.1. It is shown in Example 1 that the converses of the statements
above is false.

The last two results of this subsection gives neat descriptions of µf in
two special cases. In what follows, WSL(γ) for γ > 0 denotes the Wigner
semicircle law with variance γ, that is, it is the law whose density is

(2.5)
1

2π
√
γ

√
4− x2/γ 1(|x| ≤ 2

√
γ) .

Theorem 2.4. If there exists a function r from [−π, π] to [0,∞) such that

1

2
[f(x, y) + f(y, x)] = r(x)r(y) for almost all x, y ∈ [−π, π] ,

then

µf = ηr �WSL(1) ,
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where ηr denotes the law of 23/2πr(U), U is an Uniform (−π, π) random
variable, and “ �” denotes the free multiplicative convolution.

Theorem 2.5. Suppose that there exists finite subsets A1, A2, . . . of Z such
that An ↑ Z. Define

dj,k :=
1

2
√
2π

∫
[−π,π]2

e−ι(jx+ky)
√

f(x, y) + f(y, x)dxdy, j, k ∈ Z .

If it holds that∑
k,l∈Z

dk,ldj+k,l1(k, l, j + k ∈ An) = 0 for all j ∈ Z \ {0} and n ≥ 1 ,

then

µf = WSL(2‖f‖1) .

2.2. The eigen measure. Theorem 2.1 shows that the discrete component
of the spectral measure does not have a bearing on the limiting behavior of
the ESD. Therefore, it is imperative to come up with a variant of the ESD
that would capture the role of this component. That end is achieved in this
subsection. The first task is to define the proper variant, which we now
proceed towards.

It should be remembered that a symmetric matrix always means a N×N
symmetric matrix for some finite N . A symmetric matrix A is to be thought
of as a Hermitian operator A of finite rank acting on the first N coordinates
of l2, where

lp :=

{
(an : n ∈ N) ⊂ R :

∑
n

|an|p < ∞

}
, p ∈ [1,∞) .

If λ1 ≤ . . . ≤ λN are the eigenvalues of A counted with multiplicity, then the
spectrum of A is {0, λ1, . . . , λN}, where 0 has infinite multiplicity. Motivated
by this, we define the eigen measure of A, denoted by EM(A), by

EM(A) := ∞δ0 +
N∑
j=1

δλj
.

The measure EM(A) is to be viewed as an element of the set P of point
measures ξ of the form

ξ := ∞δ0 +

∞∑
j=1

δθj ,

where (θj : j ≥ 1) is some sequence of real numbers. It is not hard to see
why EM(A) is an element of P for a symmetric matrix A because θj can be
taken to be zero after a stage. For p ∈ [1,∞), define a subfamily Cp of P by

Cp :=
{
µ ∈ P :

∫
R
|x|pµ(dx) < ∞

}
.
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Once again, it is easy to see that for any symmetric matrix A,

EM(A) ∈ Cp for all p ≥ 1 .

Fix p ≥ 1 and ξ ∈ Cp. Clearly, there exist unique real numbers

α1(ξ) ≥ α2(ξ) ≥ . . . ≥ 0 ,

and
α−1(ξ) ≤ α−2(ξ) ≤ . . . ≤ 0 ,

such that
ξ = ∞δ0 +

∑
j 6=0

δαj(ξ) ,

where
∑

j 6=0 means the sum over all non-zero integers. Define

dp(ξ1, ξ2) :=

∑
j 6=0

|αj(ξ1)− αj(ξ2)|p
1/p

, ξ1, ξ2 ∈ Cp .

Given the natural bijection between Cp and lp, it is immediate that (Cp, dp)
is a complete metric space. It is also worth noting that

(2.6)

∣∣∣∣∣
[∫

R
|x|pξ1(dx)

]1/p
−

[∫
R
|x|pξ2(dx)

]1/p∣∣∣∣∣ ≤ dp(ξ1, ξ2), ξ1, ξ2 ∈ Cp .

The main result of this subsection is the following.

Theorem 2.6. Under the assumption (2.3), there exists a random point
measure ξ which is almost surely in C2 such that

(2.7) d4 (EM(WN/N), ξ)
P−→ 0 ,

as N → ∞, where WN is as defined in (1.1). Furthermore, the distribution
of ξ is determined by νd.

Remark 2.2. It is trivial to see that C2 ⊂ C4, and hence one can talk about
the d4 distance between two point measures in C2.

Remark 2.3. There is a notion of convergence different from that in (2.7),
namely “vague convergence”. Suppose that (ξn : 1 ≤ n ≤ ∞) are measures
on R such that

ξn(R \ (−ε, ε)) < ∞ for all ε > 0, 1 ≤ n ≤ ∞ .

Then ξn converges vaguely to ξ∞ if for all x < 0 < y with ξ∞({x, y}) = 0,
it holds that

lim
n→∞

ξn(R \ (x, y)) = ξ∞(R \ (x, y)) .
The vague convergence defined above is same as the vague convergence on
[−∞,∞] \ {0} discussed on page 171 in Resnick (2007), for example. It can
be proved without much difficulty that if (ξn : 1 ≤ n ≤ ∞) ⊂ Cp for some p
such that

(2.8) lim
n→∞

dp(ξn, ξ∞) = 0 ,
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then ξn converges to ξ∞ vaguely. The converse is, however, not true, that
is, (2.8) is strictly stronger than vague convergence.

If Theorem 2.6 is seen as an analogue of Theorem 2.1, then the next natu-
ral question should be the analogue of that answered in Theorem 2.2, namely
whether ξ restricted to R\{0} is non-null and necessarily random. Both these
questions are answered in the affirmative in the case when νd((−π, π]2) > 0
by the following result.

Theorem 2.7. If νd((−π, π]2) > 0, then the random variable∫
R
x2ξ(dx)

is positive almost surely, and non-degenerate.

2.3. Long range dependence. In this subsection, we make the connection
between the random matrix models and the long range dependence men-
tioned in Section 1. Recalling the fact that for a family of i.i.d. Gaussian
random variables, the spectral measure is absolutely continuous, Theorem
2.1 can be interpreted as a result about the “short range dependent” com-
ponent of the process {Xj,k : j, k ∈ Z}. Indeed, the LSD µf is completely
determined by the absolutely continuous component of the spectral measure.

On the other hand, Theorem 2.6 establishes the connection between the
discrete component of the spectral measure and the limiting eigen measure
ξ. In the presence of atoms in the spectral measure, a stationary Gaussian
process is considered to have a long memory for several reasons. For exam-
ple, in that case, the process is non-ergodic; see Cornfeld et al. (1982). A
trivial example of such a process is the following. Let G be a N(0, 1) random
variable, and set Xj,k := G for all j, k.

It is also worth noting that in addition to the transition from ESD to
EM, the scaling also changes from

√
N to N when passing from the former

result to the latter. Therefore, it is clear that the absolutely continuous and
discrete components of the process contribute only towards the LSD and
the limiting eigen measure of WN respectively, albeit with different scalings.
The above observation suggests naturally the following definition of short
and long range dependence.

Definition 1. A mean zero stationary Gaussian process with positive vari-
ance indexed by Z2 is short range dependent if the corresponding spectral
measure is absolutely continuous, and the same is long range dependent if
the spectral measure is discrete, that is, supported on a countable set.

The above definitions, of course, are not exhaustive in that there may be
processes whose range of dependence is neither short nor long. That can be
hoped to be resolved partially if the role of the component νcs is understood.
This we leave aside for future research.

We conclude this discussion by pointing out that there are other contexts
in which long and short range dependence is defined based on absolute con-
tinuity of the spectral measure. For example, Section 5 of Samorodnitsky
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(2006) approaches long range dependence for a stationary second order pro-
cess indexed by Z from the point of view of the growth rate of the variance
of its partial sums. In particular, the definition given in (5.14) on page 194
therein is close to the definition given above, though not exactly the same.

3. Proofs

3.1. Proofs of Theorems 2.1-2.5. We now proceed towards the proof of
Theorem 2.1. The proof is by the classical method of moments. However, as
illustrated later by Example 3, the moments of the LSD need not be finite.
Hence, some work is needed to get around that.

Define a map T from (−π, π] to itself by

T (x) = −x1(x < π) + π1(x = π), −π < x ≤ π .

Since the integral on the right hand side of (2.1) is real for all u and v, it
follows that ν is invariant under the transformation (x, y) 7→ (T (x), T (y)),
and in particular

ν({(x, y)}) = ν({(T (x), T (y))}) for all x, y .

Since the measure νd is concentrated on a countable set, and

νd({(x, y)}) = ν({(x, y)}) for all x, y ,

it follows that νd is also invariant under the map T . By (2.3), it follows that
νac is also invariant under that map, that is,

(3.1) f(x, y) = f(−x,−y) for almost all (x, y) ∈ [−π, π]2 .

Therefore, for k, l ∈ Z, ck,l defined by

(3.2) ck,l := (2π)−1
∫
[−π,π]2

e−ι(kx+ly)
√

f(x, y) dxdy ,

is a real number. By Parseval’s identity, it follows that∑
k,l∈Z

c2k,l < ∞ .

Let (Ui,j : i, j ∈ Z) be i.i.d. N(0, 1) random variables. Define

(3.3) Yi,j :=
∑
k,l∈Z

ck,lUi−k,j−l, i, j ∈ Z .

An important result, on which the current paper is built, is the following
fact which is well known in the literature of stationary processes.

Fact 3.1. The process (Yi,j : i, j ∈ Z) defined in (3.3) is a stationary Gauss-
ian process with

E (Yi,jYi+u,j+v) =

∫
[−π,π]2

eι(ux+vy)f(x, y)dx dy, for all u, v ∈ Z .
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Since νd is T invariant, it follows that

νd =
∑
j≥1

aj
2

(
δ(xj ,yj) + δ(T (xj),T (yj))

)
,

for some at most countable set {(x1, y1), (x2, y2), . . .} ⊂ (−π, π]2 and non-
negative numbers a1, a2, . . . such that

∑
j aj < ∞. Since some of the aj ’s

can be zero, we can and do assume without loss of generality that the above
set is countably infinite. Let (Vi,j : i = 1, 2, j ≥ 1) be a family of i.i.d.
N(0, 1) random variables which is independent of the family (Ui,j : i, j ∈ Z).
Define

(3.4) Zi,j :=

∞∑
k=1

√
ak [V1,k cos(ixk + jyk) + V2,k sin(ixk + jyk)] , i, j ∈ Z .

It can be verified by calculating the covariances that

(Xi,j : i, j ∈ Z) d
= (Yi,j + Zi,j : i, j ∈ Z) .

Therefore, without loss of generality, we assume that

(3.5) Xi,j = Yi,j + Zi,j , i, j ∈ Z .

Fix n ≥ 1, and define

Yi,j,n :=
n∑

k,l=−n
ck,lUi−k,j−l, i, j ∈ Z ,(3.6)

and similarly,

Zi,j,n :=
n∑

k=1

√
ak [V1,k cos(ixk + jyk) + V2,k sin(ixk + jyk)] , i, j, n ≥ 1 .

Set

(3.7) f̂n(u, v) := E [Yi,j,nYi+u,j+v,n]

=
∑
k,l∈Z

ck,lck+u,l+v1(|k| ∨ |l| ∨ |k + u| ∨ |l + v| ≤ n) ,

for all u, v ∈ Z. For N,n ≥ 1, define the following N × N symmetric
matrices:

WN,n(i, j) := Yi,j,n + Yj,i,n ,(3.8)

WN,∞(i, j) := Yi,j + Yj,i ,(3.9)

WN,n(i, j) := Yi,j,n + Yj,i,n + Zi,j,n + Zj,i,n ,(3.10)

W̃N (i, j) := Zi,j + Zj,i ,(3.11)

W̃N,n(i, j) := Zi,j,n + Zj,i,n ,(3.12)

for all 1 ≤ i, j ≤ N .
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Fix m ≥ 1, and σ ∈ NC2(2m). Let (V1, . . . , Vm+1) denote the Kreweras
complement of σ. For 1 ≤ i ≤ m+ 1, denote

(3.13) Vi := {vi1, . . . , vili} .
Define

(3.14) S(σ) :=

(k1, . . . , k2m) ∈ Z2m :

ls∑
j=1

kvsj = 0, s = 1, . . . ,m+ 1

 ,

and
(3.15)

βn,2m :=
∑

σ∈NC2(2m)

∑
k∈S(σ)

∏
(u,v)∈σ

[
f̂n(ku,−kv) + f̂n(kv,−ku)

]
, m, n ≥ 1 .

Notice that even though the set S(σ) has infinite cardinality, only finitely

many summands on the right hand side above are non-zero, because f̂n(u, v)
is 0 if |u| ∨ |v| > 2n.

Our first step towards proving Theorem 2.1 is the following proposition.

Proposition 3.1. For fixed n ≥ 1, there exists a compactly supported sym-
metric probability measure µf,n whose 2m-th moment is βn,2m for all m ≥ 1.
Furthermore,

ESD(WN,n/
√
N) → µf,n ,

weakly in probability, as N → ∞.

Proof. The proof is by the method of moments. As is now standard in the
literature, for executing the proof, it is sufficient to show that

(3.16) lim
N→∞

N−(m+1)E
[
Tr

(
W 2m

N,n

)]
= βn,2m for all m ≥ 1 ,

(3.17) lim
N→∞

N−2(m+1)Var
[
Tr

(
W 2m

N,n

)]
= 0 for all m ≥ 1 ,

and

(3.18) lim sup
m→∞

β
1/2m
2m < ∞ .

It is worth mentioning that the odd moments of the ESD can be safely
ignored, because that they go to zero, is now routine.

We start with showing (3.16). To that end, fix m ≥ 1, and for i :=
(i1, . . . , i2m) ∈ Z2m, define

Ei := E

 2m∏
j=1

(
Yij−1,ij ,n + Yij ,ij−1,n

) ,

with the convention that i0 := i2m for all i ∈ Z2m, a convention that will be
followed throughout this proof. Recall that

E
[
Tr

(
W 2m

N,n

)]
=

∑
i∈{1,...,N}2m

Ei .
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Fix σ ∈ NC2(2m) and denote its Kreweras complement by K(σ). For a
tuple i ∈ Z2m, call i to be σ-Catalan if

|iu−1 − iv| ∨ |iu − iv−1| ≤ 2n for all (u, v) ∈ σ ,

and

|iu − iv| > 4n whenever u, v are in distinct blocks of K(σ) .

For N ≥ 1, denote

Cat(σ,N) := {i ∈ {1, . . . , N}2m : i is σ-Catalan} .
In view of standard combinatorial arguments, it suffices to show that

(3.19) lim
N→∞

N−(m+1)
∑

i∈Cat(σ,N)

Ei

=
∑

k∈S(σ)

∏
(u,v)∈σ

[
f̂n(ku,−kv) + f̂n(kv,−ku)

]
,

for all fixed σ in NC2(2m).
To that end, fix a σ ∈ NC2(2m). Let V1, . . . , Vm+1 denote the blocks of

K(σ). Write
Vu = {vu1 , . . . , vulu}, u = 1, . . . ,m+ 1 ,

where
vu1 ≤ . . . ≤ vulu .

Then it can be shown that for all i ∈ Cat(σ,N), there exist unique tuples
k(i) ∈ S(σ) ∩ {−2n, . . . , 2n}2m and j(i) ∈ Z2m such that

(3.20) (j(i)u−1, j(i)u) = (j(i)v, j(i)v−1) for all (u, v) ∈ σ ,

and

(3.21) ivux = j(i)vux +

x∑
w=1

k(i)vuw , x = 1, . . . , lu, u = 1, . . . ,m+ 1 .

As a consequence, it follows that for all (u, v) ∈ σ,

iu − iv−1 = k(i)u ,(3.22)

and iv − iu−1 = k(i)v .(3.23)

Notice that for fixed (u, v) ∈ σ with 1 ≤ u < v ≤ 2m,

|iv−1 − iv| > 4n ,

because v − 1 and v cannot belong to the same block of K(σ). Therefore,

|iu − iv| ≥ |iv − iv−1| − |iv−1 − iu| > 2n ,

and hence

E
[
Yiu−1,iu,nYiv−1,iv ,n

]
= E

[
Yiu,iu−1,nYiv ,iv−1,n

]
= 0 .

Furthermore, if (u, v) /∈ σ, then by a similar reasoning, it can be shown that

E
[(
Yiu−1,iu,n + Yiu,iu−1,n

) (
Yiv−1,iv ,n + Yiv,iv−1,n

)]
= 0 .
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As a consequence of the above two identities, it follows that

Ei =
∏

(u,v)∈σ

E
[(
Yiu−1,iu,n + Yiu,iu−1,n

) (
Yiv−1,iv ,n + Yiv ,iv−1,n

)]
=

∏
(u,v)∈σ

[
f̂n(k(i)v,−k(i)u) + f̂n(k(i)u,−k(i)v)

]
,

the last equality following from (3.22) and (3.23). It is, once again, easy to
check that for fixed k ∈ S(σ),

lim
N→∞

N−(m+1)#{i ∈ Cat(σ,N) : k(i) = k} = 1 ,

and hence (3.19) follows, which establishes (3.16). Proof of (3.17) follows by
a similar combinatorial analysis which is analogous to the proof by method
of moments for the classical Wigner matrix. Hence we omit that.

The proof will be complete if (3.18) can be shown. To that end observe
that

βn,2m ≤
(
32n2 max

|u|∨|v|≤2n
|f̂n(u, v)|

)m

#NC2(2m) .

It can be shown by Stirling’s approximation that

#NC2(2m) = O (4m) ,

and hence (3.18) follows. This completes the proof. �

Recall the N ×N random matrix WN,n from (3.10). The second step in
the proof of Theorem 2.1 is the following lemma.

Lemma 3.1. For fixed n ≥ 1, as N → ∞,

ESD(WN,n/
√
N) → µf,n ,

weakly in probability, where µf,n is as in the statement of Proposition 3.1.

For the proof of the above result, we shall use the following fact which
follows from Theorem A.43 on page 503 in Bai and Silverstein (2010).

Fact 3.2. If L denotes the Lévy distance between two probability measures,
then for any two N ×N real symmetric matrices A and B,

L (ESD(A),ESD(B)) ≤ 1

N
Rank(A−B) .

Proof of Lemma 3.1. All that needs to be shown is that

L
(
ESD(WN,n/

√
N), µf,n

)
P−→ 0 ,

as N → ∞. In view of Proposition 3.1, it suffices to show that

L
(
ESD(WN,n/

√
N),ESD(WN,n/

√
N)

)
P−→ 0 ,
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as N → ∞. To that end, notice that by Fact 3.2,

L
(
ESD(WN,n/

√
N),ESD(WN,n/

√
N)

)
≤ 1

N
Rank

(
WN,n −WN,n

)
.

It is easy to see that the rank of the N ×N matrix whose (i, j)-th entry is
Zi,j,n is at most 4n. Therefore,

Rank
(
WN,n −WN,n

)
≤ 8n .

This completes the proof. �

For the final step in the proof of Theorem 2.1, we shall use the following
fact which is also well known.

Fact 3.3. Let (Σ, d) be a complete metric space, and let (Ω,A, P ) be a
probability space. Suppose that (Xmn : (m,n) ∈ {1, 2, . . . ,∞}2 \ {∞,∞}) is
a family of random elements in Σ, that is, measurable maps from Ω to Σ,
the latter being equipped with the Borel σ-field induced by d. Assume that

(1) for all fixed 1 ≤ m < ∞,

d(Xmn, Xm∞)
P−→ 0 ,

as n → ∞,
(2) and, for all ε > 0,

lim
m→∞

lim sup
n→∞

P [d(Xmn, X∞n) > ε] = 0 .

Then, there exists a random element X∞∞ of Σ such that

(3.24) d(Xm∞, X∞∞)
P−→ 0 ,

as m → ∞, and

d(X∞n, X∞∞)
P−→ 0 ,

as n → ∞. Furthermore, if Xm∞ is deterministic for all m, then so is
X∞∞, and then (3.24) simplifies to

(3.25) lim
m→∞

d(Xm∞, X∞∞) = 0 .

Proof of Theorem 2.1. The space of probability measures on R is a com-
plete metric space when equipped with the Lévy distance L(·, ·). In view of
Lemma 3.1 and Fact 3.3, all that needs to be shown to complete the proof
is that

(3.26) lim
n→∞

lim sup
N→∞

P
(
L
(
ESD(WN/

√
N),ESD(WN,n/

√
N)

)
> ε

)
= 0 ,
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for all ε > 0. To that end, fix ε > 0 and observe that

P
(
L
(
ESD(WN/

√
N),ESD(WN,n/

√
N)

)
> ε

)
≤ ε−3E

[
L3

(
ESD(WN/

√
N),ESD(WN,n/

√
N)

)]
≤ ε−3N−2ETr

[
(WN −WN,n)

2
]
,

the inequality in the last line following from the Hoffman-Wielandt inequal-
ity; see Corollary A.41 on page 502 in Bai and Silverstein (2010). Clearly,
by (3.5), it follows that

ETr
[
(WN −WN,n)

2
]

(3.27)

≤ 4

N∑
i,j=1

[
E
[
(Yi,j − Yi,j,n)

2
]
+ E

[
(Zi,j − Zi,j,n)

2
]]

= 4N2

 ∞∑
k=n+1

ak +
∑

i,j∈Z:|i|∨|j|>n

c2i,j

 .(3.28)

This establishes (3.26). Fact 3.3 ensures the existence of a deterministic
probability measure µf such that

L
(
ESD(WN/

√
N), µf

)
P−→ 0 ,

as N → ∞.
Furthermore, assertion (3.25) ensures that

(3.29) µf,n
w−→ µf as n → ∞ .

From the definition, it is easy to see that µf,n is determined by f for every
n ≥ 1, and hence so is µf . This completes the proof of Theorem 2.1. �
Remark 3.1. Since µf,n are compactly supported for each n, its character-
istic function is∫

R
eitxµf,n(dx) = 1 +

∞∑
m=1

(−1)m
βn,2m
(2m)!

t2m, t ∈ R .

Thus, the characteristic function of µf is∫
R
eitxµf (dx) = 1 + lim

n→∞

∞∑
m=1

(−1)m
βn,2m
(2m)!

t2m, t ∈ R .

It is worth noting that exchanging the sum and limit above does not make
sense because limn→∞ βn,2m may or may not be finite. Example 3 is one
where the limit is infinite for all m ≥ 2.

Proof of Theorem 2.2. Denote the probability space on which we were work-
ing so far by (Ω,A, P ). In particular, the random matrices WN,n are defined
on this probability space. Consider the interval (0, 1) equipped with the
standard Borel σ-field B((0, 1)) and the Lebesgue measure Leb which when
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restricted to (0, 1) becomes a probability measure. Define a master proba-
bility space

(Ω× (0, 1),A× B((0, 1)),P := P × Leb) .

Denote the expectation with respect to P by E. By Proposition 3.1 and
the Cantor diagonalization principle, one can choose positive integers N1 <
N2 < N3 < . . . such that for all fixed n ≥ 1,

ESD(WNk,n/
√

Nk) → µf,n as k → ∞ ,

weakly almost surely, that is,

(3.30) lim
k→∞

L
(
ESD(WNk,n/

√
Nk), µf,n

)
= 0 almost surely,

for all fixed n ≥ 1, where L is the Lévy distance. For 1 ≤ k, n < ∞, we
define a random variables χk,n on Ω× (0, 1) by

χk,n(ω, x) := N
−1/2
k λdNkxe (WNk,n(ω)) , ω ∈ Ω, x ∈ (0, 1) .

Furthermore, for all k, define

χk,∞(ω, x) := N
−1/2
k λdNkxe (WNk,∞(ω)) , ω ∈ Ω, x ∈ (0, 1) ,

where WN,∞ is as in (3.9). Finally, for all n ≥ 1, define

χ∞,n(ω, x) := F←n (x), ω ∈ Ω, x ∈ (0, 1) ,

where Fn(·) is the c.d.f. corresponding to µf,n, and for any c.d.f. F (·), F←(·)
is defined by

F←(y) := inf {x ∈ R : F (x) ≥ y} , 0 < y < 1 .

Our first goal is to show that for all fixed 1 ≤ n < ∞,

(3.31) χk,n → χ∞,n P-almost surely, as k → ∞ .

To that end, define the set

A :=

{
ω ∈ Ω : lim

k→∞
L
(
ESD(WNk,n(ω)/

√
Nk), µf,n

)
= 0 for all n ≥ 1

}
.

By (3.30), it follows that P (A) = 1. Therefore, for establishing (3.31), it
suffices to show that for all ω ∈ A,

(3.32) χk,n(ω, x) → χ∞,n(ω, x) as k → ∞ for almost all x ∈ (0, 1) .

To that end, fix ω ∈ A. If Fk,n denotes the c.d.f. of ESD(WNk,n(ω)/
√
Nk),

then it is easy to see that

χk,n(ω, x) = F←k,n(x) .

By the choice of the set A, it follows that for fixed 1 ≤ n < ∞,

lim
k→∞

Fk,n(x) = Fn(x)

for all x which is a continuity point of Fn. Therefore, by standard ana-
lytic arguments (see for example the proof of Theorem 25.6, page 333 in
Billingsley (1995)), (3.32) follows, which in turn establishes (3.31).
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The next task is to show that for fixed 1 ≤ n < ∞, the family

{χ2
k,n : 1 ≤ k < ∞} is uniformly integrable.

To that end it suffices to show that

sup
1≤k<∞

E
(
χ4
k,n

)
< ∞ .

Fix n and notice that

E
(
χ4
k,n

)
= N−3k ETr

(
W 4

Nk,n

)
→ βn,4 as k → ∞ ,

the last step following by (3.16). This establishes the uniform integrability,
which along with (3.31), proves that

(3.33) lim
k→∞

E
[
(χk,n − χ∞,n)

2
]
= 0 for all 1 ≤ n < ∞ .

Our final claim is that

(3.34) lim
n→∞

lim sup
k→∞

E
[
(χk,n − χk,∞)2

]
= 0 .

To that end, notice that

E
[
(χk,n − χk,∞)2

]
= N−2k E

Nk∑
j=1

[λj(WNk,n)− λj(WNk,∞)]2

≤ N−2k ETr
[
(WNk,n −WNk,∞)2

]
≤ C

∑
m,l∈Z:|m|∨|l|>n

c2m,l ,

for some finite constant C. The inequality in the second line is the Hoffman-
Wielandt inequality; see Lemma 2.1.19 on page 21 in Anderson et al. (2010).
This completes the proof of (3.34).

Fact 3.3 along with (3.33) and (3.34) shows that there exists χ∞,∞ ∈
L2(Ω× (0, 1)) such that

(3.35) lim
n→∞

E
[
(χ∞,n − χ∞,∞)2

]
= 0 .

It is easy to see that for all n < ∞, χ∞,n has law µf,n. Therefore, by (3.29)
and (3.35), it follows that law of χ∞,∞ is µf . Equation (3.35) furthermore
ensures that ∫

R
x2µf (dx) = lim

n→∞

∫
R
x2µf,n(dx)

= lim
n→∞

2E(Y 2
0,0,n)

= 2E(Y 2
0,0)

= 2

∫
[−π,π]2

f(x, y)dxdy ,
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where Y0,0 and Y0,0,n are as in (3.3) and (3.6) respectively. This completes
the proof. �

We now proceed towards the proof of Theorem 2.3. For that, we shall
need the following two facts, the first of which is a simple consequence of
the Holder’s inequality.

Fact 3.4. Suppose for some integer k ≥ 1 and a measure space (Σ,Ξ,m),
the functions {fin : 1 ≤ i ≤ k, 1 ≤ n ≤ ∞} are in Lk(Σ). Furthermore,
assume that for all fixed 1 ≤ i ≤ k,

fin → fi∞, as n → ∞ in Lk .

Then, f1n . . . fkn ∈ L1(Σ) for all 1 ≤ n ≤ ∞, and

f1n . . . fkn → f1∞ . . . fk∞, as n → ∞ in L1 .

The second fact is a restatement of Theorem 3.4.4, page 146 in Krantz
(1999).

Fact 3.5. Assume that for some p ∈ (1,∞), h ∈ Lp
(
[−π, π]2,C

)
, that is, it

is a function from [−π, π]2 to C with finite Lp norm. Define

ĥjk :=
1

2π

∫
[−π,π]2

e−ι(jx+ky)h(x, y)dxdy, j, k ∈ Z .

Then,

1

2π

n∑
j,k=−n

ĥj,ke
ι(jx+ky) → h(x, y) in the Lp norm, as n → ∞ .

The first step towards proving Theorem 2.3 is the following lemma.

Lemma 3.2. If f is a non-negative trigonometric polynomial defined on
[−π, π]2, that is,

f(x, y) :=

n∑
j,k=−n

ajke
ι(jx+ky) ≥ 0 ,

for some finite n ≥ 1, and real numbers (ajk : 1 ≤ j, k ≤ n), then for all
fixed m ≥ 1, ∫

R
x2mµf (dx)

=
∑

σ∈NC2(2m)

∑
k∈S(σ)

∏
(u,v)∈σ

∫
[−π,π]2

eι(kux+kvy)[f(x,−y) +(3.36)

f(−y, x)]dxdy

= (2π)m−1
∑

σ∈NC2(2m)

∫
[−π,π]m+1

Lσ,f (x)dx ,(3.37)

where S(σ) is as in (3.14).
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Proof. Since f is a trigonometric polynomial, it is integrable, and hence
there exists a stationary Gaussian process (Gi,j : i, j ∈ Z) with mean zero,
and

RG(k, l) := E(G0,0Gk,l) =

∫
[−π,π]2

eι(kx+ly)f(x, y)dxdy, k, l ∈ Z .

The hypothesis ensures that RG(k, l) = 0 if |k| ∨ |l| > n. Hence, exactly
same arguments as those in the proof of Proposition 3.1 will show that for
fixed m ≥ 1,∫

R
x2mµf (dx) =

∑
σ∈NC2(2m)

∑
k∈S(σ)

∏
(u,v)∈σ

[RG(ku,−kv) +RG(kv,−ku)]

=
∑

σ∈NC2(2m)

∑
k∈S(σ)

∏
(u,v)∈σ

RG(ku, kv) ,

where

RG(u, v) := RG(u,−v) +RG(v,−u) .

Defining

g(x, y) := f(x,−y) + f(−y, x) ,

it is easy to see from (3.1) that

(3.38)

∫
[−π,π]2

eι(ux+vy)g(x, y)dxdy = RG(u, v), u, v ∈ Z ,

which shows (3.36).
Therefore, to complete the proof, it suffices to show that

(3.39)
∑

k∈S(σ)

∏
(u,v)∈σ

RG(u, v) = (2π)m−1
∫
[−π,π]m+1

Lσ,f (x)dx ,

for all σ ∈ NC2(2m). To that end, fix σ, and notice that (3.38) implies that

g(x, y) = (2π)−2
n∑

k,l=−n
RG(k, l)e

−ι(kx+ly) ,

for almost all x, y. Observe that for all k ∈ {−n, . . . , n}2m and
x ∈ [−π, π]m+1,

∑
(u,v)∈σ

[
kuxTσ(u) + kvxTσ(v)

]
=

m+1∑
l=1

xl
∑
j∈Vl

kj ,
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and hence ∫
[−π,π]m+1

Lσ,f (x)dx

=

∫
[−π,π]m+1

 ∏
(u,v)∈σ

g
(
xTσ(u), xTσ(v)

) dx

= (2π)−2m
∫
[−π,π]m+1

[ ∑
k∈{−n,...,n}2m

exp

m+1∑
l=1

xl
∑
j∈Vl

kj


∏

(u,v)∈σ

RG(u, v)

]
dx

= (2π)1−m
∑

k∈{−n,...,n}2m∩S(σ)

∏
(u,v)∈σ

RG(u, v)

= (2π)1−m
∑

k∈S(σ)

∏
(u,v)∈σ

RG(u, v) .

This shows (3.39) which in turn establishes (3.37) and hence completes the
proof. �

The following lemma will also be needed for the proof of Theorem 2.3.

Lemma 3.3. Suppose that for all 1 ≤ n ≤ ∞, gn is a non-negative, inte-
grable and even function on [−π, π]2 such that as n → ∞,

gn → g∞ in L1 .

Then,

µgn
w−→ µg∞ as n → ∞ .

Proof. The hypothesis can be restated as

(3.40)
√
gn → √

g∞ in L2 .

Let (Gi,j : i, j ∈ Z) be a family of i.i.d. N(0, 1) random variables. Define

dk,l,n := (2π)−1
∫
[−π,π]2

e−ι(kx+ly)
√
gn(x, y)dxdy, k, l ∈ Z, 1 ≤ n ≤ ∞ ,

and

Hi,j,n :=
∑
k,l∈Z

dk,l,nGi−k,j−l, i, j ∈ Z, 1 ≤ n ≤ ∞ .

By Fact 3.1, it follows that for all 1 ≤ n ≤ ∞, the family (Hi,j,n : i, j ∈ Z)
is a stationary Gaussian process whose spectral density is gn. For every
1 ≤ n ≤ ∞ and 1 ≤ N < ∞, define a N ×N matrix AN,n by

AN,n(i, j) := (Hi,j,n +Hj,i,n) /
√
N, 1 ≤ i, j ≤ N .
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By Theorem 2.1, it follows that for all 1 ≤ n ≤ ∞,

(3.41) L (ESD(AN,n), µgn)
P−→ 0 as N → ∞ .

Notice that for fixed 1 ≤ N,n < ∞, by arguments similar to those leading
to (3.28) from (3.27),

ETr
[
(AN,n −AN,∞)2/N

]
≤ 4

∑
k,l∈Z

(dk,l,n − dk,l,∞)2

= 4

∫
[−π,π]2

(√
gn(x, y)−

√
g∞(x, y)

)2
dxdy ,

the last equality following from Parseval. Therefore, by (3.40), it holds that
for all ε > 0,

lim
n→∞

lim sup
N→∞

P [L (ESD(AN,n),ESD(AN,∞)) > ε] = 0 .

The above, along with (3.41) and Fact 3.3 proves the claim of the lemma. �

Proof of Theorem 2.3. For the first part, fixm ≥ 2, and assume that ‖f‖m <
∞. Let ckl be as in (3.2), and define for n ≥ 1,

(3.42) fn(x, y) :=

 1

2π

n∑
k,l=−n

ckle
ι(kx+ly)

2

, −π ≤ x, y ≤ π .

By Fact 3.5, it follows that

(3.43) fn → f in Lm norm, as n → ∞ ,

which, with an appeal to Fact 3.4, implies that

(3.44) lim
n→∞

∫
[−π,π]m+1

Lσ,fn(x)dx =

∫
[−π,π]m+1

Lσ,f (x)dx, σ ∈ NC2(2m) .

Equation (3.43) along with Lemma 3.3 and the observation that fn is a
non-negative even function implies that

(3.45) µfn
w−→ µf as n → ∞ .

Therefore, by Fatou’s lemma, it follows that∫
R
x2mµf (dx) ≤ lim inf

n→∞

∫
R
x2mµfn(dx)

= lim inf
n→∞

(2π)m−1
∑

σ∈NC2(2m)

∫
[−π,π]m+1

Lσ,fn(x)dx

= (2π)m−1
∑

σ∈NC2(2m)

∫
[−π,π]m+1

Lσ,f (x)dx < ∞ ,

the equality in the last two lines following from Lemma 3.2 and (3.44) re-
spectively. This completes the proof of the first part.
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For the second part, assume that ‖f‖∞ < ∞. By the arguments above,
it follows that

lim
n→∞

∫
R
x2mµfn(dx) =

(2π)m−1
∑

σ∈NC2(2m)

∫
[−π,π]m+1

Lσ,f (x)dx for all m ≥ 1 ,

and

lim sup
m→∞

(2π)m−1 ∑
σ∈NC2(2m)

∫
[−π,π]m+1

Lσ,f (x)dx

1/2m

≤ lim sup
m→∞

[
(2π)2m(2‖f‖∞)m+1#NC2(2m)

]1/2m
= 4

√
2π

√
‖f‖∞ .

This shows that there exists a compactly supported even probability measure
µ∗ such that∫

R
x2mµ∗(dx) =

∑
σ∈NC2(2m)

∫
[−π,π]m+1

Lσ,f (x)dx for all m ≥ 1 ,

and

µfn
w−→ µ∗ as n → ∞ .

This, along with (3.45) completes the proof of the second part. �

Next, we proceed towards the proof of Theorem 2.4. The following lemma,
which is the first step towards that, proves the result for a special case.

Lemma 3.4. Suppose that (Gi,j : i, j ∈ Z) is a stationary Gaussian process
whose covariance kernel RG(·, ·) defined by

RG(u, v) := E [G0,0Gu,v] , u, v ∈ R ,

satisfies

RG(u, v) =

∫
[−π,π]2

eι(ux+vy)fG(x)fG(y) dxdy, u, v ∈ R ,

for some non-negative fG(·) defined on [−π, π], and there exists n such that

(3.46) RG(u, v) = 0 if |u| ∨ |v| > n .

Then ESD of the N ×N matrix whose (i, j)-th entry is Gi,j/
√
N converges

weakly in probability to

ηG �WSL(1) ,

where ηG is the law of fG(U)π2
√
2 and U is an Uniform (−π, π) random

variable.
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Proof. By Theorem 2.1, it follows that the limit exists, say µG, and fur-
thermore by the hypothesis (3.46), and claim (3.36) of Lemma 3.2, it holds
that

(3.47)

∫
R
x2mµG(dx) =

∑
σ∈NC2(2m)

∑
k∈S(σ)

∏
(u,v)∈σ

[RG(ku,−kv) +RG(kv,−ku)] , m ≥ 1 .

Our first claim is that

(3.48) RG(u,−v) +RG(v,−u) = rG(u)rG(v), u, v ∈ Z ,

where

(3.49) rG(u) :=
√
2

∫ π

−π
eιuxfG(x)dx .

To that end, notice that by (3.1), it follows that

fG(−x)fG(−y) = fG(x)fG(y) for almost all x, y ∈ [−π, π] .

Integrating out y, it follows that fG(·) is an even function. Therefore,

RG(u,−v) +RG(v,−u) =

∫
[−π,π]2

2 cos(ux− vy)fG(x)fG(y)dxdy

= rG(u)rG(v) ,

where the fact that fG(·) is even has been used for the last equality. This
establishes (3.48).

Our next claim is that

(3.50) fG(x) =
1

π2
√
2

n∑
k=−n

rG(k)e
−ιkx, for almost all x ∈ [−π, π] .

The above follows from (3.49) using Fourier inversion and the fact that for
|u| > n, rG(u) = 0 which is a consequence of (3.46).

By (3.47) and (3.48), it follows that for fixed m ≥ 1,∫
x2mµG(dx) =

∑
σ∈NC2(2m)

∑
k∈S(σ)

∏
(u,v)∈σ

rG(ku)rG(kv)

=
∑

σ∈NC2(2m)

∑
k∈S(σ)

2m∏
j=1

rG(kj) .

Fix σ ∈ NC2(2m), and let for i = 1, . . . ,m+1, li be the size of Vi which are
the blocks of the Kreweras complement of σ, as in (3.13). Then, it is easy
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to see that ∑
k∈S(σ)

2m∏
j=1

rG(kj) =

m+1∏
i=1

∑
k∈Zli :k1+...+kli=0

li∏
j=1

rG(kj)

=

m+1∏
i=1

(2π)−1
∫ π

−π

[
fG(x)π2

√
2
]li

dx

=

m+1∏
i=1

∫
R
xliηG(dx) ,

the second last equality being a consequence of (3.50). Therefore, it follows
that ∫

R
x2mµG(dx) =

∑
σ∈NC2(2m)

m+1∏
i=1

∫
R
xliηG(dx)

=

∫
R
x2mηG �WSL(1) ,

the last equality following from Theorem 14.4 in Nica and Speicher (2006).
This shows that µG = ηG �WSL(1), and thus completes the proof. �

The next step towards the proof of Theorem 2.4 is the following.

Lemma 3.5. If

g(x, y) :=
1

2
[f(x, y) + f(y, x)] , −π ≤ x, y ≤ π ,

then

µf = µg .

Proof. For n ≥ 1, let fn be as in (3.42), and define and

gn(x, y) :=
1

2
[fn(x, y) + fn(y, x)] , −π ≤ x, y ≤ π .

Noticing that for all σ ∈
⋃∞

m=1NC2(2m),

Lσ,fn = Lσ,gn a.e. ,

it follows by Lemma 3.2 that

µfn = µgn for all n ≥ 1 .

Using (3.43) with m = 1, which is valid because ‖f‖1 < ∞, it follows that

fn → f in L1 as n → ∞ ,

from which it follows that

gn → g in L1 .

Lemma 3.3 completes the proof. �
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Proof of Theorem 2.4. Define

g(x, y) :=
1

2
[f(x, y) + f(y, x)] , −π ≤ x, y ≤ π .

In view of Lemma 3.5, it suffices to show that

(3.51) µg = ηr �WSL(1) .

To that end, define

dk := (2π)−1/2
∫ π

−π
e−ιkx

√
r(x)dx, k ∈ Z .

Then, it is easy to see that

(3.52) (2π)−1
∫
[−π,π]2

e−ι(kx+ly)
√

g(x, y)dxdy = dkdl, k, l ∈ Z .

Define

gn(x, y) :=

(2π)−1 n∑
k,l=−n

dkdle
ι(kx+ly)

2

, −π ≤ x, y ≤ π .

Clearly,

gn(x, y) = rn(x)rn(y) for all − π ≤ x, y ≤ π ,

where

rn(x) :=

[
(2π)−1/2

n∑
k=−n

dke
ιkx

]2

.

Arguments similar to those in the proof of Lemma 3.4 show that gn(·, ·) and
rn(·) take values in the non-negative half line. By the same lemma, it follows
that

µgn = ηrn �WSL(1), n ≥ 1 ,

where ηrn is the law of 23/2πrn(U), U being an Uniform (−π, π) random
variable. By the Fourier inversion theorem, it follows that

lim
n→∞

∫ π

−π
|rn(x)− r(x)| dx = 0 ,

and hence by Corollary 6.7 of Bercovici and Voiculescu (1993) and Lemma
8 of Arizmendi and Pérez-Abreu (2009), it follows that

ηrn �WSL(1)
w−→ ηr �WSL(1) as n → ∞ .

Again, Fourier inversion and (3.52) tells us that

lim
n→∞

∫
[−π,π]2

|gn(x, y)− g(x, y)| dxdy = 0 .

An appeal to Lemma 3.3 establishes (3.51), and thus completes the proof.
�

Finally, we prove Theorem 2.5.
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Proof of Theorem 2.5. Define

g(x, y) :=
1

2
[f(x, y) + f(y, x)] , −π ≤ x, y ≤ π .

By Lemma 3.5, it suffices to show that

(3.53) µg = WSL(2‖f‖1) .

To that end, set

hn(x, y) := (2π)−1
∑
j,k∈Z

dj,k1(j, k ∈ An)e
ι(jx+ky), −π ≤ x, y ≤ π .

Since dj,k are the Fourier coefficients of
√
g, they are real numbers, and

furthermore by the Parseval’s identity, it follows that∑
j,k∈Z

d2j,k < ∞ ,

and hence in view of the assumption that An ↑ Z, it follows that as n → ∞,

hn → √
g in L2 .

Define

gn(·, ·) := |hn(·, ·)|2, n ≥ 1 ,

where the modulus is necessary because hn(·) is C-valued. Therefore,

(3.54) gn → g in L1 .

Fix n ≥ 1. Since dj,k is real, it is easy to see that

gn(x, y)

= (2π)−2
∑

i,j,k,l∈Z
di,jdk,l1(i, j, k, l ∈ An)e

ι((i−k)x+(j−l)y)

= (2π)−2
∑
u,v∈Z

e−ι(ux+vy)
∑
i,j∈Z

di,jdi+u,j+v1(i, j, i+ u, j + v ∈ An) .

Since An is a finite set, gn is a trigonometric polynomial. By (3.36) of
Lemma 3.2 and the observation that gn(x, y) = gn(y, x), it follows that for
all m ≥ 1,

(3.55)

∫
R
x2mµgn(dx) =

∑
σ∈NC2(2m)

∑
k∈S(σ)

∏
(u,v)∈σ

2

∫
[−π,π]2

eι(kux+kvy)gn(x,−y)dxdy .

Fix u ∈ Z \ {0}, and notice that∫
[−π,π]2

eιuxgn(x,−y)dxdy =
∑
i,j∈Z

di,jdi+u,j1(i, j, i+ u ∈ An) = 0 .
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From the above, a simple induction onm will show that for all σ ∈ NC2(2m)
and for all k ∈ S(σ),∏

(u,v)∈σ

∫
[−π,π]2

eι(kux+kvy)gn(x,−y)dxdy 6= 0

implies that k = (0, . . . , 0). Therefore, (3.55) boils down to∫
R
x2mµgn(dx) = (2‖gn‖1)m#NC2(2m), m ≥ 1 ,

and hence
µgn = WSL(2‖gn‖1) .

Equation (3.54) with an appeal to Lemma 3.3 shows (3.53) and thus com-
pletes the proof. �

3.2. Proofs of Theorems 2.6 - 2.7. As the first step towards proving
Theorem 2.6, we start with a special case.

Proposition 3.2. There exists a random point measure ξ which is almost
surely in C2 such that

(3.56) d2

(
EM(W̃N/N), ξ

)
P−→ 0 ,

as N → ∞, where W̃N is as in (3.11).

Remark 3.2. In view of the inequality

P (d4(ξ1, ξ2) > ε) ≤ P
(
d2(ξ1, ξ2) > ε2

)
for all ε ∈ (0, 1) and random measures ξ1, ξ2 which are almost surely in C2,
(3.56) implies that

(3.57) d4

(
EM(W̃N/N), ξ

)
P−→ 0 ,

as N → ∞. Thus, the assertion of Proposition 3.2 is stronger than that
of Theorem 2.6 in the special case when the spectral measure of the input
process is discrete.

A few facts from the literature will be used in the proof of Proposition
3.2, which we shall now list below. The first fact is essentially a consequence
of the well known result that any two norms on a finite dimensional vector
space are equivalent.

Fact 3.6. Suppose that for every N ≥ 1, BN is a N × p matrix, where p is
a fixed finite integer. Assume that

lim
N→∞

(BT
NBN )(i, j) = C(i, j) for all 1 ≤ i, j ≤ p .

Then C ≥ 0, and for any p× p symmetric matrix P

(3.58) lim
N→∞

Tr

[{
(BT

NBN )1/2P (BT
NBN )1/2 − C1/2PC1/2

}2
]
= 0 .
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The next fact is a trivial consequence of the Sylvester’s determinant the-
orem

Fact 3.7. Suppose that B and P are N1×N2 and N2×N2 matrices respec-
tively, the latter being symmetric. Then,

EM
(
BPBT

)
= EM

(
(BTB)1/2P (BTB)1/2

)
.

The next is a well known fact from linear algebra.

Fact 3.8. For any symmetric matrix A, and a positive integer p,∫
R
xp(EM(A))(dx) = Tr(Ap) .

The last fact that we shall use is a combination of Corollary 5.3 on page
115 in Markus (1964) and the above fact. A detailed survey of results similar
to this one can be found in Chapter 13 of Bhatia (2007).

Fact 3.9. For symmetric matrices A and B of the same size and a positive
even integer p,

dp (EM(A),EM(B)) ≤ Tr1/p [(A−B)p] .

The following fact, the proof of which is an easy exercise, will also be
needed.

Fact 3.10. For all x, y ∈ R, the following limits exist:

lim
N→∞

1

N

N∑
k=1

sin(kx) sin(ky) ,

lim
N→∞

1

N

N∑
k=1

sin(kx) cos(ky) ,

and

lim
N→∞

1

N

N∑
k=1

cos(kx) cos(ky) .

Furthermore, for all x, y ∈ R,

(3.59) lim
N→∞

N−2
N∑

i,j=1

[cos(ix+ jy) + cos(iy + jx)]2

exists, and is strictly positive.

Proof of Proposition 3.2. Recalling the definition of W̃N,n from (3.12), in
view of Fact 3.3, it suffices to show that there exists a random measure ξn
which is almost surely in C2 such that

(3.60) d2

(
EM(W̃N,n/N), ξn

)
P−→ 0 ,
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as N → ∞ for all fixed n ≥ 1, and
(3.61)

lim
n→∞

lim sup
N→∞

P
[
d2

(
EM(W̃N,n/N),EM(W̃N/N)

)
> ε

]
= 0 for all ε > 0 .

Proceeding towards showing (3.60), fix n ≥ 1. By a relabeling, it is easy
to see that for all N ≥ 1,

W̃N,n(i, j) =
4n∑
k=1

Yk [uk(i)vk(j) + vk(i)uk(j)] ,

where Y1, Y2, . . . , Y4n are normal random variables which are not necessar-
ily independent, and for each k, there exists wk ∈ R such that either

uk(i) = sin(iwk) for all i ,

or

uk(i) = cos(iwk) for all i ,

and a similar assertion holds for vk with wk replaced by some zk. For N ≥ 1
and 1 ≤ k ≤ 8n, define a N × 1 vector ukN by

ukN (i) = uk(i), 1 ≤ i ≤ N ,

and similarly define the vector vkN . Next define a N × 8n matrix

BN :=
[√

|Y1|u1N
√

|Y1|v1N . . .
√

|Y4n|u4nN

√
|Y4n|v4nN

]
,

and a 8n× 8n symmetric matrix P by

P (i, j) :=

 sgn(Yk), if i = 2k − 1 and j = 2k for some k ,
sgn(Yk), if i = 2k and j = 2k − 1 for some k ,
0, otherwise ,

for all 1 ≤ i, j ≤ 8n. Then, it is easy to see that

W̃N,n = BNPBT
N , N ≥ 1 .

Fact 3.7 implies that

(3.62) EM
(
W̃N,n/N

)
= EM

(
1

N
(BT

NBN )1/2P (BT
NBN )1/2

)
, N ≥ 1 .

By Fact 3.10, it follows that there exists a 8n× 8n matrix Cn such that

lim
N→∞

1

N
(BT

NBN )(i, j) = Cn(i, j) almost surely ,

for all 1 ≤ i, j ≤ 8n. Facts 3.6 and 3.9 ensure that

lim
N→∞

d2

(
EM

(
1

N
(BT

NBN )1/2P (BT
NBN )1/2

)
,EM

(
C1/2
n PC1/2

n

))
= 0 ,

almost surely, which with the aid of (3.62) ensures (3.60), with

ξn := EM(C1/2
n PC1/2

n ) .
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For (3.61), it suffices to show that

lim
n→∞

lim sup
N→∞

E
[
d22

(
EM(W̃N,n/N),EM(W̃N/N)

)]
= 0 .

To that end, notice that by Fact 3.9,

E
[
d22

(
EM(W̃N,n/N),EM(W̃N/N)

)]
≤ N−2ETr

[
(W̃N,n − W̃N )2

]
≤ 4

∞∑
k=n+1

ak ,

the last line following from arguments analogous to those leading from (3.27)
to (3.28). This establishes (3.61) which along with (3.60) and Fact 3.3 shows
the existence of ξ which is almost surely in C2, and satisfies

(3.63) d2(ξn, ξ)
P−→ 0 as n → ∞ ,

and (3.56). This completes the proof of Proposition 3.2. �

Proof of Theorem 2.6. By the arguments mentioned in Remark 3.2, (3.57)
follows from Proposition 3.2. In view of that, to complete the proof of (2.7),
all that needs to be shown is

(3.64) d4

(
EM(W̃N/N),EM(WN/N)

)
P−→ 0 as N → ∞ .

To that end, recall (3.5), and the definition of WN,n from (3.8). By the
triangle inequality, it follows that for all N,n ≥ 1,

d4

(
EM(W̃N/N),EM(WN/N)

)
≤ d4

(
EM(W̃N/N),EM((W̃N +WN,n)/N)

)
+d4

(
EM((W̃N +WN,n)/N),EM(WN/N)

)
.

By Fact (3.9), it follows that

E
[
d44

(
EM(W̃N/N),EM((W̃N +WN,n)/N)

)]
≤ E

[
Tr((WN,n/N)4)

]
→ 0 as N → ∞ ,(3.65)

for all fixed n ≥ 1 using (3.16) with m = 2. In order to show (3.64), it
suffices to prove that

lim
n→∞

lim sup
N→∞

P
[
d4

(
EM((W̃N +WN,n)/N),EM(WN/N)

)
> ε

]
= 0 ,
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for all ε ∈ (0, 1). To that end fix such a ε, and notice by the arguments in
Remark 3.2,

P
[
d4

(
EM((W̃N +WN,n)/N),EM(WN/N)

)
> ε

]
≤ P

[
d2

(
EM((W̃N +WN,n)/N),EM(WN/N)

)
> ε2

]
≤ ε−4E

[
d22

(
EM((W̃N +WN,n)/N),EM(WN/N)

)]
≤ ε−4N−2E

[
Tr

[
(W̃N +WN,n −WN )2

]]
≤ C

∑
i,j∈Z:|i|∨|j|>n

c2i,j ,

for some finite constant C which is independent of N and n. In the above
calculation, the second last line follows from Fact 3.9, and the last line is
analogous to (3.28). This shows (3.64) which in turn proves (2.7).

In order to complete the proof of Theorem 2.6, all that needs to be shown
is that the distribution of ξ is determined by νd. That is, however, obvious
from (3.56) and the fact that the spectral measure of the stationary process
(Zi,j : i, j ∈ Z) is νd. �

Remark 3.3. The only reason that in (2.7), d4 cannot be changed to d2 is
that the limit (3.65) will become false if the index 4 is replaced by 2. Every
other step in the above proof goes through perfectly fine for d2.

We next proceed towards proving Theorem 2.7. For that, we shall need
the following lemma.

Lemma 3.6. Suppose that G1, G2, . . . are i.i.d. N(0, 1) random variables
and {αjk : j, k ∈ Z} are deterministic numbers such that

2n∑
j,k=1

αjkGjGk
P−→ Z ,

as n → ∞, for some finite random variable Z. If α11 6= 0, then Z has a
continuous distribution.

Proof. The given hypothesis implies that

G1

2n∑
j=2

α1jGj +

2n∑
j,k=2

αjkGjGk
P−→ Z − α11G

2
1 ,

as n → ∞. By passing to a subsequence, we get a family of random variables
(Xn, Yn : n ≥ 1) which is independent of G1 such that

G1Xn + Yn → Z − α11G
2
1, almost surely, as n → ∞ .

From here, by conditioning onG1 and using the independence, it follows that
Xn and Yn converge almost surely. Therefore, there exist random variables
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X and Y such that G1 is independent of (X,Y ) and

Z = α11G
2
1 +G1X + Y a.s. .

Since α11 6= 0, for all z ∈ R, it holds that

P (Z = z) =

∫
R2

P
[
α11G

2
1 +G1x+ y = z

]
P (X ∈ dx, Y ∈ dy) = 0

because for every fixed x and y, the integrand is zero. This completes the
proof. �

Proof of Theorem 2.7. In view of (2.6) and (3.63), it follows that

(3.66)

∫
R
x2ξn(dx)

P−→
∫
R
x2ξ(dx) as n → ∞ ,

where ξn is as in (3.63). The content of the proof is in showing that there
exists real numbers {αijkl : 1 ≤ i, j ≤ 2, k, l ≥ 1} such that

(3.67)

∫
R
x2ξn(dx) =

2∑
i,j=1

n∑
k,l=1

αijklVikVjl for all n ≥ 1 ,

where Vik is as in (3.4). Furthermore, since a premise of the result is that
νd is non-null, we assume without loss of generality that a1 > 0. Based on
that, it will be shown that

(3.68) α1111 > 0 .

Lemma 3.6 along with (3.66) - (3.68) will establish that
∫
R x2ξ(dx) has a

continuous distribution, and thus the claim of Theorem 2.7 will follow.
To that end, notice that by (2.6), (3.60) and Fact 3.8, it follows that

(3.69) N−2Tr
[
W̃ 2

N,n

]
P−→

∫
R
x2ξn(dx) as N → ∞ ,

for all fixed n ≥ 1, where W̃N,n is as in (3.12). It is easy to see that

W̃N,n =
2∑

i=1

n∑
k=1

VikAikN ,

where AikN are N ×N deterministic matrices defined by

AikN (u, v) :=

{ √
ak [cos(uxk + vyk) + cos(vxk + uyk)] , i = 1 ,√
ak [sin(uxk + vyk) + sin(vxk + uyk)] , i = 2 ,

for all 1 ≤ u, v ≤ N . Therefore,

N−2Tr
[
W̃ 2

N,n

]
=

2∑
i,j=1

n∑
k,l=1

VikVjlN
−2Tr (AikNAjlN ) for all N,n ≥ 1 .
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Since by (3.69) for every fixed n the right hand side converges in proba-
bility, and the random variables {VikVjl : 1 ≤ i, j ≤ 2, 1 ≤ k, l ≤ n} are
uncorrelated, it follows that

αijkl := lim
N→∞

N−2Tr (AikNAjlN ) exists for all 1 ≤ i, j ≤ 2, k, l ≥ 1 ,

and that (3.67) holds. Finally, notice that (3.68) follows from (3.59) in Fact
3.10. This completes the proof of Theorem 2.7. �

4. A corollary and examples

In this section, a corollary and a few numerical examples that follow from
the results of the previous sections are discussed. The first one is a corollary
of Theorem 2.5, followed by a numerical example of the same result.

Corollary 1. Assume that (Gn : n ∈ Z) is a one-dimensional stationary
Gaussian process with zero mean and positive variance, and whose spectral
measure is absolutely continuous. Let ((Gin : n ∈ Z) : i ∈ Z) be a family of
i.i.d. copies of (Gn : n ∈ Z). Define

Xj,k := Gj−k,k, j, k ∈ Z .

Then, (Xj,k : j, k ∈ Z) is a stationary Gaussian process, and

µf = WSL(2Var(G0)) .

Proof. The hypotheses imply the existence of a non-negative function h on
(−π, π] such that

E [G0Gv] =

∫ π

−π
eιvxh(x)dx, v ∈ Z .

Clearly, for all j, k, u, v ∈ Z,
E [Xj,kXj+u,k+v] = E [G0Gv]1(u = v) ,

which shows the stationarity. Extend h to whole of R by the identity h(·) ≡
h(·+ 2π). Notice that ∫

[−π,π]2
eι(ux+vy)h (x+ y) dxdy

=

∫ π

−π
eι(u−v)x

[∫ z+π

z−π
eιvzh(z)dz

]
dx

= 2πE [G0Gv]1(u = v) .

Thus,
f(x, y) := (2π)−1h(x+ y), −π ≤ x, y ≤ π ,

is the spectral density for (Xj,k). Furthermore, for integers j 6= k,∫
[−π,π]2

e−ι(jx+ky)
√

f(x, y)dxdy = 0 ,

and therefore, the hypothesis of Theorem 2.5 is satisfied with
An := {−n, . . . , n}. This completes the proof. �



RANDOM MATRICES TO LONG RANGE DEPENDENCE 33

Remark 4.1. The above corollary is false without the assumption that the
process (Gn) has a spectral density. For example, if Gm = Gn for all m,n,
then the matrix WN becomes a Toeplitz matrix. Bryc et al. (2006) have
shown that the LSD has unbounded support in this case.

Example 1. Let (Gn : n ∈ Z) be a zero mean stationary Gaussian process

with spectral density |x|−1/2, and let Xj,k be as in the above corollary. Then,
it follows that

µf = WSL(8
√
π) ,

where

f(x, y) := (2π)−1h(x+ y), −π ≤ x, y ≤ π ,

with h(·) defined on R by the identities h(·) = h(·+ 2π) and h(z) = |z|−1/2
for −π < z ≤ π. It is easy to see that ‖f‖2 = ∞, thus showing that the
converses of both parts of Theorem 2.3 are false.

Next, we shall see two numerical examples where Theorem 2.4 hold.

Example 2. Let

f(x, y) = 1(−π/2 ≤ x, y ≤ π/2), −π ≤ x, y ≤ π .

By Theorem 2.4, it follows that

µf = ηr �WSL(1) ,

where ηr is the law of 23/2π1(|U | ≤ π/2), U being an Uniform (−π, π)
random variable. A calculation of the moments of the right hand side using
Theorem 14.4 in Nica and Speicher (2006) will show that µf is the law of
2πBW where B and W are independent (in the classical sense) random
variables distributed as Bernoulli (1/2) (that is, takes values 0 and 1) and
WSL(1) respectively. This is an example where the LSD is not a continuous
probability measure.

Example 3. Let

f(x, y) = |xy|−1/2, −π ≤ x, y ≤ π .

By Theorem 2.4, it follows that

µf = ηr �WSL(1) ,

where ηr is the law of 23/2π|U |−1/2, U being an Uniform (−π, π) random
variable. Since the second moment of ηr is infinite, it follows that∫

R
x4µf (dx) = ∞ .
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