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Abstract. There has been considerable work on matrix approx-
imation problems in the space of matrices with Euclidean and
unitarily invariant norms. We initiate the study of approxima-
tion problems in the space P of all n×n positive definite matrices
with the Riemannian metric δ2. Our main theorem reduces the
approximation problem in P to an approximation problem in the
space of Hermitian matrices and then to that in Rn. We find best
approximants to positive definite matrices from special subsets of
P. The corresponding question in Finsler spaces is also addressed.

1. Introduction

Let M be the space of all n × n complex matrices. A matrix ap-
proximation problem consists of finding the best approximant to an
element A of M from a special subset S. For example, S could con-
sist of all Hermitian, unitary, positive definite, normal, Toeplitz, or
circulant matrices, all matrices of rank k, all matrices with a fixed
spectrum, etc. The approximation could be sought with respect to
the Euclidean norm ‖ · ‖2, or with respect to some other norm. There
is a considerable body of work on such approximation problems with
unitarily invariant norms. See, e.g., [1], [2]. Some of these problems
turn out to be easy, and have elegant solutions. Some others are both
hard and intricate. The nature of the set and the norm both play a
role in the tractability of the problem. Section IX.7 of [3] provides an
introduction to such problems. Several applications are given in [6].

In recent years there has been considerable interest in the metric
space (P, δ2) consisting of the space P of n×n positive definite matrices
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with a natural Riemannian metric δ2. This is a classical object of
differential geometry and has become a major topic in matrix analysis
with several applications in diverse areas, such as image processing,
radar detection, brain-computer interfacing and machine learning. See
[7].

The principal aim of this article is to initiate the study of approx-
imation problems in the space (P, δ2). Just as in the theory of ap-
proximation in the space M, we consider special subsets K in P and
find the best approximant to any element A of P from the set K. We
show that under some mild restrictions on K (convexity and unitary
invariance), the problem can be reduced to an approximation problem
in Rn. One of the interesting features of approximation theory in M
has been that very often the same element turns out to be the best
approximant in every unitarily invariant norm. Thus for example in
every such norm, the best Hermitian approximant to A is its real part
Re A = 1

2
(A + A∗) and the best unitary approximant is the one that

occurs in the polar decomposition A = UP .
Every unitarily invariant norm |||·|||on M induces a Finsler metric

δ|||·||| on P. The Riemannian metric δ2 is special among these as it
corresponds to the Euclidean norm ‖ · ‖2. It is of some interest to
see how the choice of norm affects the approximation problem. We
address this question too.

An introduction to the geometry of the space P can be found in
Chapter 6 of [4]. For basic facts of matrix analysis we refer to [3], [4].

2. Best Approximants in (P, δ2)

Let H be the set of all n × n complex Hermitian matrices. In this
section we consider H with the Euclidean norm ‖ · ‖2 defined as

‖A‖2 = (tr(A2))1/2 = (
n∑

i,j=1

|aij|2)1/2,

and the space P with the Riemannian metric δ2 defined as

δ2(A,B) = ‖ log(A−1/2BA−1/2)‖2
An important property of the metric δ2 that proves to be useful in

the study of approximation problems in P is the exponential metric
increasing (EMI) property. See [4], [5].

Theorem 2.1. (EMI) For any two Hermitian matrices H and K,

δ2(e
H , eK) ≥ ‖H −K‖2.
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If H and K commute, then the two sides are equal.

Any two elements A and B in the space (P, δ2) can be joined by a
unique geodesic. This is the curve A]tB (0 ≤ t ≤ 1) given by

A]tB = A1/2(A−1/2BA−1/2)tA1/2.

We write [A,B] for the set

{A]tB : 0 ≤ t ≤ 1}. (2.1)

A subset K of P is said to be convex (geodesically convex) if for every
pair of elements A, B in P, the geodesic [A,B] lies entirely in P. This
notion is different from convexity in the vector spaces. A subset S of
the real vector space H is called convex if for every pair of elements
H, K in S, the line segment (1− t)H + tK, 0 ≤ t ≤ 1, lies entirely in
S.

It is well-known that if K is a closed convex subset of the space
(P, δ2), then every A in P has a unique best approximant from K; i.e.,
there exists a unique element A0 of K such that

δ2(A,A0) ≤ δ2(A,X)

for all X ∈ K. See [4]. Our aim is to find this best approximant for
some special sets K.

We say that a set K is unitarily invariant if for every unitary matrix
U , UAU∗ is in K whenever A is. If H is a Hermitian matrix, we denote
by EigH an n-vector whose components are the n eigenvalues of H.
Given a vector x in Rn, we write Dx for the diagonal matrix whose
diagonal coincides with x.

It will be convenient to fix some notations. Given a convex, unitarily
invariant set K in P, we associate with it a subset S of H defined as

S = {logA : A ∈ K}
= {H ∈ H : eH ∈ K}.

The subset S of Rn is defined as

S = {x ∈ Rn : x = EigH for some H ∈ S}.

This is the set of all x such that UDxU
∗ is in S for some unitary U .

Our main theorem reduces the problem of finding the best approx-
imant to an element A of P from the set K to the problem of approx-
imating logA from S and then to approximating Eig logA from the
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set S. As corollaries we consider three special examples where the
theorem is applied.

Theorem 2.2. Let K be a closed convex unitarily invariant subset
of P. Suppose S is also convex. Let A be any element of P and
let logA = UDyU

∗ be the spectral decomposition of logA. Let Φ(y)

be the best approximant to y from the set S, and Φ̃(logA) the best
approximant to logA from the set S. Then

(i) the best approximant to A from K is exp(Φ̃(logA)),
(ii) Φ̃(logA) = UDΦ(y)U

∗.

Remark 2.3. If K is unitarily invariant, then so is S. However, if K
is convex, then S need not be convex. This is shown in the example
given below. It is easy to see that if S is a convex unitarily invariant
set, then S is convex.

Example 2.4. Let K be the geodesic from A to B in P, i.e.,
K = {A]tB : 0 ≤ t ≤ 1}.

We show that S is not always convex.
Suppose S is convex. Then the line segment γ(t) = (1− t) logA +

t logB lies in S. Thus there exists an injective function θ from [0, 1]
into itself such that

eγ(t) = A]θ(t)B.

Then

det(eγ(t)) = det(A]θ(t)B) = det(A)1−θ(t)det(B)θ(t).

We also have

det(eγ(t)) = det(A)1−tdet(B)t.

This implies that

det(A)θ(t)−t = det(B)θ(t)−t.

So, if det(A) 6= det(B), then θ(t) = t. In particular, this means that

A]1/2B = exp
( logA+ logB

2

)
.

However, it is well-known that this is not always true.

Proof of Theorem 2.2. Since K is unitarily invariant, and both δ2
and ‖ · ‖2 are unitarily invariant, we can assume that A is diagonal.
For any matrix B, let us denote by D(B) the diagonal part of B. The
diagonal matrix D(B) is a convex combination of unitary conjugates
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of B and S is a convex unitarily invariant set. Thus if B is an element
of S, then so is D(B).

Since logA is diagonal, we have

‖ logA−D(Φ̃(logA))‖22 ≤ ‖ logA− Φ̃(logA)‖22.

But Φ̃(logA) is the best approximant to logA from S. Hence Φ̃(logA) =
D(Φ̃(logA)). In other words Φ̃(logA) is diagonal.

Now let X be any element of K. Then by Theorem 2.1

δ2(A,X) ≥ ‖ logA− logX‖2.

Since logX ∈ S, this gives

δ2(A,X) ≥ ‖ logA− Φ̃(logA)‖2.

As seen above Φ̃(logA) commutes with logA. So, again by Theorem
2.1, we get

δ2(A,X) ≥ δ2(A, exp(Φ̃(logA))).

This proves (i).
To prove (ii), we can again assume that logA = Dy. Since Φ(y) is

the best approximant to y from S, for all diagonal matrices D ∈ S

‖ logA−DΦ(y)‖2 ≤ ‖ logA−D‖2,

and since Φ̃(logA) must be a diagonal matrix, Φ̃(logA) = DΦ(y).

Corollary 2.5. Let

K = {X ∈ P : det(X) = 1}.

and let A be any element of P. Then the best approximant to A from
the set K is A0 = A/(det(A))1/n.

Proof. The set K is clearly closed and unitarily invariant. Using the
relation

det(X]tY ) = (detX)1−t(detY )t, 0 ≤ t ≤ 1,

we see that K is convex. In this case

S = {H ∈ H : tr(H) = 0}.

The best approximant to any element K of H from the set S is

Φ̃(K) = K − trK

n
I.
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So, by Theorem 2.2, the best approximant to A from K is

exp(Φ̃(logA)) = exp(logA− tr(logA)

n
I)

= A/(detA)1/n.

The form of A0 in Corollary 2.5 is one that could be guessed from
the description of K. This is less so in the next case we consider.

We denote by ‖A‖, the operator norm of A, i.e.,

‖A‖ = sup{‖Ax‖ : ‖x‖ = 1} = s1(A),

the maximum singular value of A. Recall that every Hermitian matrix
H has a Jordan decomposition H = H+−H− in which H± are positive
semidefinite. These are called the positive and negative parts of H,
respectively.

Corollary 2.6. Let

K = {X ∈ P : ‖X‖ ≤ 1},
and let A be any element of P. Then the best approximant to A from
K is

A0 = exp(−(logA)−).

Proof. The set K is clearly closed and unitarily invariant. Its con-
vexity follows from the relation

‖X]tY ‖ ≤ ‖X‖1−t‖Y ‖t, 0 ≤ t ≤ 1.

See [4]. This set consists of all positive definite matrices X with their

maximum eigenvalue λ↓
1(X) ≤ 1. Hence S consists of all Hermitian

matrices whose maximum eigenvalue is nonpositive. In other words
S is the set of all negative semidefinite matrices. By Theorem IX.7.3
in [3] the best approximant to any element K of H from the set S is
−K−. Hence by Theorem 2.2 the best approximant to A from K is
exp(−(logA)−).

We next consider the set

K = {X ∈ P : ‖ ∧k X‖ ≤ 1}, (2.2)

1 ≤ k ≤ n. The special cases k = 1 and n are the ones considered in
Corollary 2.6 and 2.5, respectively. The general case turns out to be
more intricate. For handling this we reduce the problem to an ordinary
convex program in Rn and then use the Karush-Kuhn-Tucker (KKT)
optimization theorem. See [8].
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By an ordinary convex program (P ) we mean a problem of the
following form.

Minimize f0(x) over Rn subject to the constraints
fi(x) ≤ 0, 1 ≤ i ≤ m.

where each fj(x) is a real-valued convex function.
The sets S and S associated with K are given by

S = {H ∈ H :
k∑

i=1

λ↓
i (H) ≤ 0}

and

S = {x ∈ Rn :
k∑

i=1

x↓
i ≤ 0}. (2.3)

It can be verified that K and S are closed, convex and unitarily in-
variant. Hence we need to find the best approximant to a given vector
y in Rn from S. Since S is unitarily invariant and

x↓ − y↓ ≺ x− y

for all x, y in Rn, we can assume that y ∈ Rn↓, i.e., y1 ≥ · · · ≥ yn, and
S ⊆ Rn↓. Thus we can interpret this approximation problem as the
following ordinary convex program.

(P0) min
n∑

i=1

(xi − yi)
2 subject to

fj(x) ≤ 0, 1 ≤ j ≤ n,

where

f1(x) =
k∑

j=1

xi

and

fj+1(x) = xj+1 − xj, 1 ≤ j ≤ n− 1.

We solve this ordinary convex program by using a special case of
KKT optimization theorem. For the convenience of the reader we
state the theorem.

Theorem 2.7. Let (P ) be an ordinary convex program. Suppose
(λ1, . . . , λm) is a nonnegative vector in Rm such that the infimum of
the function

h = f0 + λ1f1 + · · ·+ λmfm
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is finite and equals min f0. Let D be the set of points where h attains
its infimum over Rn. Then a vector x in D is an optimal vector for
(P ) if for all 1 ≤ i ≤ m, fi(x) = 0 whenever λi > 0, and fi(x) ≤ 0
otherwise.

Since the Euclidean norm is strictly convex, we obtain a unique
optimal vector for (P0).

The best approximant to any element in S is obviously itself, so we
assume that y /∈ S,i.e., y1 ≥ y2 ≥ · · · ≥ yn and y1 + · · ·+ yk > 0. Let
yk =

y1+···+yk
k

. The following two cases arise while solving the problem
(P0).

Case 1. yk − yk+1 ≥ yk.
Case 2. yk − yk+1 < yk.

In Case 1, the vector ỹ = (ỹ1, . . . , ỹn) given by

ỹi = yi − yk 1 ≤ i ≤ k
ỹj = yj k + 1 ≤ j ≤ n.

satisfies the conditions of the KKT optimization theorem and hence
is the unique optimal solution for (P0).

We next consider Case 2. For 1 ≤ m ≤ n− k, let

µm =
(m+ 1)(y1 + · · ·+ yk−1) + yk + · · ·+ yk+m

(m+ 1)k −m
,

νm =
m(y1 + · · ·+ yk−1 −m(k − 1)yk) + k(yk+1 + · · ·+ yk+m)

(m+ 1)k −m
zm = yk − µm + νm

1 ≤ m ≤ n − k. It can be verified that µ1 > 0, ν1 > 0, µ1 > ν1 and
yk+1 > z1. Let

p = max{m : 1 ≤ m ≤ n−k, µm > 0, νm > 0, µm > νm and yk+m > zm}.

Let ŷ = (ŷ1, . . . , ŷn) be the vector given by

ŷi = yi − µp 1 ≤ i ≤ k − 1
ŷk = zp
ŷi = ŷk k + 1 ≤ i ≤ k + p
ŷi = yi i > k + p.

In this case ŷ turns out to be the unique optimal solution of (P0).
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Thus the best approximant Φ(y) to y from S is given by

Φ(y) =


y if y ∈ S

ỹ if yk − yk+1 ≥ yk
ŷ if yk − yk+1 < yk.

(2.4)

Corollary 2.8. Let

K = {X ∈ P : ‖ ∧k X‖ ≤ 1}.

Let A be any element of P and let logA = UDyU
∗ be the spectral

decomposition of logA. Then the best approximant to A from K is

A0 = U exp(DΦ(y))U
∗,

where Φ(y) is given by (2.4).

3. Best Approximants in (P, δ|||·|||)

In this section we indicate how results of Section 2 may be extended
to Finsler metrics on P arising from unitarily invariant norms on M.

Recall that a norm |||·||| on M is said to be unitarily invariant if
|||UAV ||| = |||A||| for all A and unitary U, V . Such a norm arises from
a symmetric gauge function |||·||| on Rn. It gives rise to a Finsler metric
δ|||·||| on P defined as

δ|||·|||(A,B) =
∣∣∣∣∣∣log(A−1/2BA−1/2)

∣∣∣∣∣∣.
It has been shown in [5] that in the metric space (P, δ|||·|||) the curve
[A,B] defined in (2.1) is a geodesic joining A and B. (This geodesic is
unique if geodesics in |||·||| are unique.) We say that a set K in (P, δ|||·|||)
is convex if it is convex in (P, δ2).

Remark 3.1. The crucial EMI property is also valid in (P, δ|||·|||); we
have

δ|||·|||(e
H , eK) ≥ |||H −K|||,

for all Hermitian matrices H, K and the two sides are equal if H and
K commute. See [5].

Theorem 2.2 remains true: the approximation problem in (P, δ|||·|||)
reduces to the approximation problem in (H, |||·|||) and then to that
in (Rn, |||·|||). The best approximant is unique whenever the norm is
strictly convex.
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The best approximants obtained for the examples in Corollaries 2.5
and 2.6 for the Euclidean norm work for all unitarily invariant norms.
The reason being that in both cases, Φ̃(logA) is the best approximant
to logA from S independent of the norm.

For Corollary 2.6, this follows from Theorem IX.7.3 of [3]. For the
convenience of the reader we briefly sketch the proof for Corollary 2.5.

Let K be the set given in Corollary 2.6. Then the set S associated
to it is

S = {x ∈ Rn :
n∑

i=1

xi = 0}.

Let y be the n-vector with all its components equal to

n∑
i=1

yi

n
, and let J

be the n × n matrix with all its entries 1/n. The matrix J is doubly
stochastic. By using the relation

y = J(y − z),

and Theorem II.1.9 of [3], it can be verified that Φ(y) = y − y is the
best approximant to y from S. This proves that the best approximant
to any element from the set K of Corollary 2.6 is the same for every
unitarily invariant norm.

However this does not happen in case of Corollary 2.8, i.e., in this
case the best approximant to A from K is dependent on the choice of
the norm.

Let ‖ · ‖ denote the symmetric gauge function on Rn defined by

‖(x1, . . . , xn)‖ = max
1≤i≤n

|xi|.

This induces the operator norm on M and the metric δ‖·‖ on P. In
the following example we show that the best approximants from the
set K described in (2.2) in the two spaces (P, δ2) and (P, δ‖·‖) are not
always the same.

Example 3.2. Let K be the subset of 4× 4 positive definite matrices
defined as

K = {X ∈ P : ‖ ∧2 X‖ ≤ 1}.
The set S associated with K is

S = {x ∈ R4 : x↓
1 + x↓

2 ≤ 0}.
Consider the vector y = (5, 1, 1,−1). Let ỹ = (2,−2,−2,−2) and
ŷ = (1,−1,−1,−1). Then ỹ is a best approximant to y from S in
(Rn, ‖ · ‖). By (2.4), ŷ is the unique best approximant to y from S
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in the Euclidean norm; but it is not a best approximant in ‖ · ‖ since
‖y − ŷ‖ > ‖y − ỹ‖.
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