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Abstract

We give an explicit description of the q-deformation of symplectic group SPq(2n) at

the C∗-algebra level and find all irreducible representations of this C∗-algebra. Further

we study its Stiefel manifold SPq(2n)/SPq(2n − 2) by getting its defining relations and

describe its irreducible representations. We compute its K-theory by obtaining a chain of

short exact sequence for the C∗-algebras underlying such manifolds. The torus group Tn

has a canonical action on C(SPq(2n)/SPq(2n−2)). We find a non-trivial, finitely summable

equivariant spectral triple associated with this action.
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1 Introduction

Quantum groups and noncommutative geometry are two areas of mathematics that have been

active in recent years. The theory of quantum group was first studied in the topological setting

independently by Woronowicz [23] and Vaksman & Soibelman [22] for the case of quantum

SU(2) group. Later Woronowicz developed the theory of compact quantum groups and their

representation theory. The notion of quantum subgroups and quantum homogeneous spaces

was soon introduced by Podles [17]. The most well-known example of compact quantum group

is the q- deformation of SU(n) group whose representation theory is obtained by Vaksman &

Soibelman [22]. Quantum analogs of their Stifel manifold SUq(n)/SUq(n−m) were introduced

by Podkolzin & Vainerman [16] who precisely described the irreducible representation of the

C∗-algebras underlying such manifolds.

Noncommutative differential geometry was introduced by Alain Connes in 1980s. In his

interpretation, geometric data is encoded in elliptic operators or more generally, in specific

unbounded K-cycles which he called spectral triples. But to put quantum groups and their

homogeneous spaces into Connes’ framework proved to be a difficult task. First success towards
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this direction was achieved by Chakraborty & Pal [2] . They constructed a nontrivial spec-

tral triple for SUq(2) group equivariant under its own (co-) action which established quantum

groups as objects of non commutative geometry. Later they found nontrivial spectral triples

associated with the (co-)action of SUq(n) on quantum analog of odd dimensional spheres which

is same as stiefel manifold SUq(n)/SUq(n− 1). Pal & Sundar [15] then proved the regularity

of these spectal triples which is a desirable property for a spectral triple. They computed their

dimension spectrum in order to be able to apply Connes-Moscovicci theorem, a major result

in noncommutative geometry. Chakraborty & Sundar [6] then extended the results of [15]

and gave general results on regularity of a spectral triple constructed out of a regular spectral

triple for a smaller space. Chakraborty & Sundar [5] calculated K-theory of Stiefel manifolds

SUq(n)/SUq(n− 2) and as a consequence they found K-theory of SUq(3).

One natural question arises, can we put q-defomation of other classical lie group into Connes’

formulation of noncommutative geometry or more specifically can we extend these results to the

q-deformations Lie groups of types B, C and D. Neshveyev & Tuset [13] constructed an equiv-

ariant spetral triple Dq for Gq the q- deformation of any simply connected, simple, compact Lie

group G. This spectral triple is an isospectral deformation of the classical Dirac operator D on

G. In [14] they proved that K-homology class of Dq is same as that of D via the KK-equivalence

of C(Gq) and C(G) established by Nagy [11]. Further, for a closed Poisson Lie subgroup Kof

G, Neshveyev & Tuset [12] studied quantization C(Gq/Kq) of algebra of continuous functions

on Steifel manifold G/K. Using results of Soibelman ([19],[10]) and Dijkhuizen & Stokman

([20],[21]) they found all its irreducible representations. Extending a result of Nagy [11], they

proved KK-equivalence of C(Gq/Kq) and C(G/K) and calculated K-goups of C(Gq/Kq) via

this equivalence. In this article, we start with q-deformation of symplectic group and find its

representation theory. Then we consider its quantum Stiefel manifold SPq(2n)/SPq(2n − 2).

We get the defining relations satisfied by the generators of the C∗-algebra underlying this man-

ifold and describe all irreducible representations of the universal C∗-algebra satisfying those

relations and prove that both are isomorphic. This describes C(SPq(2n)/SPq(2n − 2)) as a

universal C∗-algebra satisfying some relations as in case of odd dimensional quantum sphere.

Using this fact, we get a natural Tn action on it and obtain a non-trivial finitely summable

spectral triple equivariant under this action. Next we find a chain of short exact sequence for

C (SPq(2n)/SPq(2n− 2)) and utilizing them, we compute itsK-groups with explicit generators.

Here is a brief outline of the contents of this article. In the next section, we define q-

deformation of symplectic group SPq(2n) at C
∗-algebra level and describe its quantum group

structure. In section 3 and section 4, our main aim will be to find all irreducible representations

of C(SPq(2n)) and obtain its faithful realisation in a Hilbert space. The key step here is to

find all elmentary representations of C(SPq(2n)) by imbedding quantum universal enveloping
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algebra of SL(2) (i.e Uq(sl(2))) into that of SP (2n) (i.e Uq(sp(2n))) and then use the pairing

given in [9]. To make the paper readable and for lack of a good reference we include explicit

computations of the Weyl group of sp2n. We then apply results given in [10]( page 121) to

get all its irreducible representaions. In section 5, we describe how to draw diagrams of these

representations. In section 6, we study quantum Stiefel manifold SPq(2n)/SPq(2n − 2) and

fi nd the relations satisfied by their generators. In the next section we prove that it is the

universal C∗-algebra satisfying those relations. Section 8 mainly deals with the computation

of its K-groups by obtaining a chain of short exact sequence. In section 9, we study the torus

action on SPq(2n)/SPq(2n − 2) and find associated equivariant spectral triple. Here the idea

is exactly as in [3] for the case of odd dimensional quantum sphere. Throughout this paper,

q ∈ (0, 1) and C is used to denote generic constant.

2 C(SPq(2n))

We set up some notation that will be used throughout this paper. Define,

i
′
= 2n+ 1− i

ρi = n+ 1− i if i ≤ n.

ρi′ = −ρi.

εi =

1 if 1 ≤ i ≤ n,

−1 if n+ 1 ≤ i ≤ 2n,

Ci
j = εiδijq

−ρi .

θ(i) =

0 if i ≤ 0,

1 if i > 0,

Rij
mn = q

δij−δ
ij

′
δimδjn + (q − q−1)θ(i−m)(δjmδin + Ci

jC
m
n ).

Let C
〈
uij

〉
denote the free algebra with generators uij , i, j = 1, 2, · · · 2n and let J(R) be the

two sided ideal of C
〈
uij

〉
generated by the following elements,

Iijst =

2n∑
k,l=1

Rji
klu

k
su

l
t −Rlk

stu
i
ku

j
l , i, j, s, t = 1, 2 · · · 2n.

Let A(R) denote the quotient algebra C
〈
uij

〉
/J(R). The 2n× 2n matrices ((uij)) and ((Ci

j)) is

denoted by U and C respectively. Define J =
〈
UCU tC−1 − I, CU tC−1U − I

〉
the two sided

ideal generated by entries of matrices UCU tC−1−I and CU tC−1U−I. Let O(SPq(2n)) denote

the quotient algebra A(R)/J .

The algebra O(SPq(2n)) is a Hopf-*algebra with co-multiplication ∆, co-unit ε, antipode S
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and involution ∗ given on the generating elements by,

∆(uij) =

N∑
k=1

uik ⊗ ukj

ε(uij) = δij

S(uij) = εiεjq
ρi−ρjuj

′

i′

(uij)
∗ = εiεjq

ρi−ρjui
′

j′

Note that U∗ = CU tC−1. Hence we have,

UU∗ = U∗U = I. (2.1)

Now to make O(SPq(2n)), a normed-∗algebra, we define,

‖a‖ = sup {‖π(a)‖ : π is a representation of O(SPq(2n))} .

By (2.1), we have,
∥∥∥uij∥∥∥ ≤ 1, hence ∀a ∈ O(SPq(2n)), ‖a‖ <∞.

We denote C(SPq(2n)) to be the completion of O(SPq(2n)). (C(SPq(2n)),∆) is a compact

quantum group called as q-deformation of symplectic group SPq(2n) .

3 Pairing between Uq(sp2n) and C(SPq(2n))

Let ((aij)) be the Cartan matrix of Lie algebra sp(2n) given by,

aij =



2 if i = j,

−1 if i = j + 1,

−1 if i = j − 1, i 6= n− 1,

−2 if i = j − 1 = n− 1,

0 otherwise,

Define qi = qdi , where di= 1 for i = 1, 2, ..n − 1 and dn = 2. The quantised universal

envelopping algebra (QUEA) Uq(sp2n) is the universal algebra generated by Ei, Fi, Ki and

K−1
i , i = 1, . . . , `, satisfying the following relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

KiEjK
−1
i = q

aij
i Ej , KiFjK

−1
i = q

aij
i Fj ,
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EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

,

1−aij∑
r=0

(−1)r
(
1− aij
r

)
qi

E
1−aij−r
i EjE

r
i = 0 ∀ i 6= j,

1−aij∑
r=0

(−1)r
(
1− aij
r

)
qi

F
1−aij−r
i FjF

r
i = 0 ∀ i 6= j,

where
(
n
r

)
q
denote the q-binomial coefficients. Hopf *-structure comes from the following maps:

∆(Ki) = Ki ⊗Ki, ∆(K−1
i ) = K−1

i ⊗K
−1
i ,

∆(Ei) = Ei ⊗Ki + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi,

ε(Ki) = 1, ε(Ei) = 0 = ε(Fi),

S(Ki) = K−1
i , S(Ei) = −EiK

−1
i , S(Fi) = −KiFi,

K∗
i = Ki, E∗

i = KiFi, F ∗
i = EiK

−1
i .

See [9] for more detail.

Dual pairing of O(SPq(2n)) and Uq(sp2n): We refer to [9] for a proof of following theorem.

Theorem 3.1. ([9]) There exist unique dual pairing 〈·, ·〉 between the hopf algebras and Uq(sl2)

and O(SLq(2)) and between Uq(sp2n) and O(SPq(2n)) such that〈
f, ukl

〉
= tkl(f) for k, l = 1, 2, ...2n.

where tkl is the matrix element of T1, the vector representation of Uq(sl2) in first case and that

of Uq(sp2n) in second case.

We will explicitly describe T1 for both cases and determine the pairing. For that, let Eij

be the 2n × 2n matrix with 1 in the (i, j)th position and 0 elsewhere and Dj be the diagonal

matrix with q in the (j, j)th position and 1 elsewhere on the diagonal.

For the QUEA Uq(sp2n), one has

for i = 1, 2, ....n− 1,

T1(Ki) = D−1
i Di+1D

−1
2n−1D2n−i+1.

T1(Ei) = Ei+1,i − E2n−i+1,2n−i.

T1(Fi) = Ei,i+1 − E2n−i,2n−i+1.

for i = n

T1(Kn) = D−2
n D2

n+1.

T1(En) = En+1,n.

T1(Fn) = En,n+1.
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For Uq(sl2), one has (here Eij and Dj are the 2× 2 matrices.)

T1(K) = D−1
1 D2.

T1(E) = E2,1.

T1(F ) = E1,2.

We will use these two pairing to find irreducible representations of O(SPq(2n)) which can be

extended to C(SPq(2n)) to get elementary representations of C(SPq(2n)). To fix the idea

Elementary representation of C(SPq(2n)): Let i be the vertex of Dynkin diagram of Lie

algebra spq(2n). Let ϕi : Uqi(sl2) −→ Uq(sp(2n)) be a ∗-homomorphism given on generators of

Uqi(sl2) by,

K 7−→ Ki

E 7−→ Ei

F 7−→ Fi

Consider the dual epimorphism,

ϕ∗
i : C(SPq(2n)) −→ C(SUqi(2))

such that

〈f, ϕ∗
i (u

m
n )〉 = 〈ϕi(f), u

m
n 〉

In particular,

〈K,ϕ∗
i (u

m
n )〉 = 〈Ki, u

m
n 〉 (3.1)

〈E,ϕ∗
i (u

m
n )〉 = 〈Ei, u

m
n 〉 (3.2)

〈F,ϕ∗
i (u

m
n )〉 = 〈Fi, u

m
n 〉 (3.3)

Remark 3.2. Initially ϕi will induce an ∗ epimorphism from the Hopf-∗algebra O(SPq(2n)) to

O(slqi(2)) which when extended to C(SPq(2n)) gives the above homomorphism at C∗-algebra

level. For more detail see [9] (page 327) and [10].

Let N be the number operator given by N : en 7→ nen and S be the shift operator given by

S : en 7→ en−1 on L2(N). Denote by π the following representation of C(SUq(2)) on L2(N);

π(ukl ) =



√
1− q2N+2S if k = l = 1,

S∗
√
1− q2N+2 if k = l = 2,

−qN+1 if k = 1, l = 2,

qN if k = 2, l = 1,

δkl otherwise .
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Define, πsi = π ◦ ϕ∗
i . Applying (3.1), (3.2), (3.3), we have, for i = 1, 2, · · · , n− 1,

πsi(u
k
l ) =



√
1− q2N+2S if (k, l) = (i, i) or (2n− i, 2n− i),

S∗
√

1− q2N+2 if (k, l) = (i+ 1, i+ 1) or (2n− i+ 1, 2n− i+ 1),

−qN+1 if (k, l) = (i, i+ 1)

qN if (k, l) = (i, i+ 1),

qN+1 if (k, l) = (2n− i, 2n− i+ 1),

−qN if (k, l) = (2n− i+ 1, 2n− i),

δkl otherwise .

for i = n,

πsn(u
k
l ) =



√
1− q4N+4S if (k, l) = (n, n),

S∗
√

1− q4N+4 if (k, l) = (n+ 1, n+ 1),

−q2N+2 if (k, l) = (n, n+ 1),

q2N if (k, l) = (n+ 1, n),

δkl otherwise .

{πsi}i=1,2,··· ,n are irreducible representations called elementary representations of C(SPq(2n)).

For any two representations ϕ and ψ of C(SPq(2n)) define, ϕ ∗ ψ = (ϕ ⊗ ψ) ◦ ∆. Let W be

the Weyl group of sp2n and ϑ ∈ W such that si1si2 ...sik is a reduced expression for ϑ. Then

πϑ = πsi1 ∗ πsi2 ∗ · · · ∗ πsik is an irreducible representation which is independent of reduced

expression. Now for t = (t1, t2, · · · , tn) ∈ Tn

Define,

τt : C(SPq(2n) −→ C

given by,

τt(u
i
j) =

tiδij if i ≤ n,

t2n+1−iδij if i > n,

Then τt is a ∗-algebra homomorphism. For t ∈ Tn, ϑ ∈W let πt,ϑ = τt ∗ πϑ.
We refer to [10] (page 121) for the proof of the following theorem.

Theorem 3.3. {πt,ϑ; t ∈ Tn, ϑ ∈W} is a complete set of mutually inequivalent representations

of C(SPq(2n)).

Hence, to find all irreducible representations of C(SPq(2n)), we need to know the Weyl

group of spq(2n).
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4 Weyl group of sp2n

TheWeyl groupWn of is a coxeter group of sp2n generated by s1, s2, ...sn satisfying the following

relations:

s2i = 1 for i = 1, 2, ...n

sisi+1si = si+1sisi+1 for i = 1, 2, ...n− 1

sn−1snsn−1sn = snsn−1snsn−1

Wn can be embedded faithfully in Mn(R) as,
for i = 1, 2, ...n− 1

si = I − Ei,i − Ei+1,i+1 + Ei,i+1 + Ei+1,i,

for i = n

sn = I − 2En,n.

So, Wn is isomorphic to a subgroup of GL(n,R) generated by s1, s2, ...sn.

Proposition 4.1. 1. Let Sn be the permutation group and Hn be the n-fold direct product

of the group {−1, 1}. Sn acts on Hn by permuting its co-ordinates. Then Wn = HnoSn.

In other word, Wn is the set of n×n matrices having one non-zero entry in each row and

each column which is either 1 or −1.

2. Any element of Wn can be written in the form:
∏n

r=1 ψ
(εr)
r,kr

where εr ∈ {0, 1, 2} and r ≤ kr ≤ n with the convention that ,

ψε
r,kr =


skr−1skr−2...sr if ε = 1,

skrskr+1 · · · ...sn−1snsn−1 · · · skrskr−1 · · · sr if ε = 2,

empty string if ε = 0,

Also, the above expression is a reduced expression.

3. The longest word of Wn is −I which can be written as,
∏n

r=1 ψ
(2)
r,r .

Also,
{
ψ
(2)
r,r

}n

i=1
commutes, hence −I can be written as,

∏n
r=1 ψ

(2)
n+1−r,n+1−r, which is

a reduced expression.

Proof :
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1. Clearly Hn o Sn contains s1, s2, ...sn which implies Wn ⊆ Hn o Sn. Now, take T ∈
Hn o Sn. First get the permutaion matrix T ′ by replacing −1 in T with 1. T ′ can

be generated using s1, s2..., sn−1. Now to get T , multiply successively on the right by

sksk+1...sn−1snsn−1...sk for k = 1, 2, ..n, depending on which column of T has −1 (i.e if

ith column has −1 then muliply on the right by sisi+1...sn−1snsn−1...si). This proves the

claim.

2. First note that Wn−1 can be realised as a subgroup of Wn generated by s2...sn. Wn−1 3
w 7→

(
1 0
0 w

)
gives an embedding of Wn−1 in Wn. We use induction. For n = 2, it is clear.

Assume the result for n − 1. Take T ∈ Wn. Look at the first column of T . Let i be the

first integer such that ai1 6= 0.

Case 1 : ai1 = 1, i = 1. Set T1 = T .

Case 2 : ai1 = 1, i > 1. Let T1 = s1s2 · · · si−1T .

Case 3 : ai1 = −1. In this case, let T1 = s1 · · · sn−1snsn−1 · · · siT .

T1 has 1 at (1, 1) place. Hence it can be realised as an element ofWn−1. Now by induction

hypothesis, T1 can be written as,

T1 =

n∏
r=2

ψ
(ir)
r,kr

which establish the claim. One can also show that this expression is a reduced expression

by using induction in the same way as above (see Humphreys [8]).

3. Length of a word w in a Weyl group is the number of positive roots sent by w to negative

roots (see Humphreys [8]). The lie algebra sp2n has n2 positive roots. So, any word

in Wn can not have length greater than n2. Now, from first part of this proposition, it

follows that −I ∈ Wn. Since −I sends every positive root to a negative root, length of

−I is n2 which shows that −I is the longest word of Wn. Remaining part of the claim

follows by direct calculation.

2

Denote by T the Toeplitz algebra. Let ϑ be a word on s1, s2, ...sn of length `(ϑ). Then

the map Tn 3 t 7−→ πt,ϑ(u
i
j) ∈ T ⊗`(ϑ) is continuous. Hence we have a homomorphism χϑ :

C(SPq(2n)) −→ C(Tn)⊗T ⊗`(ϑ) such that χϑ(a)(t) = πt,ϑ(a), for all a ∈ C(SPq(2n)).

Proposition 4.2. if ϑ
′
is a subword of ϑ then χϑ′ and πt,ϑ′ factor through χϑ.

Proof : See [5]. 2
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Theorem 4.3. Let ϑn be the longest word i.e ϑn = (sn)(sn−1snsn−1)...(s2...sn..s2)(s1s2...sn−1snsn−1...s1)

of the Weyl group of sp2n. Then the homomorphism

χϑn : C(SPq(2n)) −→ C(Tn)⊗T ⊗`(ϑn)

is faithful.

Proof : Any irreducible representation of C(SPq(2n)) is of the form πt,ϑ where ϑ is a word on

s1, s2, ...sn and t ∈ Tn. From proposition (4.1), it is clear that ϑ is a subword of ϑn, hence πt,ϑ

factors through χϑn which shows that χϑn is faithful. 2

5 Diagram representation

At this point it will be useful to have some pictures of above representations in our mind. We

will follow [4]. Let us describe how to use a diagram to represent the irreducible πsi , i 6= n.

2n ◦ // ◦ 2n

......

2n− i+ 1 ◦ + //

−

��=
==

==
==

= ◦ 2n− i+ 1

2n− i ◦
−

//
−

@@��������
◦ 2n− i

......

i+ 1 ◦ + //

+

��=
==

==
==

= ◦ i+ 1

i ◦
−

//
+

@@��������
◦ i

......

1 ◦ // ◦ 1

H

For i = n,
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2n ◦ // ◦ 2n

......

n+ 1 ◦ ++ //

++

��:
::

::
::
◦ n+ 1

n ◦
−−

//
++

BB�������
◦ n

......

1 ◦ // ◦ 1

H

In this diagram, each path from a node k on the left to a node l on the right stands for an

operator on H = L2(N). A horizontal unlabelled line stands for the identity operator, a hori-

zontal line labelled with + or ++ sign stands for S∗
√
I − q2N+2 or S∗

√
I − q4N+4 respectively

and one labelled with − or −− sign stands for
√
I − q2N+2S or

√
I − q4N+4S respectively. A

diagonal line going upward labelled with + or ++ sign represents −qN+1 or −q2N+2 respec-

tively and one labelled with − sign represents qN+1. A diagonal line going downward labelled

with + or ++ sign represents qN or q2N respectively and one labelled with − sign represents

−qN . Now πsi(u
k
l ) is the operator represented by the path from k to l, and is zero if there is

no such path. Thus, for example, πsi(u
1
1) is I, πsi(u

2
1) is zero, whereas πsi(u

i
i+1) = −qN+1, if

i > 1.

Next, let us explain how to represent πsi ∗πsj by a diagram. Simply keep the two diagrams

representing πsi and πsj adjacent to each other. Identify, for each row, the node on the right

side of the diagram for πsi with the corresponding node on the left in the diagram for πsj .

Now, πsi ∗ πsj (ukl ) would be an operator on the Hilbert space L2(N)⊗L2(N) determined by all

the paths from the node k on the left to the node l on the right. It would be zero if there is

no such path and if there are more than one paths, then it would be the sum of the operators

given by each such path. In this way, we can draw diagrams for each irreducible representation

of C(SPq(2n)).

Next, we come to χϑ. The underlying Hilbert space now is L2(Zn)⊗L2(N)⊗`(ϑ). To avoid any

ambiguity, we have explicitly mentioned above the diagram the space on which the operator

between two hollow circle acts. For the operators on L2(Z), an unlabelled horizontal arrow

stands for I, an arrow labelled with a ‘+’ above it indicates S∗ and one labelled ‘−’ below it

stands for S. As earlier, χϑ(u
k
l ) stands for the operator on L2(Zn) ⊗ L2(N)⊗`(ϑ) represented

by the path from k on the left to l on the right. Note that we view C(Tn) as a subalgebra of
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L(L2(Zn)).

The following diagrams are for the representations χϑ3 and π1,ω3 of C(SPq(6)) where ϑ3 =

s3s2s3s2s1s2s3s2s1 and ω3 = s1s2s3s2s1.

`2(Z) `2(Z) `2(Z) `2(N) `2(N) `2(N) `2(N) `2(N) `2(N) `2(N) `2(N) `2(N)

◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦ +

−
;;

;;
;;

; ◦ ◦ ◦ ◦ +

−
;;

;;
;;

; ◦

◦ ◦ + ◦ ◦ ◦ +

−
;;

;;
;;

; ◦ ◦ +

−
;;

;;
;;

; ◦ −

−

�������
◦ +

−
;;

;;
;;

; ◦ ◦ +

−
;;

;;
;;

; ◦ −

−

�������
◦

◦ + ◦ ◦ ◦ ++

++

;;
;;

;;
; ◦ −

−

�������
◦ ++

++

;;
;;

;;
; ◦ −

−

�������
◦ ◦ −

−

�������
◦ ++

++

;;
;;

;;
; ◦ −

−

�������
◦ ◦

◦ − ◦ ◦ ◦ −−

++

�������
◦ +

+

;;
;;

;;
; ◦ −−

++

�������
◦ +

+

;;
;;

;;
; ◦ ◦ +

+

;;
;;

;;
; ◦ −−

++

�������
◦ +

+

;;
;;

;;
; ◦ ◦

◦ ◦ − ◦ ◦ ◦ −

+

�������
◦ ◦ −

+

�������
◦ +

+

;;
;;

;;
; ◦ −

+

�������
◦ ◦ −

+

�������
◦ +

+

;;
;;

;;
; ◦

◦ ◦ ◦ − ◦ ◦ ◦ ◦ ◦ −

+

�������
◦ ◦ ◦ ◦ −

+

�������
◦

`2(N) `2(N) `2(N) `2(N) `2(N)

◦ +

−
;;

;;
;;

; ◦ ◦ ◦ ◦ +

−
;;

;;
;;

; ◦

◦ −

−

�������
◦ +

−
;;

;;
;;

; ◦ ◦ +

−
;;

;;
;;

; ◦ −

−

�������
◦

◦ ◦ −

−

�������
◦ ++

++

;;
;;

;;
; ◦ −

−

�������
◦ ◦

◦ ◦ +

+

;;
;;

;;
; ◦ −−

++

�������
◦ +

+

;;
;;

;;
; ◦ ◦

◦ +

+

;;
;;

;;
; ◦ −

+

�������
◦ ◦ −

+

�������
◦ +

+

;;
;;

;;
; ◦

◦ −

+

�������
◦ ◦ ◦ ◦ −

+

�������
◦

The diagram ( in fact the pattern of diagram) for π1,ω3 introduced above will play an

important role in what follows.
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6 Stiefel manifold C(SPq(2n)/SPq(2n− 2))

The Weyl group Wn−1 of sp2n−2 can also be realised as a subgroup of Wn of sp2n generated by

s2, s3, · · · sn and hence, the longest word ϑn−1 in Wn−1 is a subword of the longest word ϑn in

Wn which can easily be seen from proposition 4.1. This shows that C(SPq(2n − 2)) is a sub-

group of C(SPq(2n)) i.e. there is a C
∗-epimorphism φ : C(SPq(2n))→ C(SPq(2n−2)) obeying

∆φ = (φ ⊗ φ)∆. More precisely, let σ : T → C is the homomorphism for which σ(S) = 1.

Define φ to be the restriction of 1⊗n−1 ⊗ ev1 ⊗ 1⊗(n−1)2 ⊗ σ⊗(2n−1) to χϑn(C(SPq(2n))) which

is contained in C(Tn) ⊗ T ⊗n2
. Here ev1 denote the evaluation map at 1 i.e. ev1 : C(T ) → C

such that ev1(f) = f(1). Image of φ is equal to χϑn−1(C(SPq(2n− 2))) as,

φ(χwn(u
i
j)) =

χϑn−1(v
i
j), if i 6= 1 or 2n, or j 6= 1 or 2n,

δij , otherwise.

where vij are generators of C(SPq(2n − 2)). In such a case, one defines the quotient space

C(SPq(2n)/SPq(2n− 2)) by,

C(SPq(2n)/SPq(2n− 2)) = {a ∈ C(SPq(2n) : (φ⊗ id)∆(a) = I ⊗ a} .

Clearly, u2nm and hence u1m(= εmq
ρ1−ρm(u2n2n−m+1)

∗) are in C(SPq(2n)/SPq(2n − 2)) for m =

1, 2, · · · 2n. Neshveyev & Tuset [12] proposition 1.2 described all irreducible representations of

C(SPq(2n)/SPq(2n − 2)). As a consequence, one can show that C(SPq(2n)/SPq(2n − 2)) is

the C∗-subalgebra of C(SPq(2n) generated by
{
u2nm

}2n

m=1
. Now, if we look at the relations Iijst

involving u2nm and u1m by putting (i, j) = (1, 1) and (2n, 1), we get the relations mentioned in

next section where zm = u2n2n+1−m. We will prove that C(SPq(2n)/SPq(2n−2)) is the universal

C∗-algebra satisfying those relations.

7 Quantum quaternion sphere

Let q ∈ (0, 1). The C∗-algebra C(H2n
q ) of continuous functions on the quantum quarternion

sphere is defined as the universal C∗-algebra generated by elements z1, z2, ....z2n satisfying the

following relations

zizj = qzjzi for i > j, i+ j 6= 2n+ 1 (7.1)

zizi′ = q2zi′zi − (1− q2)
∑
k>i

qi−kzkzk′ for i > n (7.2)

z∗i zi′ = q2zi′z
∗
i (7.3)

z∗i zj = qzjz
∗
i for i+ j > 2n+ 1, i 6= j (7.4)
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z∗i zj = qzjz
∗
i + (1− q2)εiεjqρi+ρjzi′z

∗
j′

for i+ j < 2n+ 1, i 6= j (7.5)

z∗i zi = ziz
∗
i + (1− q2)

∑
k>i

zkz
∗
k for i > n (7.6)

z∗i zi = ziz
∗
i + (1− q2)q2ρizi′z

∗
i′
+ (1− q2)

∑
k>i

zkz
∗
k for i ≤ n (7.7)

2n∑
i=1

ziz
∗
i = 1 (7.8)

To get a faithful realisation of C(H2n
q ) in a Hilbert space, we need to find all its irreducible

representations. It follows from the commutation relations that ‖zi‖ ≤ 1, for 1 ≤ i ≤ 2n and

z2n is normal. We denote z∗2nz2n by ω.

Proposition 7.1. Let π be a representation of C(H2n
q ). Then one has,

1. ziω = q−2ωzi, and z∗i ω = q2ωz∗i , ∀i 6= 1 or 2n.

z1ω = q−4ωz1, and z∗1ω = q4ωz∗1.

2. π(ω) = I, on
⋂2n−1

i=1 kerπ(z∗i ).

3. 1(q2m+2,q2m)(π(ω)) = 0, ∀m ∈ N.

4. ker(zi) ⊆ ker(z∗k), for k ≥ i, and 1 ≤ i ≤ 2n.

5. if u is a nonzero eigenvector of π(ω) corresponding to eigenvalue q2m, then u /∈ kerπ(zi),

for 1 ≤ i ≤ 2n− 1.

6. Either σ(π(ω)) =
{
q2m : m ∈ N

}⋃
{0} or σ(π(ω)) = {0}.

Proof :

1. It will follow from the commutation relations (7.1), (7.3) and (7.5).

2. Easy to see from (7.8).

3. From the commutation relations, it follows that z∗1f(ω) = f(q4ω)z∗1 and

z∗i f(ω) = f(q2ω)z∗i for all i 6= 1 for all continuous functions f and hence for all L∞

functions. Thus

π(z1)
∗1(q2n+2,q2n)(π(ω)) = 1(q2n+2,q2n)(q

4π(ω))π(z1)
∗ = 1(q2n−2,q2n−4)(π(ω))π(z1)

∗,

π(zi)
∗1(q2n+2,q2n)(π(ω)) = 1(q2n+2,q2n)(q

2π(ω))π(zi)
∗ = 1(q2n,q2n−2)(π(ω))π(z1)

∗.

By repeated application, and using (7.8) and the fact that σ(ω) ⊆ [0, 1], it follows that

1(q
2n+2, q2n)(π(ω)) = 0.
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4. Let h ∈ ker(π(zi) and i > n. Using (7.6), we have,

〈z∗i zih, h〉 =

〈
ziz

∗
i h+ (1− q2)

∑
k>i

zkz
∗
kh, h

〉
.

⇒‖z∗i h‖
2 + (1− q2)

∑
k>i

‖z∗kh‖ = 0.

⇒‖z∗kh‖ = 0 for k ≥ i.

⇒z∗kh = 0.

⇒h ∈ ker π(z∗k).

For i ≤ n, use (7.7) and follow similar steps.

5. From part (4), we have, ker(zi) ⊆ ker(z∗2n) = ker(z2n) = ker(ω). Now, if u is a non-zero

eigenvector of π(ω) corresponding to eigenvalue q2m for some m ∈ N, then u /∈ ker(z∗2n).

Hence, u /∈ ker(zi) for 1 ≤ i ≤ 2n.

6. From part (3), and the fact that ‖ω‖ ≤ 1, it follows that, σ(π(ω)) ⊆
{
q2m : m ∈ N

}⋃
{0}.

Define,

A =
{
m ∈ N : q2m ∈ σ(π(ω))

}
.

If A = φ, we have, σ(π(ω)) = {0}. If A 6= φ, define,

m0 = inf
{
m ∈ N : q2m ∈ σ(π(ω))

}
.

Let u be a nonzero eigenvector corresponding to q2m0 and let u /∈ ker(z∗i ) for some

i ∈ {1, 2, · · · , 2n− 1}. Then from (7.1), it follows that π(z∗i )u is a nonzero eigenvector

corresponding to eigenvalue q2m0−2 or q2m0−4 depending on whether i 6= 1 or i = 1, which

contradicts the fact thatm0 is inf A. Hence u ∈
⋂2n−1

i=1 ker(z∗i ). As ω = I on
⋂2n−1

i=1 ker(z∗i ),

we get m0 = 0. From part(5), it follows that u /∈ ker(zi) for any i ∈ {1, 2, · · · 2n}. Now,

applying (7.1), we have π(zm2 )u is a nonzero eigenvector corresponding to eigenvalue

q2m, for all m ∈ N. This proves the claim.

2

Let π be a representation of C(H2n
q ) in a Hilbert space H. From (7.1), it follows that

kerπ(ω) is an invariant subspace for π. Therefore, if π is irreducible, then either π(ω) = 0

or ker(π(ω)) = 0. Assume π(ω) 6= 0. Then ker(π(ω)) = 0, and by part (6), we have,

σ(π(ω)) =
{
q2m : m ∈ N

}⋃
{0}. Hence, H decomposes as,

H = ⊕m∈NHm.
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where Hm is the eigenspace of π(ω) corresponding to eigenvalue q2m.

It is clear from (7.1), that for 1 < i < 2n, π(zi) sends Hm into Hm+1 and π(z∗i ) sends Hm into

Hm−1, π(z1) sends Hm into Hm+2 and π(z∗i ) sends Hm into Hm−2. Also, π(z2n) and π(z∗2n)

keeps Hm invariant. Observe that, π(z2n)|H0
is an unitary operator.

Proposition 7.2. Let u ∈
⋂2n−1

i=1 ker π(z∗i ). Then,

π(z2n)u ∈
2n−1⋂
i=1

kerπ(z∗i ),

π(z∗2n)u ∈
2n−1⋂
i=1

kerπ(z∗i ).

Proof : We need to show that π(zi)π(z2n)u = π(z∗i )π(z2n)u = 0, for all i ∈ {1, 2, · · · 2n− 1},
which easily follows from (7.1), (7.3) and (7.4). 2

Let K be a subspace of
⋂2n−1

i=1 kerπ(z∗i ) such that π(z2n)h ∈ K,h ∈ K. Define

HK = linear span { π(z1)α1π(z2)
α2 · · ·π(z2n−1)

α2n−1h : h ∈ K} .

Lemma 7.3. Let π be an irreducible representation of C(H2n
q ) such that π(z2n) 6= 0. Then,

HK is an invariant subspace of π .

Proof : Define, for h ∈ K,

h(α1, α2, · · · , α2n−1) = π(z1)
α1π(z2)

α2 · · ·π(z2n−1)
α2n−1h.

It is clear that π(z2n) keeps HK invariant as,

π(z2n)h(α1, α2, · · · , α2n−1) = q(
∑2n−1

l=1 αl)+α1h(α1, α2, · · · , α2n−1).

For 1 ≤ i ≤ n,

π(zi)h(α1, α2, · · · , α2n−1) = q
∑i−1

l=1 αlh(α1, · · · , αi−1, αi + 1, αi+1, · · · , α2n−1) ∈ HK .

for i = 2n− 1,

π(z2n−1)h(α1, α2, · · · , α2n−1) = qα1π(z1)
α1π(z2n−1)π(z2)

α2π(z3)
α3 · · ·π(z2n−1)

α2n−1h.

Repeated application of (7.2) gives,

ziz
m
i
′ = q2mzm

i
′ zi − (1− q2m)

∑
k>i

qi−kzm−1
i
′ zkzk′ .
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Hence we have,

π(z2n−1)h(α1, α2, · · · , α2n−1)

= qα1π(z1)
α1π(q2α2zα2

2 zn−1 − q(1− q2α2)zα2−1
2 z2nz1)π(z3)

α3 · · ·π(z2n−1)
α2n−1h.

= qα1+2α2+
∑2n−3

l=3 h(α1, α2, · · · , α2n−1 + 1)

−qα1+1(1− q2α2)π(z1)
α1π(zα2−1

2 z2nz1)h(0, 0, α3, · · · , α2n−1).

We have shown above that z1, z2, and z2n keeps HK invriant. Hence,

π(z2n−1)h(α1, α2, · · · , α2n−1) ∈ HK .

Similarly, by using backward induction , we can show that HK is invariant under the action of

π(z1), π(z2), · · · and π(zn). Also, we have

π(z∗2n)h(α1, α2, · · · , α2n−1) = q(
∑2n−1

l=1 αl)+α1h(α1, α2, · · · , α2n−1).

This shows that π(z∗2n) keeps HK invriant.

By applying (7.5) and (7.6) repeatedly, we get,

z∗2n−1z
m
1 = qmzm1 z

∗
2n−1 +mqm(1− q2)ε2n−1ε1q

ρ2n−1+ρ1zm−1
1 z2z

∗
2n

z∗2n−1z
m
2n−1 = zm2n−1z

∗
2n−1 + (1− q2m)zm−1

2n−1ω

Hence we have,

π(z∗2n−1)h(α1, α2, · · · , α2n−1)

= qα1π(zα1
1 z∗2n−1 + α1q

α1(1− q2)ε2n−1ε1q
ρ2n−1+ρ1zα1−1

1 z2z
∗
2n)π(z2)

α2 · · ·π(z2n−1)
α2n−1h.

= q(
∑2n−2

l=1 l)+α2π(z1)
α1 · · ·π(z2n−2)

α2n−2π(z2n−1)
∗π(z2n−1)

α2n−1h

−α1q
α1(1− q2)qρ2n−1+ρ1π(zα1−1

1 )π(z2)π(z
∗
2n)π(z2)

α2 · · ·π(z2n−1)
α2n−1h.

= (1− q2α1)q(
∑2n−2

l=1 l)+α2π(z1)
α1 · · ·π(z2n−2)

α2n−2π(z2n−1)
α2n−1−1π(ω)h

−α1q
α1(1− q2)qρ2n−1+ρ1π(zα1−1

1 )π(z2)π(z
∗
2n)π(z2)

α2 · · ·π(z2n−1)
α2n−1h.

Since π(z1), π(z2), and π(z2n∗) keeps HK invriant, HK is invarint under the action of π(z∗2n−1).

By using backward induction and following similar steps, we can show that HK is invariant for

π.

2

It follows from the lemma that if K is an invariant subspace for
⋂2n−1

i=1 ker π(z∗i ), then

HK is an invariant subspace for π and is a proper invariant subspace for π if K is proper

subspace of
⋂2n−1

i=1 ker π(z∗i ). Therefore, if π is an irreducible representation, then the space⋂2n−1
i=1 kerπ(z∗i ) is one dimensional.
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Corollary 7.4. Let π be an irreducible representation such that π(z2n) 6= 0. Then,

Hm = linear span

{
π(z1)

α1π(z2)
α2 · · ·π(z2n−1)

α2n−1u : (

2n−1∑
l=1

αl) + α1 = m

}
.

Now, pick a unit vector u in
⋂2n−1

i=1 kerπ(z∗i ). Define,

uα2,··· ,α2n−1,α0 = π(z2n−1)
α2n−1π(z2n−2)

α2n−2 · · ·π(z2)α2 [π(zn), π(zn+1)]
α0u.

where αi ∈ N. Now, we develop some tools by analysing the defining relations more closely.

Proposition 7.5. Let π be an irreducible representation of C(H2n
q ) such that π(z2n) 6= 0.

1. for i > n,

π(zi)
∗π(zi)

m = π(zi)
mπ(zi)

∗ + (1− q2m)
∑
k>i

π(zi)
m−1π(zk)π(zk)

∗.

2. for i ≤ n,

π(zi)
∗π(zi)

m = π(zi)
mπ(zi)

∗ + q2ρi(1− q2m)π(zi)
m−1π(zi′ )π(zi′ )

∗

+(1− q2m)
∑
k>i

π(zi)
m−1π(zk)π(zk)

∗.

3. for i+ j < 2n+ 1, i 6= j,

π(zi)
∗π(zj)

m = qmπ(zj)
mπ(zi)

∗ +mqm(1− q2)εiεjqρi+ρjπ(zj)
m−1π(zi′ )π(zj′ )

∗.

4. for i > n,

π(zi)
∗[π(zn), π(zn+1)]

m = q2m[π(zn), π(zn+1)]
mπ(zi)

∗.

5. for i > n,

π(zi)
∗uα2,··· ,α2n−1,α0 = Cuα2,···αi−1,αi−1,αi+1··· ,α2n−1,α0

where C is some non-zero constant.

6. for n < i < 2n,

π(zi)
∗uα2,···αi−1,0,αi+1··· ,α2n−1,α0 = 0
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7.

π(zn)
∗[π(zn), π(zn+1)]

m = q2m[π(zn), π(zn+1)]
mπ(zn)

∗

+((1− q4)(1− q2)
k−1∑
l=0

q4l[π(zn), π(zn+1)]
k−1−lπ(zn+1)[π(zn), π(zn+1)]

l)
∑

k>n+1

π(zk)π(zk)
∗.

8. for 1 < i ≤ n,

π(zi)
∗π(zi−1)

αi−1 · · ·π(z2)α2 [π(zn), π(zn+1)]
α0u = Cπ(zi−1)

αi−1 · · ·π(z2)α2π(zi)
∗[π(zn), π(zn+1)]

α0u.

where C is some non-zero constant.

9.

[π(zn), π(zn+1)]
∗[π(zn), π(zn+1)]

mu = C[π(zn), π(zn+1)]
m−1u.

where C is some non-zero constant.

10. for 1 < i ≤ n,

π(zi)π(z
′
i

m
) = q2mπ(zm

i
′ )π(zi)−

∑
k>i

(1− q2m)qi−kπ(zk)π(zk′ )π(z
m−1
i ).

11. for 1 ≤ i < n,

π(z∗i )[π(zn), π(zn+1)]
mu = Cπ(z

′
i)[π(zn), π(zn+1)]

m−1u.

where C is some constant.

12.

π(z1)
∗uα2,··· ,αn,0,··· ,0,α0 = Cuα2,···αn,0,··· ,0,α0−1

Proof : We will prove part(4) and part(9) of this proposition. Other parts will follow by direct

calculation using commutation relations.

1. For i > n+ 1, It follows from (7.1). For i = n+ 1, it is enough to show for m = 1.

π(zn+1)
∗[π(zn), π(zn+1)]

= π(zn+1)
∗π(zn)π(zn+1)− π(zn+1)

∗π(zn+1)π(zn).

= q2π(zn)π(zn+1)
∗π(zn+1)− π(zn+1)π(zn+1)

∗π(zn)− (1− q2)
∑

k>n+1

π(zk)π(z
∗
k)π(zn).

= q2π(zn)π(zn+1)π(zn+1)
∗ + q2(1− q2)

∑
k>n+1

π(zn)π(zk)π(z
∗
k)

−q2π(zn+1)π(zn)π(zn+1)
∗ − q2(1− q2)

∑
k>n+1

π(zn)π(zk)π(z
∗
k).

= q2[π(zn), π(zn+1)]π(zn+1)
∗
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2.

[π(zn), π(zn+1)]
∗[π(zn), π(zn+1)]

mu

= π(z∗n)π(zn+1)
∗[π(zn), π(zn+1)]

mu+ π(z∗n+1)π(z
∗
n)[π(zn), π(zn+1)]

mu.

= Cπ(z∗n+1)

m−1∑
l=0

q4l[π(zn), π(zn+1)]
m−1−lπ(zn+1)[π(zn), π(zn+1)]

l,

from part(7) of the proposition 7.5 .

= C

m−1∑
l=0

q4l[π(zn), π(zn+1)]
m−1−lπ(z∗n+1)π(zn+1)[π(zn), π(zn+1)]

l, by (7.1).

= C

m−1∑
l=0

q4l[π(zn), π(zn+1)]
m−1−l(π(zn+1)π(zn+1)

∗ + (1− q2)
∑
k>i

π(zk)π(zk)
∗)[π(zn), π(zn+1)]

l,

= C[π(zn), π(zn+1)]
m−1.

2

From part (9) of proposition 7.5, [π(zn), π(zn+1)]
α0u 6= 0 and since kerπ(zi) ⊆ kerπ(z∗2n) = {0},

we have uα2,α2,··· ,α2n−1,α0 6= 0, (α2, α2, · · ·α2n−1, α0) ∈ N2n−1 and we can define,

eα2,··· ,α2n−1,α0 =
uα2,··· ,α2n−1,α0∥∥uα2,··· ,α2n−1,α0

∥∥
Proposition 7.6. Assume,

{
eα2,··· ,α2n−1,α0 : (

∑2n−1
l=2 αl) + 2α0 ≤ L

}
form an orthonormal ba-

sis for H≤L = H0 ⊕H1 ⊕ · · · ⊕ HL. If 2(r + s) + 1 ≤ L, then
[π(zn), π(zn+1)]

r π(zn+1) [π(zn), π(zn+1)]
s u = Cπ(zn+1) [π(zn), π(zn+1)]

r+s u.

where C is a non-zero constant.

Proof : It is enough to prove the statement for r = 1.

The condition ensures that, [π(zn), π(zn+1)]π(zn+1) [π(zn), π(zn+1)]
s u ∈ H≤L. Hence,

[π(zn), π(zn+1)]π(zn+1) [π(zn), π(zn+1)]
s u =

∑
(α2···α2n−1,α0):(

∑2n−1
i=2 αi)+2α0≤L

C(α2, · · · , α0)eα2,··· ,α0 .

where C(α2, · · · , α2n−1, α0) =
〈
[π(zn), π(zn+1)]π(zn+1) [π(zn), π(zn+1)]

s u, eα2,··· ,α2n−1,α0

〉
.

We will show that C(α2, · · · , α2n−1, α0) = 0 if αn+1 = 1 and α0 = s+ 1. Now,

Case 1 : αi 6= 0 for some i > n+ 1.

Applying part (4) of the proposition 7.5 we get,

π(zi)
∗ [π(zn), π(zn+1)]π(zn+1) [π(zn), π(zn+1)]

s u = 0.

This shows that if αi 6= 0 for any i ∈ {n+ 2, n+ 3, · · · , 2n− 1} , C(α2, · · · , α2n−1, α0) = 0.

20



Case 2 : αn+1 ≥ 1 and αi = 0 for all i > n+ 1.

π(zn+1)
∗ [π(zn), π(zn+1)]π(zn+1) [π(zn), π(zn+1)]

s u

= q2 [π(zn), π(zn+1)]π(z
∗
n+1zn+1) [π(zn), π(zn+1)]

s u.

= q2 [π(zn), π(zn+1)]π(zn+1z
∗
n+1) [π(zn), π(zn+1)]

s u

+
∑

k>n+1

q2(1− q2) [π(zn), π(zn+1)]π(zkz
∗
k) [π(zn), π(zn+1)]

s u.

= q4s+2(1− q2) [π(zn), π(zn+1)]
s+1 u. ( as u ∈

2n−1⋂
i=1

ker π(z∗i )).

Now, 〈
uα2,··· ,αn+1,0,··· ,0,α0 , [π(zn), π(zn+1)]π(zn+1) [π(zn), π(zn+1)]

s u
〉

=
〈
uα2,··· ,αn+1−1,0,··· ,0,α0 , π(z

∗
n+1) [π(zn), π(zn+1)]π(zn+1 [π(zn), π(zn+1)]

s u
〉
.

=
〈
uα2,··· ,αn+1−1,0,··· ,0,α0 , q

4s+2(1− q2) [π(zn), π(zn+1)]
s+1 u

〉
. 6= 0 if αn+1 = 1, α0 = s+ 1, αn−1 = · · ·α1 = 0,

= 0 otherwise .

Case 3 : αi = 0 for all i ≥ n+ 1.

By using commutation relations, we have,

π(zn)
∗uα2,··· ,αn,0,··· ,0,α0

= π(zn)
αnπ(zn)

∗π(zn−1)
αn−1 · · · , [π(zn), π(zn+1)]

α0 u

+(1− q2αn)
∑
k>n

π(zn)
αn−1π(zk)π(zk)

∗π(zn−1)
αn−1 · · · , [π(zn), π(zn+1)]

α0 u.

= Cπ(zn)
αnπ(zn−1)

αn−1 · · · , π(z2)α2π(zn)
∗ [π(zn), π(zn+1)]

α0 u

+(1− q2αn)
∑
k>n

π(zn)
αn−1π(zk)π(zk)

∗π(zn−1)
αn−1 · · · , [π(zn), π(zn+1)]

α0 u.

for some non-zero constant C.

second term of R.H.S = Cuα2,··· ,αn−1,αn−1,0,··· ,0,α0 (from part (5) of the proposition 7.5) .

first term of R.H.S = Cπ(zn)
αn · · · , π(z2)α2 [π(zn), π(zn+1)]

α0π(zn)
∗

+Cπ(zn)
αn · · · , π(z2)α2(

α−1∑
l=0

q4l[π(zn), π(zn+1)]
α0−1−lπ(zn+1)[π(zn), π(zn+1)]

l)u.

Hence,

π(zn+1)
∗π(zn)

∗uα2,··· ,αn,0,··· ,0,α0

= Cπ(zn)
αn · · ·π(z2)α2π(z∗n+1)(

α0−1∑
l=0

q4l[π(zn), π(zn+1)]
α0−1−lπ(zn+1)[π(zn), π(zn+1)]

l)u.
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= Cπ(zn)
αn · · ·π(z2)α2(

α0−1∑
l=0

q4l[π(zn), π(zn+1)]
α0−1−lπ(z∗n+1)π(zn+1)[π(zn), π(zn+1)]

l)u.

= Cπ(zn)
αn · · ·π(z2)α2(

α0−1∑
l=0

q4l[π(zn), π(zn+1)]
α0−1−l(π(zn+1)π(z

∗
n+1)

+
∑

k>n+1

π(zk)π(z
∗
k))[π(zn), π(zn+1)]

l)u.

= Cπ(zn)
αn · · ·π(z2)α2 [π(zn), π(zn+1)]

α0−1u.

By above calculation and by proposition 7.5 , we have,

〈uα2,··· ,αn,0.··· ,0,α0 , [π(zn), π(zn+1)]π(zn+1)[π(zn), π(zn+1)]
su〉

= 〈[π(zn), π(zn+1)]
∗uα2,··· ,αn,0.··· ,0,α0 , π(zn+1)[π(zn), π(zn+1)]

su〉 ,

=
〈
π(z∗n+1z

∗
n − z∗nz∗n+1)uα2,··· ,αn,0.··· ,0,α0 , π(zn+1)[π(zn), π(zn+1)]

su
〉
,

=
〈
π(z∗n+1z

∗
n)uα2,··· ,αn,0.··· ,0,α0 , π(zn+1)[π(zn), π(zn+1)]

su
〉
,

=
〈
Cπ(zn)

αnπ(zn−1)
αn−1 · · · , π(z2)α2 [π(zn), π(zn+1)]

α0−1u, π(zn+1)[π(zn), π(zn+1)]
su
〉
,

=
〈
Cπ(z∗n+1)π(zn)

αnπ(zn−1)
αn−1 · · · , π(z2)α2 [π(zn), π(zn+1)]

α0−1u, [π(zn), π(zn+1)]
su
〉
,

= 0

It proves the claim. 2

Lemma 7.7. Let π be an irreducible representation on a Hilbert space H with π(z2n) 6= 0.

Then,
{
eα2,α2,··· ,α2n−1,α0 , : (α2, α3, · · ·α2n−1, α0) ∈ N2n−1

}
defined as above, form an orthonor-

mal basis for H.

Proof : From corollary 7.4, it is enough to show that α 6= β, uα is orthogonal to uβ . We apply

induction on Lα defined as (
∑2n−1

i=2 αi) + 2α0. For Lα = 0, claim is true as u 6= 0. Assume the

hypothesis for Lα ≤ N − 1. Note that, uα2,··· ,α2n−1,α0 ∈ HLα . Hence, by induction hypothesis

and corollary 7.4, it follows that
{
eα2,··· ,α2n−1,α0/(

∑2n−1
l=2 αl) + 2α0 = m

}
form an orthonormal

basis of Hm for m ≤ N − 1.

If α and β are such that Lα 6= Lβ , then uα ∈ HLα and uβ /∈ HLα which shows that uα and

uβ are orthogonal. Take α and β such that Lα = Lβ = N . Assume for some i > n, αi 6= 0.

Choose maximum such i. From part(6) of proposition 7.5, it follows that,

〈uα, uβ〉 =
〈
uα2,··· ,αi−1,αi−1,0,··· ,0,α0 , π(z

∗
i )uβ

〉
=

〈
uα2,··· ,αi−1,αi−1,0,··· ,0,α0 , Cuβ2,··· ,βi−1,βi−1,βi+1,··· ,β2n−1,β0

〉
where C is a non zero constant. Now, by using induction we get, 〈uα, uβ〉 6= 0 if and only if α =
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β. Hence, it is enough to consider α and β such that αi = βi = 0 for i > n. Let αn 6= 0.

π(z∗n)uβ2,··· ,βn,0,··· ,0,β0 = (π(zβn
n )π(z∗n) +

∑
k>i

Cπ(zβn−1
n )π(zk)π(z

∗
k))uβ2,··· ,βn−1,0,··· ,0,β0

= Cπ(zβn
n )π(zn+1)uβ2,··· ,βn−1,0,··· ,0,β0−1 + Cuβ2,··· ,βn−1,0,··· ,0,β0

(by proposition 7.6)

= (Cπ(zn+1)π(z
βn
n ) +

∑
k>n+1

Cπ(zk)π(z
′
k)π(z

βn−1
n ))uβ2,··· ,βn−1,0,··· ,0,β0−1

+Cuβ2,··· ,βn−1,0,··· ,0,β0

Hence,

〈uα, uβ〉 =
〈
uα2,··· ,αn−1,αn−1,0,··· ,0,α0 , π(z

∗
n)uβ

〉
=

〈
uα2,··· ,αn−1,αn−1,0,··· ,0,α0 , Cuβ2,··· ,βn−1,0,··· ,0,β0 + Cπ(z2n)π(z1)uβ2,··· ,βn−1,0,··· ,0,β0−1

〉
=

〈
uα2,··· ,αn−1,αn−1,0,··· ,0,α0 , Cuβ2,··· ,βn−1,0,··· ,0,β0

〉
+
〈
π(z∗1)uα2,··· ,αn−1,αn−1,0,··· ,0,α0 , Cuβ2,··· ,βn−1,0,··· ,0,β0−1

〉
=

〈
uα2,··· ,αn−1,αn−1,0,··· ,0,α0 , Cuβ2,··· ,βn−1,0,··· ,0,β0

〉
+
〈
uα2,··· ,αn−1,αn−1,0,··· ,0,α0−1, Cuβ2,··· ,βn−1,0,··· ,0,β0−1

〉
Again induction proves the claim. So, we will consider α and β such that αi = βi = 0 for i ≥ n.
Assume that for some i ∈ {2, 3, · · · , n− 1} , αi 6= 0 or βi 6= 0. Choose maximum such i.

Without loss of generality, we assume that αi 6= 0.

π(z∗i )uβ2,··· ,βi,0,··· ,0,β0

= (π(zi)
βiπ(zi)

∗ + q2ρi(1− q2βi)π(zi)
βi−1π(zi′ )π(zi′ )

∗

+(1− q2βi)
∑
k>i

π(zi)
βi−1π(zk)π(zk)

∗)π(zi−1)
βi−1 · · · , π(z2)β2 [π(zn), π(zn+1)]

β0u.

= Cπ(zi)
βiπ(z

′
i)π(zi−1)

βi−1 · · · , π(z2)β2 [π(zn), π(zn+1)]
β0−1u

+
∑

i<k≤n

Cπ(zi)
βi−1π(zk)π(zk)

∗)π(zi−1)
βi−1 · · · , π(z2)β2 [π(zn), π(zn+1)]

β0−1u+ Cuβ2,··· ,βi−1,0,··· ,0,β0 .

= Cπ(z
′
i)π(zi)

βiπ(zi−1)
βi−1 · · · , π(z2)β2 [π(zn), π(zn+1)]

β0−1u

+
∑
k>i′

Cπ(zk))π(zk′ )π(zi)
βi−1π(zi−1)

βi−1 · · · , π(z2)β2 [π(zn), π(zn+1)]
β0−1u.

+
∑

i<k≤n

Cπ(zi)
βi−1π(zk′ ))π(zk)π(zi−1)

βi−1 · · · , π(z2)β2 [π(zn), π(zn+1)]
β0−1u+ Cuβ2,··· ,βi−1,0,··· ,0,β0

= Cuβ2,··· ,βi−1,0,··· ,0,β0

+
∑

n<k≤2n

Cπ(zk))π(zk′ )π(zi)
βi−1π(zi−1)

βi−1 · · · , π(z2)β2 [π(zn), π(zn+1)]
β0−1u.

(7.9)
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Hence,

〈uα, uβ〉 =
〈
uα2,··· ,αi−1,αi−1,0,··· ,0,α0 , π(z

∗
i )uβ2,··· ,βi,0,··· ,0,β0

〉
=

〈
uα2,··· ,αi−1,αi−1,0,··· ,0,α0 , Cuβ2,··· ,βi−1,0,··· ,0,β0 + Cπ(z2n)π(z1)uβ2,··· ,βi−1,0,··· ,0,β0−1

〉
=

〈
uα2,··· ,αi−1,αi−1,0,··· ,0,α0 , Cuβ2,··· ,βi−1,0,··· ,0,β0

〉
+
〈
π(z∗1)uα2,··· ,αi−1,αi−1,0,··· ,0,α0 , Cuβ2,··· ,βi−1,0,··· ,0,β0−1

〉
=

〈
uα2,··· ,αi−1,αi−1,0,··· ,0,α0 , Cuβ2,··· ,βi−1,0,··· ,0,β0

〉
+
〈
uα2,··· ,αn−1,αi−1,0,··· ,0,α0−1, Cuβ2,··· ,βi−1,0,··· ,0,β0−1

〉

Again induction will settle the claim. Now, we take α and β such that αi = βi = 0, for all i 6= 0.

[π(zn), π(zn+1)]
∗[π(zn), π(zn+1)]

β0u

= C[π(zn), π(zn+1)]
β0−1. from part(9) of the proposition 7.5 .

Hence,

〈uα, uβ〉 =
〈
[π(zn), π(zn+1)]

α0u, [π(zn), π(zn+1)]
β0u

〉
=

〈
[π(zn), π(zn+1)]

α0−1u, [π(zn), π(zn+1)]
∗[π(zn), π(zn+1)]

β0u
〉

=
〈
[π(zn), π(zn+1)]

α0−1u,C[π(zn), π(zn+1)]
β0−1u

〉

This completes the proof. 2

Corollary 7.8. ‖uα‖ is a fixed constant which is independent of the representation. More

precisely, if π and π
′
are two irreducible representations with π(z2n) 6= 0 and π

′
(z2n) 6= 0, then,

‖uα‖ =
∥∥∥u′

α

∥∥∥ , ∀α ∈ N2n−1.

where uα and u
′
α are defined as above.

Now, we aim to find all irreducible representation of C(H2n
q ). One way is to do explicit cal-

culation to determine the operators z1, z2, · · · , z2n as done in case of odd dimensional quantum

sphere. But in this case, calculations are more complicted. So, to avoid complicated calcula-

tions, we show that one can completely determine an irreducible representation π of C(H2n
q )

given that π(ω) 6= 0 and π(z2n)u = tu for some fixed t ∈ T . Then, we use representation of

Stiefel manifold C(SPq(2n)/C(SPq(2n− 2) to get explicit description of the representation.
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Theorem 7.9. Let π and π
′
be irreducible representations of C(H2n

q ) on a Hilbert space H and

H′
respectively such that π(z2n)|⋂2n−1

i=1 kerπ(z∗i )
= tI = π

′
(z2n)|⋂2n−1

i=1 kerπ
′
(z∗i )

for t ∈ T. Then π

and π
′
are equivalent.

Proof : Without loss of generality, we can take t = 1. Let u and u
′
are unit vectors in⋂2n−1

i=1 kerπ(z∗i ) and
⋂2n−1

i=1 kerπ
′
(z∗i ) respectively. From the lemma 7.7, we have the canonical

orthonormal bases for H and H′
given by,

{
eα2,α3,··· ,α2n−1,α0 , (α2, α3, · · ·α2n−1, α0) ∈ N2n−1

}
and{
e
′
α2,α3,··· ,α2n−1,α0

, (α2, α3, · · ·α2n−1, α0) ∈ N2n−1
}

respectively. Define,

U : H ←→ H′
.

eα2,α3,··· ,α2n−1,α0 7−→ e
′
α2,α3,··· ,α2n−1,α0

From corollary 7.8, U(uα2,α3,··· ,α2n−1,α0) = u
′
α2,α3,··· ,α2n−1,α0

. We know,

H = ⊕m∈NHm.

H′
= ⊕m∈NH

′
m.

where Hm and H′
m are the eigenspaces of π(ω) and π

′
(ω) repectively, corresponding to eigen-

value q2m. Clearly U(Hm) = H′
m. We need to show that, Uπ(zi)U

∗ = π
′
(zi), or equivalently

Uπ(z∗i )U
∗ = π

′
(z∗i ) ∀i ∈ {1, 2, · · · , 2n}.

For i = 2n,

π(z∗2n)uα2,··· ,α2n−1,α0 = q(
∑2n−1

l=2 αl)+2α0uα2,··· ,α2n−1,α0 .

π
′
(z∗2n)uα2,··· ,α2n−1,α0 = q(

∑2n−1
l=2 αl)+2α0u

′
α2,··· ,α2n−1,α0

.

For i > n,

π(z∗i )uα2,··· ,α2n−1,α0 = Cuα2,··· ,αi−1,αi,··· ,α2n−1,α0

π
′
(z∗i )u

′
α2,··· ,α2n−1,α0

= Cu
′
α2,··· ,αi−1,αi,··· ,α2n−1,α0

.

Note that constant C is same in both equations. Hence we have,

Uπ(z∗i )U
∗ = π

′
(zi) for n < i ≤ 2n.

For i = n, we will use induction on the dimension of eigenspaces of π(ω). For m = 0, π(z∗i )u =

0 = π′(z∗i )u
′
. Assume that Uπ(zi)U

∗
|H≤m

= π
′
(zi)|H

′
≤m. Take uα2,··· ,α2n−1,α0 ∈ Hm+1.

Case 1 : αj 6= 0, for some j > n, and αk = 0,∀k > j.

π(z∗n)uα2,··· ,αj ,0,··· ,0,α0 = Cπ(zj)π(z
∗
n)uα2,··· ,αj−1,0,··· ,0,α0 , by (7.1)

= Cπ(zj)U
∗π

′
(z∗n)u

′
α2,··· ,αj−1,0,··· ,0,α0

, (by induction)

= CU∗π′(zj)UU
∗π

′
(z∗n)u

′
α2,··· ,αj−1,0,··· ,0,α0

,

= CU∗π′(zj)π
′
(z∗n)u

′
α2,··· ,αj−1,0,··· ,0,α0

,

= π′(zn)u
′
α2,··· ,αj ,0,··· ,0,α0

.
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Case 2 : αj = 0,∀j > n. From part(7), (8) of the proposition 7.5 and proposition 7.6, we have,

π(z∗n)uα2,··· ,αn,0,··· ,0,α0 = Cuα2,··· ,αn−1,0,··· ,0,α0 + Cuα2,··· ,αn,1,0,··· ,0,α0−1.

π
′
(z∗n)u

′
α1,··· ,αn,0,··· ,0,α0

= Cu
′

(α2,··· ,αn−1,0,··· ,0,α0
+ Cu

′

(α2,··· ,αn,1,0,··· ,0,α0−1).

Hence, we get,

Uπ(zn)
∗U∗ = π

′
(zn).

For 1 < i < n,

Case 1 : αj 6= 0, for some j > i, and αk = 0,∀k > j. This follows exactly as in i = n.

Case 2 : αj = 0, ∀j ≥ i. It follows from part(2) of the proposition 7.5 and by using the fact

Uπ(zk)
∗U∗ = π

′
(zk) for all k > i.

Case 3 : αj = 0, ∀j ≥ i. From part (8) and part(11) of the proposition 7.5, we have

π(zi)
∗uα2,··· ,αi−1,0,··· ,0,α0 = Cuα2,··· ,αi−1,0,··· ,0, 1︸︷︷︸

i
′−1 th place

,0,··· ,0,α0

π
′
(zi)

∗uα2,··· ,αi−1,0,··· ,0,α0 = Cu
′

α2,··· ,αi−1,0,··· ,0, 1︸︷︷︸
i
′−1 th place

,0,··· ,0,α0
.

which settles the claim for 1 < i < n.

For i = 1, we again use induction. Take uα such that αj 6= 0 for some j 6= 0. Choose j to be

max {j : αj 6= 0}.

π(z1)
∗uα2··· ,αj ,0,··· ,0,α0 = Cπ(zj)π(z1)

∗uα2,··· ,αj−1,0,··· ,0,α0 ,

= CU∗π′(zj)UU
∗π′(z1)

∗u
′
α2,··· ,αj−1,0,··· ,0,α0

,

= CU∗π′(zj)π
′(z1)

∗u
′
α2,··· ,αj−1,0,··· ,0,α0

,

= π
′
(z1)

∗u
′
α2··· ,αj ,0,··· ,0,α0

.

For α such that αj = 0,∀j 6= 0, it follows from part(12) of the proposition 7.5 and induction.

Hence, we have, Uπ(z∗i )U
∗ = π

′
(z∗i ), 1 ≤ i ≤ 2n, which proves the claim. 2

We will now discuss general case. Let π be an irreducible representation of C(H2n
q ) on a Hilbert

space H such that π(z2n) = π(z2n−1) = · · · = π(zk+1) = 0, and π(zk) 6= 0. It follows from

(7.8), that zk is normal. Denote z∗kzk by ω. By the same reasoning, H decomposes as,

H = ⊕m∈NHm.
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where Hm is the eigenspace of π(ω) corresponding to eigenvalue q2m.

Let K be a subspace of
⋂k−1

i=1 ker π(z∗i ) such that π(zk)h ∈ K, ∀h ∈ K. Define

HK = linear span { π(z1)α1π(z2)
α2 · · ·π(zk−1)

αk−1h : h ∈ K} .

In the same way, one can show that, HK is an invariant subspace of a representation π and

hence, by irreducibility of the representation,
⋂k−1

i=1 ker π(z∗i ) is one dimensional. Pick u ∈⋂k−1
i=1 ker π(z∗i ) = H0. As, π(zk) keeps H0 invariant and π(zk)|H0

is an unitary operator, we

get π(zk)u = tu for some t ∈ T.

Theorem 7.10. Let 1 ≤ k ≤ 2n, and π be an irreducible representation of C(H2n
q ) on a

Hilbert space H such that π(z2n) = π(z2n−1) = · · · = π(zk+1) = 0, and π(zk)u = tu, t ∈ T,
where u is defined as above. Then π is unique representation upto equivalence which satisfies

these conditions.

Proof : This is essentially the previous proof with some minor modifications.

Case 1 : k > n. Define,

uα1,α2,··· ,α2n−k,α2n−k+2,··· ,αk−1,α0

= π(z1)
α1 · · ·π(z2n−k)

α2n−kπ(zk−1)
αk−1 · · ·π(z2n−k+2)

α2n−k+2 [π(zn), π(zn+1)]
α0 .

(7.10)

where αi ∈ N. (Note the changes occured in the definition of uα. )

eα1,α2,··· ,α2n−k,α2n−k+2,··· ,αk−1,α0 =
uα1,α2,··· ,α2n−k,α2n−k+2,··· ,αk−1,α0∥∥uα1,α2,··· ,α2n−k,α2n−k+2,··· ,αk−1,α0

∥∥
Similar calculation will prove that{
eα1,··· ,α2n−k,α2n−k+2,··· ,αk−1,α0 , : (α1, · · · , α2n−k, α2n−k+2, · · · , αk−1, α0) ∈ Nk−1

}
defined as above,

form an orthonormal basis for H. By same argument as done in previous theorem will

prove the uniqueness of the representation satisfying π(z2n) = π(z2n−1) = · · · = π(zk+1) =

0, and π(zk)u = tu.

Case 2 : k ≤ n. First observe that the relations satisfied by π(z1), π(z2), · · · , π(zk) are same

as the defining relations of odd dimesional quantum sphere S2k+1
q for which we know that the

claim holds. (Note that we can proceed as in previous case also and get the claim.) 2

We have shown so far, that if there exists an irreducible representation π such that π(z2n) =

π(z2n−1) = · · · = π(zk+1) = 0, and π(zk)u = tu for t ∈ T , then it is unique. Existence of these

representations still needs to be shown. For that, denote by ωk the following word of Weyl

group of sp2n,

ωk =


I if k = 1,

s1s2 · · · sk−1 if 2 ≤ k ≤ n,

s1s2 · · · sn−1snsn−1 · · · s2n−k+1 if n < k ≤ 2n.
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Since
{
u2nj : j ∈ 1, 2, · · · , 2n

}
satisfies the defining relations of C(H2n

q ) with zj = u2n2n+1−j ,

from the universal property of C(H2n
q ), there exist a map η : C(H2n

q ) −→ C(SPq(2n)/SPq(2n−
2)) such that η(zj) = u2n2n+1−j , ∀j ∈ 1, 2, · · · , 2n. Let ηt,ωk

= πt,ωk
◦ η. Hence, we have an

irreducible representation ηt,ωk
of C(H2n

q ) such that π(z2n) = π(z2n−1) = · · · = π(zk+1) =

0, and π(zk)u = tu where 1 < k ≤ 2n. This gives an explicit description of the irreducible

representations satifying these conditions.

For k = 1, define, ηt,I : C(H2n
q ) → C such that ηt,I(zj) = tδ1j . The set {ηt,I : t ∈ T} gives all

one dimensional irreducible representations of C(H2n
q ). Also, it satisfies π(z2n) = π(z2n−1) =

· · · = π(z2) = 0, and π(z1)u = tu.

Corollary 7.11. The set, {ηt,ωk
: 1 ≤ k ≤ 2n, t ∈ T}, gives a complete list of irreducible rep-

resentations of C(H2n
q ).

To get a faithful representation of C(H2n
q ), define, ηωk

: C(H2n
q ) → C(T) ⊗ T ⊗k−1, such

that ηωk
(a)(t) = ηωt,ωk

(a), ∀a ∈ C(H2n
q ).

Corollary 7.12. ηω2n gives a faithful representation of C(H2n
q ).

Proof : It is easy to see that any irreducible representation factors through ηω2n as, ωk is a

subword of ω2n. This proves the claim. 2

Corollary 7.13. The homomorphism, η : C(H2n
q ) → C(SPq(2n)/SPq(2n − 2)) is an isomor-

phism.

Remark 7.14. Neshveyev & Tuset [12] obtained all irreducible representations of C(SPq(2n)/SPq(2n−
2)). Using that one can get a faithful represenation of C(SPq(2n)/SPq(2n− 2)). Here we first

get the relations satisfied the generators of C(SPq(2n)/SPq(2n − 2)). We then obtain all ir-

reducible representations of the universal C∗-algebra satisfying those relations and show that

it is isomorphic to C(SPq(2n)/SPq(2n − 2)). This represents C(SPq(2n)/SPq(2n − 2)) as a

universal C∗-algebra satisfying some relations. In section (9), we use this fact to give a natural

Tn action on it and then get an equivariant spectral triple for this C∗- algebra.

We separate out some important facts which will be useful in determining the K- groups

of C(H2n
q ).

Corollary 7.15. Let C1 = C(T) and for 2 ≤ k ≤ 2n, Ck = ηωk
(C(H2n

q )). Then,

{ηt,ωl
: 1 ≤ l ≤ k, t ∈ T} gives a complete list of irreducible representations of Ck.

Corollary 7.16. Let π = ηt,ωk
.
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1. for 1 ≤ k ≤ n,

π(z1)
α1 · · ·π(zk−1)

αk−11{1}π(z
∗
kzk) = Cpα1,0 ⊗ pα2,0 ⊗ ...⊗ pαk−1,0.

2. for n < k ≤ 2n,

π(z1)
α1 · · ·π(z2n−k)

α2n−kπ(zk−1)
αk−1π(zk−2)

αk−2 · · ·π(z2n−k+2)
α2n−k+2 [π(zn), π(zn+1)]

α01{1}π(z
∗
kzk)

= Cpα1,0 ⊗ · · · pα2n−k,0 ⊗ pα2n−k+2,0 ⊗ · · · pαn,0 ⊗ pα0,0 ⊗ pαn+1,0 ⊗ · · · ⊗ pαk−1,0.

where pi,j be the rank one operator on L2(N) sending basis element ej to ei and C is some

non-zero constant.

8 K-group of C(H2n
q )

In this section, we derive certain exact sequences analogous to that for quantum sphere (see [18]).

We then apply six-term sequence inK-theory to compute theK- groups of C(SPq(2n)/SPq(2n−
2)). Let us introduce some notation. Let pi,j be the rank one operator on L2(N) sending basis

element ej to ei and p be the operator p0,0.

Lemma 8.1. Let C1 = C(T) and for 2 ≤ k ≤ 2n, Ck = ηωk
(C(H2n

q )). Then C(T) ⊗
K(L2(N))⊗(k−1) is contained in Ck. Moreover, for 2 ≤ k ≤ 2n, we have the exact sequence,

0 −→ C(T)⊗K(L2(N))⊗(k−1) −→ Ck
σk−→ Ck−1 −→ 0.

where σk is the restriction of (1⊗(k−1) ⊗ σ) to Ck and σ : T → C is the homomorphism such

that σ(S) = 1.

Proof : First we prove that C(T) ⊗ K(L2(N))⊗(k−1) is contained in Ck. For k ≤ n, it follows

from Sheu [18], Theorem 4 as Ck is isomorphic to C(S2k−1
q ). For k > n, and m ≥ 0,

ηωk
(zmk 1{1}(z

∗
kzk)) = tm ⊗ p⊗ p⊗ ...⊗ p︸ ︷︷ ︸

k−1

and ηωk
(z∗mk 1{1}(z

∗
kzk)) = t−m ⊗ p⊗ p⊗ ...⊗ p︸ ︷︷ ︸

k−1

.

Also from corollary 7.16, it follows that

ηωk
((z1)

m1 · · · (z2n−k)
m2n−k(zk−1)

mk−1(zk−2)
mk−2 · · · (z2n−k+2)

m2n−k+2 [(zn), (zn+1)]
m01{1}(z

∗
kzk))

= Ct(
∑k−1

i=0,i6=2n−k+1 mi)+m0pm1,0 ⊗ · · · pm2n−k,0 ⊗ pm2n−k+2
⊗ · · · pmn,0 ⊗ pm0,0 ⊗ pmn+1,0 ⊗ · · · ⊗ pmk−1,0.

which shows that t ⊗ pm1,0 ⊗ pm2,0 ⊗ ... ⊗ pmk−1,0 and 1 ⊗ pm1,0 ⊗ pm2,0 ⊗ ... ⊗ pmk−1,0 is

contained in Ck. Hence, Ck contains C(T)⊗K(L2(N))⊗(k−1).

Clearly, σk vanishes on C(T)⊗K(L2(N))⊗(k−1). Also, any irreducible representation of Ck is of

the form ηt,ωl
where l ≤ k and t ∈ T. Hence an irreducible representation of Ck which vanishes
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on C(T)⊗K(L2(N))⊗(k−1) is of the form ηt,ωl
where l ≤ k− 1 and t ∈ T which factors through

σk. This completes the proof. 2

Remark 8.2. Neshveyev & Tuset [12] obtained a composition series for C(Gq/Kq) for any

Poisson-Lie closed subgroup K of G. In particular, when K is C(SPq(2n − 2)), we get a

composition series for C(SPq(2n)/SPq(2n− 2)). Note that the series of exact sequence derived

in the lemma 8.1 is different from that given in [12].

Define, for 1 ≤ k ≤ 2n, uk = t⊗ p⊗ p⊗ ...⊗ p︸ ︷︷ ︸
k−1

+1− 1⊗ p⊗ p⊗ ...⊗ p︸ ︷︷ ︸
k−2

⊗1. uk is an unitary

operator which is contained in Ck as uk = ηωk
(zk1{1}(z

∗
kzk) + 1− 1{1}(z

∗
kzk)).

Theorem 8.3. Let 1 ≤ k ≤ 2n.The K-groups K0(Ck) and K1(Ck) are both isomorphic to Z
and, in particular, [uk] form a Z-basis for K1(Ck) and [1] form a Z-basis for K0(Ck) .

Proof : We apply induction on k. For k = 1, this is clear. Assume the result to be true for

k − 1. From the lemma 8.1, we have the short exact sequence,

0 −→ C(T)⊗K(L2(N))⊗(k−1) −→ Ck
σk→ Ck−1 −→ 0,

which gives rise to the following six-term sequence in K-theory.

K0(C(T)⊗K(L2(N))⊗(k−1)) // K0(Ck)
K0(σk) // K0(Ck−1))

δ

��
K1(Ck−1)

∂

OO

oo K1(σk)
K1(Ck) oo K1(C(T )⊗K(L2(N))⊗(k−1))

To compute six term sequence, we determine δ and ∂. Since σk(1) = 1, it follows that

δ([1]) = 0. Also, the operator X̃ = t ⊗ qN ⊗ qN ⊗ ...︸ ︷︷ ︸
k−2

⊗S∗ is in Ck as ηωk
(zk−1) − X̃ lies in

C(T)⊗K(L2(N))⊗(k−1). Let,

X = 1{1}(X̃
∗X̃)X̃ + 1− 1{1}(X̃

∗X̃).

Then X is an isometry such that σk(X) = uk−1 and hence

∂([uk−1]) = [1−X∗X]− [1−XX∗] = [1⊗ p⊗ p⊗ ...⊗ p︸ ︷︷ ︸
k−1

].

Now by the Kunneth theorem for the tensor product of C∗-algebra(see [1] ), it follows that

C(T)⊗K(L2(N))⊗(k−1) has K0 group isomorphic to Z generated by [1⊗p⊗ p⊗ ...⊗ p︸ ︷︷ ︸
k−1

] and K1
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group isomorphic to Z generated by [uk]. Induction hypothesis and the above calculation shows

that ∂ is an isomorphism and hence K0(i) is zero map which shows that K0(σk) is injective.

Since δ is zero, K0(σk) is surjective which shows that K0(Ck) are isomorphic to Z generated

by [1]. Similarly K1(i) is injective as δ is a zero map. Also, since ∂ is an isomorphism, K1(σk)

is zero map which shows that K1(i) is surjective. Hence K1(Ck) are isomorphic to Z generated

by [uk]. This establish the claim. 2

Remark 8.4. Neshveyev & Tuset [12] proved KK-equivalence of C(G/K) and C(Gq/Kq) and

determinedK-groups of C(Gq/Kq) from that of C(G/K) via the equivalence. As a consequence,

generators of K-groups of C(Gq/Kq) were images of generators of K-groups of C(G/K) under

the equivalence. Here we obtain K-groups of C(SPq(2n)/SPq(2n− 2)) in more direct way and

give more explicit description of generators of K-groups of C(SPq(2n)/SPq(2n− 2)).

9 Equivariant spectral triple

The group Tn has an action on C(H2n
q ) given on the generating elements by

τw(zi) =

wizi if i ≤ n,

w2n−i+1zi if i > n,

where w = (w1, w2, . . . , wn) ∈ Tn. τw is an action of Tn as {τw(zi)}2ni=1 satisfies the defining

relations of C(H2n
q ). Define

H = L2(Z)⊗ L2(N)⊗ · · · ⊗ L2(N)︸ ︷︷ ︸
2n−1 copies

.

Denote by π the faithful representation of C(H2n
q ) on the space H. If Uw denotes the unitary,

wN
1 ⊗ w

N
2 w

N
1 ⊗ wN

3 w
N
1 ⊗ · · · ⊗ wN

n w
N
1 ⊗ w2N

1︸︷︷︸
n+1thplace

⊗wN
n w

N
1 ⊗ wN

n−1w
N
1 ⊗ · · · ⊗ wN

2 w
N
1

on H, then one has π(τw(a)) = Uwπ(a)U
∗
w for all a ∈ C(H2n

q ). Thus (π, U) is a covariant

representation of (C(H2n
q ),Tn, τ) on H. Let Γ = Z × N× · · · × N︸ ︷︷ ︸

2n−1 copies

, so that L2(Γ) = H. For

γ = (γ(1), γ(2), · · · , γ(2n)) ∈ Γ, eγ denotes the basis element of H given by eγ(1)⊗ · · · ⊗ eγ(2n).
εk stands for the vector whose kth coordinate is 1 and all other coordinates are 0.

Theorem 9.1. Let D be a self-adjoint, diagonal operator with compact resolvent on H sending

eγ to d(γ)eγ. D will have bounded commutators with elements from the *-subalgebra of C(H2n
q )
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generated by the zi’s if the d(γ)’s obey the following condition:

|d(γ)− d(γ + ε1 + εi + ε2n−i+2)| = O(q−
∑i−1

l=2 λ(l)−
∑2n

l=2n+2−i λ(l)).

for 2 ≤ i ≤ n. (9.1)

|d(γ)− d(γ + ε1 + εn+1)| = O(q−
∑n

l=2 λ(l)−
∑2n

l=n+2 λ(l)). (9.2)

|d(γ)− d(γ + ε1 + εi + ε2n−i+2 − ε2n−k+2)| = O(q−
∑i−1

l=2 λ(l)−
∑2n−k+1

l=2n+3−i λ(l)),

for 2 ≤ k ≤ n, k + 1 ≤ i ≤ n.(9.3)

|d(γ)− d(γ + ε1 + εn+1 − ε2n−k+2)| = O(q−
∑n

l=2 λ(l)−
∑2n−k+1

l=n+2 λ(l)),

for 2 ≤ k ≤ n. (9.4)

|d(γ)− d(γ + ε1 + εk)| = O(q−(
∑k−1

l=2 λ(l))−λ(2n+2−k)),

for 2 ≤ k ≤ n. (9.5)

|d(γ)− d(γ + ε1 + εk)| = O(q−(
∑k−1

l=2 λ(l))−λ(n+1)),

for n+ 2 ≤ k ≤ 2n. (9.6)

|d(γ)− d(γ + ε1)| = O(q−(
∑2n

l=2 λ(l))−λ(n+1)). (9.7)

Proof : Follow from direct calculation. 2

By a compact perturbation, one can ensure that all the d(γ)’s are nonzero in the above theorem.

We will assume from now on that d(γ) 6= 0 for all γ. Using above equations, we get a constant

c such that the ratios of left hand side and right hand side of above equations are bounded by

c. Now join two elements γ and γ′ in Γ by an edge if |d(γ) − d(γ′)| ≤ c. Call the resulting

graph G the growth graph for D. We say γ
P↔ γ′ if γ and γ′ are connected by a path P .

Lemma 9.2. Let k be an integer with n+ 2 ≤ k ≤ 2n. Let

γ = (0, 0, . . . , 0), γ′ = (i1, 0, 0, . . . , 0, in+2, . . . , i2n).

Then there is a path in G of length
∑2n

l=n+2 il + |i1 −
∑2n

l=n+2 il| joining γ and γ′ such that all

vertices on this path are of the form (r, 0, 0, , . . . , 0, sn+2, sn+3, . . . , s2n).

Proof : Let i
′
1 be |i1 −

∑2n
l=n+2 il|. From (9.7), it is clear that if δ(i) = 0 for 2 ≤ i ≤ 2n, then

there is an edge joining δ and δ + ε1. Thus γ
P1↔ (i

′
1, 0, 0, . . . , 0) where P1 = (γ, γ + ε1, γ +

2ε1, . . . , γ+ i
′
1ε1). Also, from (9.6), it follows that if δ(i) = 0 for 2 ≤ i ≤ k− 1, then there is an

edge joining δ and δ + ε1 + εk. Thus,

γ
P1↔ (i

′
1, 0, 0, . . . , 0)

P2↔ (i
′
1, 0, 0, . . . , i2n)

P3↔ · · · Pn+1↔ γ′ = (i
′
1, 0, 0, . . . , 0, in+2, . . . , i2n)

where Pl = (γl, γl+ε2n+2−l, γl+2ε2n+2−l, · · ·+γl+i2n+2−lε2n+2−l) and γl = (i
′
1, 0, · · · , 0, i2n+3−l,

· · · , i2n). Length of this path can easily be shown to be equal to
∑2n

l=n+2 il + |i1 −
∑2n

l=n+2 il| .
2
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Lemma 9.3. The growth graph G is conneted. More specifically, Let

γ = (0, 0, . . . , 0), γ′ = (γ(1), γ(2) . . . , γ(2n)).

Then there is a path in G of length (
∑2n−1

l=3 γ(l)) + γ(n+ 1) + max (γ(2), γ(2n)) + |γ(1)
− (

∑2n−1
l=3 γ(l)) + γ(n+ 1) + max (γ(2), γ(2n)) joining γ and γ′.

Proof : Define,

i1 = γ(1)− (
2n∑
l=3

γ(l)) + γ(n+ 1) + max (γ(2), γ(2n)).

ik = min (γ(2n+ 2− k)− γ(k), 0) + min (γ(k − 1), γ(2n− k + 3)),

for, n+ 2 ≤ k ≤ 2n.

From previous lemma, we have, γ
P↔ (i1, 0, 0, . . . , 0, in+2, . . . , i2n). By putting k = n in (9.4), it

is clear that if δ(i) = 0 for 2 ≤ i ≤ n, then there is an edge joining δ and δ + ε1 + εn+1 − εn+2.

Using this, we get,

(i1, 0, 0, · · · , 0, in+2, . . . , i2n)
P↔ (i1 + γ(n+ 1), 0, 0, . . . , 0, γ(n+ 1), in+2 − γ(n+ 1), in+3, . . . , i2n).

Case 1 : γ(n+ 2) > γ(n). Here, we have,

in+2 − γ(n+ 1) = γ(n+ 2)− γ(n).

Now from (9.3), it follows that if δ(i) = 0 for 2 ≤ i ≤ n− 1, then there is an edge joining δ and

δ + ε1 + εn + εn+2 − εn+3. Applying this, we get,

(i1 + γ(n+ 1), 0, , . . . , 0, γ(n+ 1), in+2 − γ(n+ 1), in+3, . . . , i2n)
P↔ (i1 + γ(n+ 1) + γ(n), 0, . . . , 0, γ(n), γ(n+ 1), γ(n+ 2), in+3 − γ(n), in+4, · · · , i2n).

Case 2 : γ(n+ 2) < γ(n). In this case, we have,

in+2 − γ(n+ 1) = 0.

From (9.5), it is clear that if δ(i) = 0 for 2 ≤ i ≤ n − 1 and δ(n + 2) = 0, there is an edge

joining δ and δ + ε1 + εn. Hence,

(i1 + γ(n+ 1), 0, . . . , 0, γ(n+ 1), 0, in+3, . . . , i2n)
P↔ (i1 + γ(n+ 1) + γ(n)− γ(n+ 2), 0, . . . , 0, γ(n)− γ(n+ 2), γn+1, in+2, in+3, . . . , i2n).

Now, from (9.3), it follows that if δ(i) = 0 for 2 ≤ i ≤ n − 1, then there is an edge between δ

and δ + ε1 + εn + εn+2 − εn+3. Hence,

(i1 + γ(n+ 1) + γ(n)− γ(n+ 2), 0, 0, . . . , 0, γ(n)− γ(n+ 2), γ(n+ 1), in+2, in+3, . . . , i2n)
P↔ (i1 + γ(n+ 1) + γ(n), 0, . . . , 0, γ(n), γ(n+ 1), γ(n+ 2), in+3 − γ(n+ 2), in+4, . . . , i2n).
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Proceeding in similar way, we get the required path. Also, length of this path can easily be

shown to be equal to (
∑2n−1

l=3 γ(l)) + γ(n+ 1) + max (γ(2), γ(2n)) + |γ(1)− (
∑2n−1

l=3 γ(l))

+ γ(n+ 1) + max (γ(2), γ(2n))|. 2

Theorem 9.4. Let D0 be the operator eγ 7→ d(γ)eγ on H where the d(γ)’s are given by

d(γ) =



γ(1) if γ(1) ≥ (
∑2n−1

l=3 γ(l)) + γ(n+ 1)

+ max (γ(2), γ(2n)),

−2(
∑2n−1

l=3 γ(l))− γ(n+ 1)− max (γ(2), γ(2n)) + γ(1)

if γ(1) ≤ (
∑2n−1

l=3 γ(l)) + γ(n+ 1)

+ max (γ(2), γ(2n)).

Then (C(H2n
q ),H, D0) is a nontrivial 2n-summable spectral triple equivariant under torus ac-

tion.

Proof : Clearly, D0 is a selfadjoint operator with compact resolvent. That it has bounded

commutators with the π(zj)’s follow by direct verification. Let

u = 1{1}(z
∗
2nz2n)(z2n − 1) + 1.

It is easy to see that u is a unitary. We will now compute the pairing between D0 and π(u).

First observe that the action of π(u) on H is given by

π(u)eγ =

eγ+ε1 if γ(i) = 0 for 1 < i ≤ 2n,

eγ otherwise.

Write P = 1
2(I +signD0). Then P is the projection onto the closed linear span of {eγ : γ(1) ≥

(
∑2n−1

l=3 γ(l)) + γ(n+ 1) + max (γ(2), γ(2n))}. It follows that the index of PuP is −1.
Summability follows from the expression of D0. 2
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