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Abstract

Consider the d dimensional lattice Zd where each vertex is open or
closed with probability p or 1 − p respectively. An open vertex u :=
(u(1),u(2), . . . ,u(d)) is connected by an edge to another open vertex which
has the minimum L1 distance among all the open vertices with x(d) > u(d).
It is shown that this random graph is a tree almost surely for d = 2 and
3 and it is an infinite collection of disjoint trees for d ≥ 4. In addition for
d = 2, we show that when properly scaled, the family of its paths converge
in distribution to the Brownian web.

Key words: Markov chain, Random walk, Directed spanning forest, Brownian
web.
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1 Introduction

Let P be the points of a Poisson point process on Rd of intensity 1. For each x ∈ P
let h(x) ∈ P be the Poisson point in the half-space {u : u(d) > x(d)} which has
the minimum Euclidean distance from x, where v(j) denotes the j th co-ordinate
of v ∈ Rd. The directed spanning forest (DSF) is the random graph with vertex
set P and edge set {〈x, h(x)〉 : x ∈ P}. The study of the directed spanning forest
(DSF) was initiated by Baccelli et al. [BB07]. Coupier et al. [CT11] proved that
for d = 2 the DSF is a tree almost surely. Ferrariet al. [FLT04] also studied a
directed random graph on a Poisson point process, however, the mechanism used
to construct edges in that model incorporates more independence than is available
in the DSF. They proved that their random graph is a connected tree in dimensions
2 and 3, and a forest in dimensions 4 and more.
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A similar construction, like the DSF arising from a Poisson point process, can be
made from vertices of the integer lattice. Let {Uv : v ∈ Zd} be a collection of i.i.d.
Uniform (0, 1) random variables. Fix 0 < p < 1 and let V := {v ∈ Zd : Uv < p}
be the set of open vertices of Zd. Given u ∈ Zd, let v ∈ V be such that

1. u(d) < v(d),

2. there does not exist any w ∈ V with w(d) > u(d) such that ||u − w||1 <
||u− v||1, and

3. for all w ∈ V with w(d) > u(d) and ||u−w||1 = ||u−v||1 we have Uv ≤ Uw.

Here and henceforth ||u||1 denotes the L1 norm of u on Rd. Such a v is almost
surely unique and clearly, is a function of u and X = {Uw : w ∈ Zd,w(d) > u(d)}.
We denote it by h(u,X). We will drop the second argument in h for the time
being. Let 〈u, h(u)〉 be the edge joining u and h(u) and let E denote the edge set
given by,

E := {〈u, h(u)〉 : u ∈ V }.

In this paper, we study the random graph G := (V,E), which we will refer to as
the discrete DSF henceforth.

uh(u)

Figure 1: The construction of h(u) from u on Z2. The shaded points are open,
while the others are closed. Note that in order to get h(u) from u, we require
information on the values of the Uniform random variables of the gray vertices.

Similar models of random graphs are known in the physics literature as drainage
networks (see Scheidegger [S67]) and have been studied extensively (see Rodŕıguez-
Iturbe et al. [RR97]). Mathematically, for similar discrete processes but with a
condition for constructing edges which allows more independence, the dichotomy
in dimensions of having a single connected tree vis-a-vis a forest has been studied
(see Gangopadhyay et al. [GRS04], Athreya et al. [ARS08]).
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Our first result shows that the tree/forest dichotomy in dimension holds in the
discrete DSF. Thus, our paper may be viewed as an extension, albeit in the dis-
crete setting, of the result of Coupier et al. [CT11] to any dimension. Our proof
is different from that of [CT11]; while their argument is percolation theoretic and
crucially depends on the planarity of R2, our argument exploits a Markovian struc-
ture inherent in the DSF which allows us to extend the result to any dimension.

Theorem 1.1 For d = 2 and d = 3 the random graph G is connected almost
surely and consists of a single tree while for d ≥ 4, it is a disconnected forest with
each connected component being an infinite tree almost surely.

Our second result in this paper is the convergence of the random graph G for
d = 2, under a suitable diffusive scaling, to the Brownian web. The standard
Brownian web originated in the work of Arratia [A79], [A81] as the scaling limit
of the voter model on Z. It arises naturally as the diffusive scaling limit of the
coalescing simple random walk paths starting from every point on the space-time
lattice. We can thus think of the Brownian web as a collection of one-dimensional
coalescing Brownian motions starting from every point in the space time plane
R2. Detailed analysis of the Brownian web was carried out in Tóth et al. [TW98].
Later Fontes et al. [FINR04] introduced a framework in which the Brownian web
is realized as a random variable taking values in a Polish space. We recall relevant
details from Fontes et al. [FINR04].

Let R2
c denote the completion of the space time plane R2 with respect to the

metric

ρ((x1, t1), (x2, t2)) = | tanh(t1)− tanh(t2)| ∨
∣∣∣tanh(x1)
1 + |t1|

− tanh(x2)

1 + |t2|

∣∣∣.
As a topological space R2

c can be identified with the continuous image of [−∞,∞]2

under a map that identifies the line [−∞,∞]×{∞} with the point (∗,∞), and the
line [−∞,∞]×{−∞} with the point (∗,−∞). A path π in R2

c with starting time
σπ ∈ [−∞,∞] is a mapping π : [σπ,∞] → [−∞,∞] such that π(∞) = π(−∞) = ∗
and t→ (π(t), t) is a continuous map from [σπ,∞] to (R2

c , ρ). We then define Π to
be the space of all paths in R2

c with all possible starting times in [−∞,∞]. The
following metric, for π1, π2 ∈ Π

dΠ(π1, π2) = | tanh(σπ1)−tanh(σπ2)|∨ sup
t≥σπ1∧σπ2

∣∣∣tanh(π1(t ∨ σπ1))

1 + |t|
−tanh(π2(t ∨ σπ2))

1 + |t|

∣∣∣
makes Π a complete, separable metric space. Convergence in this metric can
be described as locally uniform convergence of paths as well as convergence of
starting times. Let H be the space of compact subsets of (Π, dΠ) equipped with
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the Hausdorff metric dH given by,

dH(K1, K2) = sup
π1∈K1

inf
π2∈K2

dΠ(π1, π2) ∨ sup
π2∈K2

inf
π1∈K1

dΠ(π1, π2).

The space (H, dH) is a complete separable metric space. Let BH be the Borel
σ−algebra on the metric space (H, dH). The Brownian web W is an (H, BH)
valued random variable.

Ferrari et al. [FFW05] have shown that, for d = 2, the random graph on the
Poisson points introduced by [FLT04], converges to a Brownian web under a suit-
able diffusive scaling. Coletti et al. [CFD09] have a similar result for the discrete
random graph studied in Gangopadhyay et al. [GRS04]. Baccelli et al. [BB07]
have shown that scaled paths of the successive ancestors in the DSF converges
weakly to the Brownian motion and also conjectured that the scaling limit of the
DSF is the Brownian web.

For the random graph G we consider here, taking the edges {〈hk−1(u), hk(u)〉 :
k ≥ 1)} (with h0(u) := u and hk = h(hk−1)) to be straight line segments we
parametrize the path formed by these edges as the piecewise linear function πu :
[u(2),∞) → R such that πu(hk(u)(2)) = hk(u)(1) for every k ≥ 0 and πu(t) is
linear in the interval [hk(u)(2), hk+1(u)(2)]. Define X := {πu : u ∈ V }. For given
γ, σ > 0, a path π with starting time σπ and for each n ≥ 1, the scaled path
πn(γ, σ) : [σπ/n

2γ,∞] → [−∞,∞] is given by πn(γ, σ)(t) = π(n2γt)/nσ. Thus,
the scaled path πn(γ, σ) has the starting time σπn(γ,σ) = σπ/n

2γ. For each n ≥ 1,
let Xn(γ, σ) = {πu

n(γ, σ) : u ∈ V } be the collection of the scaled paths. The closure
X̄n(γ, σ) of Xn(γ, σ) in (Π, dΠ) is a (H,BH) valued random variable. We have

Theorem 1.2 There exist σ := σ(p) and γ := γ(p) such that as n→ ∞, X̄n(γ, σ)
converges weakly to the standard Brownian Web W as (H,BH) valued random
variables.

For the proof of Theorem 1.1 we obtain a Markovian structure in our model
and define suitable stopping times for this Markov process. From these stopping
times the process regenerates which allows us to phrase the problem as a question of
recurrence or transience of the Markov chain. This we do by obtaining a martingale
for d = 2, using a Lyapunov function technique for d = 3 and a suitable coupling
with a random walk with independent steps for d = 4.

The martingale obtained for d = 2 and the fact that the distributions of the
stopping times have exponentially decaying tails are used to prove Theorem 1.2.

Finally, although our results are obtained for the random graph constructed
by connecting edges between L1 nearest open vertices, they should also hold for
the model constructed with the L2 metric.

The paper is structured as follows – in the next section we construct the paths
of the graph G starting from k distinct vertices and obtain some properties of
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these paths. In Section 3, we derive the martingale (for d = 2) and also provide
a method of approximation of the paths by independent processes, which is used
later to prove Theorem 1.1 and Theorem 1.2. In Section 4 we prove Theorem 1.1
and in Section 5, we prove Theorem 1.2.

2 Construction of the process

We first detail a construction of the graph G which brings out a Markovian struc-
ture. Later we obtain a martingale for d = 2 which is used in the next two
sections. Before proceeding further we fix some notation: for u ∈ Zd and r > 0,
let S(u, r) := {w ∈ Zd : ||u − w||1 ≤ r} be the closed L1 ball of radius r and
H(r) := {w ∈ Zd : w(d) ≤ r} be the half-space.

From k (k ≥ 1) vertices u1, . . . ,uk ∈ Zd, we obtain the vertices {hn(ul), n ≥
0, 1 ≤ l ≤ k} as a stochastic process. The vertices with the smallest d th co-
ordinate are allowed to move, while the others stay put. Each of these vertices
explores a region in the half space ‘above’ it to obtain the vertex to which it moves.
During this exploration a vertex may encounter regions which have been already
explored by other vertices earlier. While the information for the region explored
earlier is known, the information about the freshly explored region is new and
is obtained during the exploration process of the vertices which are moving at
that time. The region which has been explored till the n th move of the entire
process and which are needed for the n+1 th move is called the history region and
denoted by ∆n = ∆n(u

1, . . . ,uk) and {(w, Uw) : w ∈ ∆n} constitutes the history
Hn = Hn(u

1, . . . ,uk). Formally, let

(i) g0(u
i) = ui for all 1 ≤ i ≤ k and r0 = min{g0(ui)(d) : 1 ≤ i ≤ k};

(ii) Wmove
0 := {g0(w) : w ∈ {u1, . . . ,uk}, g0(w)(d) = r0} and W stay

0 := {g0(u1),
. . . , g0(u

k)} \Wmove
0 ;

(iii) ∆0 = ∆0(u
1, . . . ,uk) := {w : w ∈ W stay

0 }, and H0 = H0(u
1, . . . ,uk) :=

{(w, x) : w ∈ ∆0, x = Uw}.

Having obtained gn(u
l), rn, W

move
n , W stay

n , ∆n and Hn, for 1 ≤ l ≤ k, we set

(i) gn+1(u) := h(gn(u)) for all gn(u) ∈ Wmove
n and gn+1(v) := gn(v) for all

gn(v) ∈ W stay
n , rn+1 := min{gn+1(u

i)(d), 1 ≤ i ≤ k};

(ii) Wmove
n+1 := {gn+1(w) : w ∈ {u1, . . . ,uk}, gn+1(w)(d) = rn+1} and W stay

n+1 :=
{gn+1(u

1), . . . , gn+1(u
k)} \Wmove

n+1 ;

(iii) ∆n+1 = ∆n+1(u
1, . . . ,uk) :=

(
∆n ∪ ∪u∈Wmove

n
S(u, ||h(u) − u||1)

)
\ H(rn+1),

and Hn+1 = Hn+1(u
1, . . . ,uk) := {(w, x) : w ∈ ∆n+1, x = Uw}.
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∆n(u
1,u2)gn(u
1)gn(u
2)gn(u
1)gn(u
2)∆n+1(u
1,u2)gn+1(u
2)gn+1(u
1)g↑4n+1(u

2) →

Figure 2: The vertices gn+1(u
1), gn+1(u

2) and the history set ∆n+1(u
1,u2) when

Wmove
n = {gn(u1), gn(u

2)}, W stay
n = ∅. Note the vertices above gn+1(u

1) and
gn+1(u

2) are unexplored.

Remark 2.1 If max{ui(d) − uj(d) : 1 ≤ i, j ≤ k} = m0, then by the m0 + 1 th
move all the vertices would have moved from their initial positions u1, . . . ,uk.

For n > m0, the history region ∆n formed at the n th step is a finite union of d-
dimensional tetrahedrons, with each tetrahedron in ∆n having a (d−1)-dimensional
cube as a base on the hyperplane Qrn+1 := {x ∈ Zd : x(d) = rn +1} where rn is as
defined earlier. Clearly, by definition of rn, W

move
n ⊆ Qrn.

Furthermore, for each n > m0, all vertices in the set Ξn := Zd \
(
∆n∪H(rn)

)
are unexplored until the n+1 th step. Thus, each n > m0, i = 1, . . . , k, and m ≥ 1,
the vertex g↑mn (ui) does never belong to ∆n and always unexplored, where g↑mn (ui)
is defined by

g↑mn (ui)(j) :=

{
gn(u

i)(j) for 1 ≤ j ≤ d− 1,

m+ gn(u
i)(d) for j = d.

�

Returning back, we now obtain the Markov process implicit in our construction.

6



gn(u
2)gn(u
1)∆n(u

1,u2)∆n+1(u
1,u2)gn(u
2)gn+1(u

1) = gn(u
1)gn+1(u

2)

Figure 3: The vertices gn+1(u
1), gn+1(u

2) and the history region ∆n+1(u
1,u2) :

j ≥ 0} when Wmove
n = {gn(u2)}, W stay

n = {gn(u1)}.

Let us denote S := (Zd)k × {(w, x) : x ∈ [0, 1], w ∈ ∆, ∆ ⊆ Zd, ∆ finite}. Let
Y = {Vw : w ∈ Zd,w(d) > 0} be an independent collection of i.i.d. uniform [0, 1]-
valued random variables. For any n ≥ 1, given

{
(gn(u

1), . . . , gn(u
k), Hn(u

1, . . . ,uk)) =

(v1, . . . ,vk, H)
}
, we define the collection of random variables Ỹ = {Ṽw : w ∈

Zd,w(d) > rn} as follows: for ∆ the associated history region of the history H,

Ṽw =

{
x if w ∈ ∆, (w, x) ∈ H

Vw′ if w 6∈ ∆,w(j) = w′(j),w(d) = w′(d) + rn.

The above definition implies that Ỹ is a function of Y and H, say Ỹ = f(Y, H)
where f is a function from [0, 1]Z

d\H(0) to [0, 1]Z
d\H(rn). From the above definition

and the fact that the vertices in Ξn = Zd \
(
∆∪H(rn)

)
are unexplored, and hence

can be replaced by another set of i.i.d. uniform random variables, for the family
X = {Uw : w ∈ Zd,w(d) > rn}, we have

X |
{
(gn(u

1), . . . , gn(u
k), Hn(u

1, . . . ,uk)) = (v1, . . . ,vk, H)
} d
= Ỹ.

From the definition of the process, we obtain that gn+1(u
1), . . . , gn+1(u

k) and
Hn+1 is a function of gn(u

1), . . . , gn(u
k), Hn and X, i.e.,

(gn+1(u
1), . . . , gn+1(u

k), Hn+1) = f1((gn(u
1), . . . , gn(u

k), Hn,X)
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where f1 is a function on S × [0, 1]Z
d\H(rn). Therefore, from the above observa-

tion, given gn(u
1) = v1, . . . , gn(u

k) = vk and Hn(u
1, . . . ,uk) = H, the conditional

distribution of gn+1(u
1), . . . , gn+1(u

k) and Hn+1(u
1, . . . ,uk) is the same as that of

f1((u
1, . . . ,uk, H), f(Y, H)). Hence, the process {(gn+1(u

1), . . . , gn+1(u
k), Hn+1) :

n ≥ 1} admits a random mapping representation, which proves the Markov prop-
erty (see, for example, Levin et al. [LPW]).

Proposition 2.1 The process {(gn(u1), gn(u
2), . . . , gn(u

k), Hn), n ≥ 0} is Markov
with state space S := (Zd)k × {(w, x) : x ∈ [0, 1], w ∈ S, S ⊆ Zd, S finite}.

For the remainder of this section we fix u1, . . . ,uk with u1(d) = · · · = uk(d).
Set τ0 = τ(u1, . . . ,uk) := 0 and, for l ≥ 1, define

τl = τl(u
1, . . . ,uk) := inf{n > τl−1 : Hn = ∅}. (1)

We call this the simultaneous regeneration of k joint paths. We note here that
τl denotes the number of steps (in the above construction) required for the joint
process to regenerate i.e., to reach a state of empty history, for the l th time. This
is not the same as the time (measured as the distance in the d th co-ordinate)
for regeneration, which we will later denote by Tl. At each regeneration step
τl, the paths must be at the same level in terms of their d th co-ordinate, i.e.,
gτl(u

1)(d) = · · · = gτl(u
k)(d) (see Figure 4).

u1u2gτ1(u
1)gτ1(u
2)

Figure 4: At regeneration step τ1(u
1,u2) of the process gτ1(u

1)(d) = gτ1(u
2)(d)

and ∆n = ∅

Our first task is to show that the Markov process, defined in Proposition 2.1,
regenerates almost surely. In fact, we prove a much stronger statement that the
inter-regeneration times have exponentially decaying tail probabilities. More pre-
cisely, for l ≥ 1, define σl = σl(u

1, . . . ,uk) := τl(u
1, . . . ,uk)− τl−1(u

1, . . . ,uk).
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Proposition 2.2 For any l ≥ 1 and u1, . . . ,uk ∈ Zd with u1(d) = · · · = uk(d),
we have

P(σl ≥ n) ≤ C1 exp(−C2n) (2)

for all n ≥ 1, where C1 and C2 are positive constants, not depending on l, n or
u1, . . . ,uk.

To prove Proposition 2.2, we need an auxiliary lemma on Markov chains, whose
proof is given in Appendix. Let {θn : n ≥ 1} be a sequence of i.i.d. positive integer
valued random variables with P(θ1 = 1) > 0 and P(θ1 ≥ n) ≤ C3 exp(−C4n)
for all n ≥ 1 where C3, C4 are positive constants. Define a sequence of random
variables as follows: M0 := 0 and for l ≥ 0,Ml+1 := max{Ml, θl+1} − 1. Let
τM := inf{l ≥ 1 :Ml = 0} be the first return time of Ml to 0.

Lemma 2.1 For n ≥ 1, we have

P(τM ≥ n) ≤ C5 exp(−C6n)

where C5 and C6 are positive constants.

In order to prove Proposition 2.2, we define a random variable Ln which represents
the height of the history region ∆n, measured along the d th co-ordinate from the
lowest vertex among gn(u

1), . . . , gn(u
k) and construct a coupling with a Markov

chainMn which dominates the height random variable. Hence, the Markov chain’s
return time to 0 will dominate the return time of Ln to 0. The Markov chain can
be constructed so that it uses an independent sequence of random variables when
Ln has already returned to 0 but Mn is positive.
Proof of Proposition 2.2: We first observe that by the Markov property
(Proposition 2.1) it is enough to show the result for l = 1. In order to study that,
we define,

Ln :=

{
max{w(d) : w ∈ ∆n} − rn if ∆n 6= ∅
0 if ∆n = ∅

(3)

where rn = min{gn(ui)(d) : i = 1, . . . , k}. We set,

τL = inf{n ≥ 1 : Ln = 0}

and observe that τ1 = τL.
Using the fact that g↑mn (ui) 6∈ ∆n for m ≥ 1 and 1 ≤ i ≤ k, where g↑mn (ui) is

as defined in Remark 2.1, for any fixed n ≥ 0, we define the collection of random
variables {

Jn+1(u
i) := inf{m ≥ 1 : g↑mn (ui) ∈ V } : 1 ≤ i ≤ k

}
, (4)
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which is an i.i.d. collection of geometric random variables with parameter p, i.e.
each of the random variables takes the value m with probability p(1 − p)m−1 for
m = 1, 2, . . . . Also,

||gn(w)− gn+1(w)||1 ≤ Jn+1(w) for all w with gn(w) ∈ Wmove
n . (5)

Let {Gi,1
n : 1 ≤ i ≤ k, n ≥ 0} be another family of i.i.d. geometric random

variables with parameter p, independent of {Uw : w ∈ Zd}.
Now given gn(u

1), . . . , gn(u
k) and Hn, we define {Mn :=Mn(u

1, . . . ,uk), Xn :=
Xn(u

1, . . . ,uk) : n ≥ 0} as follows:

set M0 = 0 = X0 and Mn+1 = max{Mn, J
1
n+1} − 1 for n ≥ 0

where

J1
n+1 :=


max{Jn+1(u) : gn(u) ∈ Wmove

n } if #Wmove
n = k and Xn = 0,

max{Gi,1
n+1, Jn+1(u) :

gn(u) ∈ Wmove
n , i = 1, . . . , k − k′} if #Wmove

n = k′ < k and Xn = 0,

max{Gi,1
n+1 : 1 ≤ i ≤ k} if Xn = 1,

(6)

and

Xn+1 :=

{
1 if Xn = 0, Ln+1 = 0

Xn otherwise.
(7)

From (6) it follows that {J1
n+1 : n ≥ 0} is a family of i.i.d. copies of J where for

any m ≥ 1,

P(J ≤ m) = (1− (1− p)m)k (8)

and hence the sequence {J1
n : n ≥ 1} satisfies the conditions of Lemma 2.1.

Further, we claim that 0 ≤ Ln ≤ Mn for all 0 ≤ n ≤ τL. Indeed, this holds
for n = 0, and assume that it holds for some 0 ≤ n < τL. If ∆n+1 = ∅ then we
have 0 = Ln+1 ≤Mn+1. Otherwise if w ∈ ∆n+1, then, from the definition of ∆n+1,
either w ∈ ∆n or w ∈ S(u, ||u − h(u)||1) for some u ∈ Wmove

n . Therefore, from
(5) and (6), w(d) ≤ max{max{u(d) : u ∈ ∆n},min{gn(ui)(d), 1 ≤ i ≤ k}+ ||u−
h(u)||1 : u ∈ Wmove

n } ≤ max{Ln + rn, rn + Jn+1} = max{Ln, Jn+1} + rn. Also
rn+1 = min{gn+1(u

i)(d), 1 ≤ i ≤ k} ≥ min{gn(ui)(d), 1 ≤ i ≤ k} + 1 = rn + 1.
Thus Ln+1 ≤ max{Ln, Jn+1} − 1 ≤ max{Mn, Jn+1} − 1 =Mn+1.

Define,
τM = τM(u1, . . . ,uk) := inf{n ≥ 1 :Mn = 0}.
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Note that the distribution of τM(u1, . . . ,uk) does not depend on u1, . . . ,uk. From
the above observation that 0 ≤ Ln ≤Mn for 0 ≤ n ≤ τ1, we obtain that

τ1 = τL ≤ τM .

Using Lemma 2.1, we obtain Proposition 2.2. �
Since τl <∞ almost surely, we obtain that

{(gτl(u1), . . . , gτl(u
k)) : l ≥ 0} is a Markov chain on (Zd)k.

Next we consider the width of the explored region between the l − 1 and l th
regenerations. For the process starting from u1, . . . ,uk with u1(d) = · · · = uk(d)
define

Wl = Wl(u
1, . . . ,uk) :=

τl∑
n=τl−1+1

k∑
i=1

||gn(ui)− gn−1(u
i)||1. (9)

Further using {Gi,l+1
n : 1 ≤ i ≤ k, n ≥ 0} another family of i.i.d. geometric ran-

dom variables with parameter p, independent of {Uw : w ∈ Zd} and {Gi,j
n : 1 ≤ i ≤

k, 1 ≤ j ≤ l, n ≥ 0} we construct {Mn(gτl(u
1), . . . , gτl(u

k)), Xn(gτl(u
1), . . . , gτl(u

k)) :
n ≥ 0} such that σl+1(u

1, . . . ,uk) ≤ τM(gτl(u
1), . . . , gτl(u

k)) and τM(gτl(u
1), . . . , gτl(u

k))
is an i.i.d. copy of τM(u1, . . . ,uk). Also for τl ≤ n < τl+1 we have

k∑
i=1

||gn+1(u
i)− gn(u

i)||1 ≤
∑

gn(ui)∈Wn
move

Jn+1(u
i) ≤ kJ l+1

(n−τl)+1

where the last sum is over distinct elements of Wmove
n to avoid double counting

and J l+1
i is defined as in (6) using {Gi,l+1

n : 1 ≤ i ≤ k, n ≥ 0} instead of {Gi,1
n :

1 ≤ i ≤ k, n ≥ 0}. Further it follows that Wl+1 ≤
∑τM (gτl(u1),...,gτl(uk))

i=1 kJ l+1
i and∑τM (gτl (u1),...,gτl(uk))

i=1 kJ l+1
i is an i.i.d. copy of WM :=

∑τM (u1,...,uk)
i=1 kJ1

i .
The time for the l th regeneration (measured by the distance travelled by

process in the d th co-ordinate) is defined as

Tl = Tl(u
1, . . . ,uk) := gτl(u

1)(d)− u1(d) = gτl(u
i)(d)− ui(d) for 1 ≤ i ≤ k. (10)

Clearly Tl − Tl−1 ≤ Wl and we have

Proposition 2.3 For any l ≥ 1 and u1, . . . ,uk with u1(d) = · · · = uk(d) we have

P(Tl − Tl−1 ≥ n) ≤ P(Wl ≥ n) ≤ P(WM ≥ n) ≤ C7 exp(−C8n) (11)

for all n ≥ 1, where C7 and C8 are positive constants, not depending on l or
u1, . . . ,uk.

11



Proof: As in the proof of Lemma 2.1, it suffices to show that E
(
exp(αWM)

)
<∞

for some α > 0. Since {J1
n : n ≥ 1} are i.i.d. random variables, each with an

exponentially decaying tail probability, there exists β0 > 0 such that the moment
generating function of ΨJ(α) := E(exp(αJ1

1 )) < ∞ for all α < β0. Since the
function ΨJ(α) is continuous at 0 and ΨJ(0) = 1, we may choose α0 > 0 so that
ΨJ(2kα) exp(−C2) < 1 for all α ≤ α0 where C2 is the constant as in (2). Now, we
have, for 0 < α ≤ α0,

E
[
exp(αWM)

]
≤ E

[
exp(αk

τM∑
n=1

J1
n)
]
= E

[ ∞∑
n=1

1(τM = n) exp(αk
n∑

i=1

J1
i )
]

=
∞∑
n=1

E
[
1(τM = n) exp(αk

n∑
i=1

J1
i )
]
≤

∞∑
n=1

[
P(τM = n)

]1/2[E(exp(2kα n∑
i=1

J1
i )
)]1/2

≤
∞∑
n=1

√
C1 exp(−nC2/2)

[
ΨJ(2kα)

]n/2
=

√
C1

∞∑
n=1

[
exp(−C2)ΨJ(2kα)

]n/2
<∞;

here the first inequality follows from the Cauchy-Schwartz inequality. This com-
pletes the proof. �

Remark 2.2 For the process starting from just one vertex u, from the translation
invariance of the model, we have that {

(
σl(u),Wl(u), (Tl(u)−Tl−1(u))

)
: l ≥ 1} is

an i.i.d. family of random vectors taking values in {1, 2, 3, . . . }3 whose distribution
does not depend on the choice of the starting vertex u. Furthermore, each of the
marginals of this random vector has exponentially decaying tail probability.

Letting
u := (u(1), . . . ,u(d− 1)) for u = (u(1), . . . ,u(d)) (12)

denote the first d− 1 co-ordinates of u, we have

{Y (u)
l+1 := gτl+1

(u)− gτl(u) : l ≥ 0} (13)

is a sequence of i.i.d. Zd−1 valued random vectors, whose distribution does not
depend on u. For u = 0, we denote Y

(0)
l+1 as Yl+1. It should be noted, from the

rotational symmetry in the first (d − 1) co-ordinates and reflection symmetry for
each of the first (d − 1) co-ordinates of gτl(0), that the distribution of the co-
ordinates of Yl+1 are uncorrelated and marginally each of them is symmetric about
0. More precisely, P(Yl(i) = +m) = P(Yl(i) = −m) for m ≥ 1 where Yl(i) denotes
the i th co-ordinate of Yl. Further, for all i, j ∈ {1, 2, . . . , d− 1}, i 6= j,

E
[
(Yl(i))

2
]
= σ2 and E

[(
Yl(i)

)m1
(
Yl(j)

)m2
]
= 0 (14)

12



for some σ2 > 0 and if at least one of m1,m2 is odd. Denoting the L1 norm in
(d − 1) dimensions by || · ||1,d−1, we also observe that ||Yl||1,d−1 ≤ Wl(0), so that
we also have

P(||Yl||1,d−1 > n) ≤ C7 exp(−C8n) (15)

for all n ≥ 1, where C7 and C8 are as in (11). �

3 Martingale and independent processes

For the process starting from u1, . . . ,uk with u1(d) = · · · = uk(d), the process
{(gτl(u1), . . . , gτl(u

k)) : l ≥ 0} is a spatially invariant Markov chain on (Zd)k.
Hence, for any pair 1 ≤ i 6= j ≤ k, the process {gτl(ui) − gτl(u

j) : l ≥ 0} is also
a Markov chain on Zd. However, as observed earlier, (see Figure 4), gτl(u

i)(d) =
gτl(u

j)(d) for every l ≥ 1. Thus, using notation as in (12), for any pair, 1 ≤ i 6=
j ≤ k,

{Zl = Zl(u
i,uj) := gτl(u

i)− gτl(u
j) : l ≥ 0} (16)

is a Zd−1 valued Markov chain.
In this section we first show that, for d = 2 and k = 2, the process Zl is a

martingale. Later, for a general d, we study how different are the two processes,
one which starts from k (k ≥ 2) distinct vertices far apart and the other being a
collection of k independent processes starting from these k vertices.

3.1 Martingale

In this subsection we restrict ourselves to d = 2. Consider the process starting
from two vertices u,v ∈ Z2 with u(2) = v(2). We first observe that, for l ≥ 0, the
regeneration time Tl = Tl(u,v) is a stopping time with respect to the filtration
{Ft : t ≥ 0} where Ft := σ{Uw : w(2) ≤ u(2) + t}. By our construction, gτl(u)
is FTl

measurable. Therefore, gτl(u), given by the projection from Zd → Zd−1, is
also FTl

measurable.

Proposition 3.1 For d = 2 and u,v ∈ Z2 with u(2) = v(2), the process
{
gτl(u) :

l ≥ 0
}
is a martingale with respect to the filtration {FTl

: l ≥ 0}.

The above proposition also holds for gτl(v), so we obtain

Corollary 3.1 For d = 2 and any u,v ∈ Z2 with u(2) = v(2), the process {Zl =
Zl(u,v) : l ≥ 0} is a martingale with respect to the filtration {FTl

: l ≥ 0}.

Proof of Proposition 3.1: We construct the process (gn(u), gn(v), Hn(u,v))
starting form u,v with u(2) = v(2), and the process (gn(u), Hn(u)) starting from u
with the same set of uniform random variables {Uw : w ∈ Z2}. Observe that every

13



joint regeneration of the paths from a pair of vertices u,v is also a regeneration of
the single path from u, i.e., for every l ≥ 0, we have

Tl(u,v) = TNl
(u)

for some sequence Nl = Nl(u,v). Therefore, we have,

gτl(u,v)(u) = gτNl
(u)(u) =

Nl∑
i=1

Y
(u)
i

where {Y (u)
i := gτi(u)(u) − gτi−1(u)

(u) : i ≥ 1} is as in Remark 2.2. Since Nl ≤
Tl(u,v), and each of Ti(u,v)− Ti−1(u,v) and Y

(u)
i has an exponentially decaying

tail probability (see Proposition 2.3 and equation (15)), for every l ≥ 0, we have
that E(|gτl(u,v)(u)|) <∞.

Further we need to show that

E
[
gτl+1(u,v)

(u)− gτl(u,v)(u)|FTl(u,v)

]
= E

[ Nl+1∑
i=Nl+1

Y
(u)
i |FTNl

(u)

]
= 0 a.s. (17)

Denoting Gi := FTi(u), we have that Y
(u)
i+1 is independent of Gi. We also observe

that Nl is {Gi : i ≥ 0} adapted for each l ≥ 0, i.e., {Nl ≤ m} ∈ Gm. Therefore, for
any A ∈ FTNl

(u) = GNl
, we have

E
[
1(A)

Nl+1∑
i=Nl+1

Y
(u)
i

]
= E

[
1(A)

∞∑
nl=1

∞∑
m=1

1(Nl = nl)1(Nl+1 = nl +m)
m∑
i=1

Y
(u)
nl+i

]
= E

[
1(A)

∞∑
nl=1

∞∑
m=1

1(Nl = nl)1(Nl+1 ≥ nl +m)Y
(u)
nl+m

]
=

∞∑
nl=1

∞∑
m=1

E
[
1(A)1(Nl = nl)[1− 1(Nl+1 ≤ nl +m− 1)]Y

(u)
nl+m

]
=

∞∑
nl=1

∞∑
m=1

E
[
E
[
1(A)1(Nl = nl)[1− 1(Nl+1 ≤ nl +m− 1)]Y

(u)
nl+m | Gnl+m−1

]]
=

∞∑
nl=1

∞∑
m=1

E
[
1(A)1(Nl = nl)[1− 1(Nl+1 ≤ nl +m− 1)]E

[
Y

(u)
nl+m | Gnl+m−1

]]
=

∞∑
nl=1

∞∑
m=1

E
[
1(A)1(Nl = nl)[1− 1(Nl+1 ≤ nl +m− 1)]E

[
Y

(u)
nl+m

]]
= 0.

In the above we have used (14) and the fact that, since A is GNl
measurable,

A∩{Nl = nl} ∈ Gnl
⊆ Gnl+m−1 for all m ≥ 1. Also, {Nl+1 ≤ nl+m−1} ∈ Gnl+m−1

and Y
(u)
nl+m is independent of Gnl+m−1. �
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3.2 Independent processes

In this subsection, we describe simultaneous regenerations of k independent paths.
This will be used to approximate the paths at simultaneous regenerations of joint
paths when the starting points are far apart. We start with a result (Lemma 3.1)
about renewal processes, which is proved in the Appendix.

Let {ξ(i)n : n ≥ 1}, i = 1, . . . , k, be k independent sequences of i.i.d. inter-

arrival times (positive integer valued random variables) with P(ξ(i)n = j) = f
(i)
j for

i = 1, . . . , k. We assume that
∑∞

j=n f
(i)
j ≤ C9 exp(−C10n) for all n ≥ 1 and some

universal positive constants C9 and C10 and f
(i)
1 > 0 for i = 1, . . . , k. Let S

(i)
0 := 0

and S
(i)
n :=

∑n
j=1 ξ

(i)
j for all n ≥ 1. For any n ≥ 1 and i = 1, . . . , k, define the

residual life of the i th component at time n by

R(i)
n := inf{S(i)

k : S
(i)
k ≥ n} − n. (18)

We consider the joint residual process (R
(i)
n : i = 1, . . . , k) and define

τR := inf{n ≥ 1 : R(i)
n = 0 for i = 1, . . . , k}.

Lemma 3.1 For any n ≥ 1, we have

P(τR ≥ n) ≤ C
(k)
11 exp(−C(k)

12 n)

where C
(k)
11 and C

(k)
12 are positive constants, depending on k and the distribution of

ξ
(i)
n ’s only.

Now we consider k independent constructions of the marginal paths starting
from the vertices u1, . . . ,uk respectively, with u1(d) = · · · = uk(d). More pre-
cisely, we start with k i.i.d. collections {U i

w : w ∈ Zd}, i = 1, . . . , k, of uniform
random variables. For each i = 1, . . . , k, we construct the path process, start-
ing from ui only, as in Section 2, using only the collection {U i

w : w ∈ Zd} and

we denote this process by {g(Ind)n (ui) : n ≥ 0}. Therefore, for each i, we have

a collection of regeneration times, which we denote by {T (Ind)
l (ui) : l ≥ 0} (see

equation (10) for definition). Since the collection {T (Ind)
l (ui) : l ≥ 0} uses only the

random variables {U i
w : w ∈ Zd}, these families are independent. Furthermore,

as mentioned in Remark 2.2, for a single starting point, the distribution of the
collection {T (Ind)

l (ui) : l ≥ 0}, does not depend on the starting point ui and is an
independent copy of the family of random variable {Tl(0) : l ≥ 0}.

Define, R
(i)
n = inf{T (Ind)

l (ui) : T
(Ind)
l (ui) ≥ n} − n; note here that {T (Ind)

l+1 (ui)−
T

(Ind)
l (ui) : l ≥ 0} is an i.i.d. sequence of random variables which plays the role of

{ξ(i)l : l ≥ 0} of the previous lemma. Set, T
(Ind)
0 (u1, . . . ,uk) = 0 and, for l ≥ 0,

T
(Ind)
l+1 (u1, . . . ,uk) := inf{n > T

(Ind)
l (u1, . . . ,uk) : R(i)

n = 0 for i = 1, . . . , k}. (19)
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We call T
(Ind)
l (u1, . . . ,uk), the time for the l th simultaneous regeneration time of

k independent paths.
Applying Lemma 3.1 and observing that each T

(Ind)
l (u1, . . . ,uk) represents the

occurrence of a renewal event, we obtain the following proposition.

Proposition 3.2 The family {T (Ind)
l+1 (u1, . . . ,uk) − T

(Ind)
l (u1, . . . ,uk) : l ≥ 0} is

an i.i.d. sequence of random variables taking values in {1, 2, 3, . . . } and, for all
n ≥ 1,

P(T (Ind)
1 (u1, . . . ,uk) ≥ n) ≤ C

(k)
13 exp(−C(k)

14 n) (20)

where C
(k)
13 and C

(k)
14 are positive constants, depending on k and the distribution of

T1(0) only.

Now let {g(Ind)n (ui) : n ≥ 0}, 1 ≤ i ≤ k, be the k independent versions of
the processes starting from u1, . . . ,uk respectively, as described above. Also, let
{g(Ind)

τl(ui)
(ui) : l ≥ 0} be the i th process evaluated at its regeneration steps τl(u

i),

l ≥ 0. Let T
(Ind)
l (u1, . . . ,uk) be the l th simultaneous regeneration time as defined

in (19). Clearly the simultaneous regeneration time T
(Ind)
l (u1, . . . ,uk) is also a

regeneration time for each of the i = 1, . . . , k processes. Suppose Nl(i) (i =
1, . . . , k, l ≥ 0) is such that the l th joint regeneration coincides with the Nl(i) th
regeneration of the i th process, i.e.

T
(Ind)
l (u1, . . . ,uk) = T

(Ind)
Nl(i)

(ui), i = 1, . . . , k

where T
(Ind)
Nl(i)

(ui) is the Nl(i) th regeneration time of the i th process starting only

from ui.
As in (9) consider the width of the explored region between the l − 1 and l th

regenerations of the i th process. We define

W
(Ind)
l (u1, . . . ,uk) :=

k∑
i=1

Nl(i)∑
t=Nl−1(i)+1

W
(Ind)
t (ui) (21)

where {W (Ind)
l (ui) : l ≥ 1} is the explored width process, associated with the

process {g(Ind)l (ui) : l ≥ 0} for i = 1, . . . , k.

Since Nl(i) ≤ T
(Ind)
l (u1, . . . ,uk) for every i = 1, . . . , k and T

(Ind)
l (u1, . . . ,uk)−

T
(Ind)
l−1 (u1, . . . ,uk) satisfies (20), so calculations similar to that in the proof of

Proposition 2.3 yields

P(W (Ind)
l (u1, . . . ,uk) ≥ n) ≤ C

(k)
15 exp(−C(k)

16 n) (22)

where C
(k)
15 and C

(k)
16 are positive constants, depending on k and the distribution

of W1(0) only.
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From (13), we have that

g
(Ind)

τNl(i)
(ui)

(ui) = ui +

Nl(i)∑
t=1

Y
(ui)
t .

At each simultaneous regeneration time T
(Ind)
l (u1, . . . ,uk), the d th co-ordinates of

each of the processes g
(Ind)
n (ui) coincide and equal T

(Ind)
l (u1, . . . ,uk). We consider

the first d− 1 co-ordinates of these processes and for i = 1, . . . , k, denote

ψ
(i)
l := g

(Ind)

τNl(i)
(ui)

(ui)− g
(Ind)

τNl−1(i)
(ui)

(ui) =

Nl(i)∑
t=Nl−1(i)+1

Y
(ui)
t (23)

The process ψ
(i)
l represents the increment in the first (d − 1) co-ordinates of the

path starting from ui between the (l−1) th and the l th simultaneous regeneration
times of k independent paths.

Since T
(Ind)
l (u1, . . . ,uk) represents the occurrence of a renewal event and all

random variables {Y (ui)
t : t ≥ 1, i = 1, . . . , k} are independent, we have that

{(ψ(1)
l , . . . , ψ

(k)
l ) : l ≥ 1} is an i.i.d. collection of random variables tak-

ing values in Z(d−1)k. As earlier, we also observe that
∑k

i=1 ||ψ
(i)
l ||1,d−1 ≤

W
(Ind)
l (u1, . . . ,uk), so that we have

P(
k∑

i=1

||ψ(i)
l ||1,d−1 > n) ≤ C

(k)
15 exp(−C(k)

16 n)

for all n ≥ 1, where C
(k)
15 and C

(k)
16 are as above.

Using the inherent symmetries of the marginals of ψ
(i)
l (with ψ

(i)
l (j) being the

j th co-ordinate of ψ
(i)
l ) and carrying out calculations, similar to that in the proof

of Proposition 3.1, we obtain the following.

(a) P
(
ψ

(i)
l (j) = r

)
= P

(
ψ

(i)
l (j) = −r

)
for all r ≥ 1 for i = 1, . . . , k and j =

1, . . . , d− 1. Furthermore, P
(
ψ

(i)
l (j) = r

)
is independent of i = 1, . . . , k and

j = 1, . . . , d− 1 for r ∈ Z.

(b) E
[(
ψ

(i1)
l (j1)

)m1
(
ψ

(i2)
l (j2)

)m2
]
= 0 if at least one of m1,m2 is odd, for all 1 ≤

i1 6= i2 ≤ k and 1 ≤ j1, j2 ≤ d− 1.

(c) E
[(
ψ

(i1)
l (j1)

)m1
(
ψ

(i2)
l (j2)

)m2
]
is independent of i1, i2, i1 6= i2, j1, j2, and de-

pends only on m1,m2.
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3.3 Coupling of joint process and independent process

In this subsection, we describe a coupling of the joint paths starting from u1, . . . ,uk,
for k ≥ 2, with u1(d) = · · · = uk(d) and k independent paths starting from
u1, . . . ,uk respectively. Without loss of generality, we may assume u1(d) = 0. Let
dmin := min{||ui − uj||1 : 1 ≤ i 6= j ≤ k}. As in last subsection, we start with k
independent collections of i.i.d. uniform random variables {U i

w : w ∈ Zd,w(d) >
0, i = 1, . . . , k}. For each of i = 1, . . . , k, we construct the i th independent pro-

cess {g(Ind)n (ui) : n ≥ 0}, starting at ui, using only the uniform random variables
{U i

w : w ∈ Zd,w(d) > 0}.
Fix r < dmin/2 and another independent collection of uniform random variables

{Uk+1
w : w ∈ Zd,w(d) > 0}. We define a new collection of uniform random

variables {Ũw : w ∈ Zd,w(d) > 0} by

Ũw :=

{
U i
w if ||w − ui||1,d−1 < r for some i = 1, . . . , k

Uk+1
w otherwise.

Using this collection of uniform random variables, we construct the joint process
(as in Section 2) from the points u1, . . . ,uk until its first simultaneous regeneration
time T1(u

1, . . . ,uk) of joint paths from u1, . . . ,uk.

Now, as defined in (19), let T
(Ind)
1 (u1, . . . ,uk) be the first simultaneous regen-

eration time of the k independent processes and N1(i) the number of individual
regenerations of the i th process until the first simultaneous regeneration. With
the width of the explored region of the k independent processes as defined in (21),
we consider the event where the total width of the explored region of each of the
i th processes until the first joint regeneration time is less than r.

u1u2T
(Ind)
1 (u1,u2)g
(Ind)
τN1(1)

(u1)(u
1)g

(Ind)
τN1(2)

(u2)(u
2)r

Figure 5: The shaded regions represent part of the cylinders (up to T
(Ind)
1 (u1,u2))

of width r around u1 and u2. In the left cylinder we use the collection {U1
w}, on

the right cylinder we use the collection {U2
w} and in the remaining region, we use

{U3
w}.
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More precisely, we consider the event

AGood(r) :=
{
W

(Ind)
1 (u1, . . . ,uk) ≤ r

}
.

On the event AGood(r), the joint path process (gn(u
1), . . . , gn(u

k)) started simulta-
neously from (u1, . . . ,uk), using the collection {Ũw : w ∈ Zd,w(d) > u1(d)}, until
the first simultaneous regeneration time T1(u

1, . . . ,uk) of joint paths, coincides

with the collection of independent paths {g(Ind)n (ui) : n ≥ 0, i = 1, . . . , k}, with
the i th independent path, starting from ui, constructed using only the collection
{U i

w : w ∈ Zd,w(d) > ui(d)}, until the first simultaneous regeneration of the in-

dependent paths T
(Ind)
1 (u1, . . . ,uk). It should be kept in mind that the paths may

be indexed differently than those for the independent paths, however as geometric
paths they are identical. Therefore, we must have

T
(Ind)
1 (u1, . . . ,uk) = T1(u

1, . . . ,uk)

and hence we have,

P
[(
gτ1(u1,...,uk)(u

1), . . . , gτ1(u1,...,uk)(u
k)
)
=

(
u1 + ψ

(1)
1 , . . . ,uk + ψ

(k)
1

)]
≥ P(AGood(r)) ≥ 1− C

(k)
15 exp(−C(k)

16 r). (24)

Finally, using the Markov property, we can use this coupling for each subsequent
joint regeneration step. The new value of dmin for the l th regeneration has to be
computed from the position of the processes at the l− 1 th joint regeneration and
the value of r has to be chosen accordingly.

4 Trees and Forest

In this section we prove Theorem 1.1. For d = 2, 3, we need to prove that for any
u,v ∈ V , the paths πu and πv coincide eventually, i.e., πu(t) = πv(t) for all t ≥ t0
for some t0 <∞.

First, we claim that it is enough to prove that

πu and πv coincide eventually for u,v ∈ V with u(d) = v(d). (25)

Indeed, for u,v ∈ V with u(d) < v(d) we have, from (25),

P
[ ⋂
w∈V,u(d)=w(d)

{the paths πu and πw coincide eventually}
]
= 1;

P
[ ⋂
w′∈V,w′(d)=v(d)

{
the paths πv and πw′

coincide eventually}
]
= 1

19



Further, P
[
there existw,w′ ∈ V withw(d) = u(d),w′(d) = v(d), h(w) = w′] = 1.

Since, the intersection of these three events has probability 1, πu and πv meet.
Now, to prove that for any two vertices u0 and v0 with u0(d) = v0(d), the

paths coincide eventually, we show that P(Zl(u
0,v0) = 0 for some l ≥ 0) = 1

where Zl is as in (16). Recall, at the beginning of Section 3, we had observed that
{Zl(u

0,v0) : l ≥ 0} is a Markov chain taking values in Zd−1 with 0 ∈ Zd−1 being
its only absorbing state.

4.1 d=2

For the proof of Theorem 1.1 in the case d = 2 we consider the process constructed
from the two vertices u0 and v0 with u0(d) = v0(d). Without loss of generality, we
may assume that u0(1) > v0(1). Since the paths {gn(u0) : n ≥ 0} and {gn(v0) :
n ≥ 0} do not cross1 each other, from Corollary 3.1 we have that {Zl(u

0,v0) =
gτl(u0,v0)(u

0)(1) − gτl(u0,v0)(v
0)(1) : l ≥ 0} is a non-negative martingale. By the

martingale convergence theorem, there exists a random variable Z∞ such that
Zl(u

0,v0) → Z∞ a.s. as l → ∞. Also, 0 being the only absorbing state of the
Markov chain {Zl(u

0,v0) : l ≥ 0} we have Z∞ = 0 a.s. and hence Zl(u
0,v0) = 0

for some l a.s. This completes the proof of Theorem 1.1 for d = 2. �

4.2 d = 3

We show that the Lyapunov method used in Gangopadhyay et al. [GRS04] is
applicable here. We start with the process constructed from the vertices u0,v0 ∈
Z3 with u0(3) = v0(3) and consider the process Zl = Zl(u

0,v0) where Zl is as
defined in (16). Also, changing the transition probability of Zl from the state
0 = (0, 0), so the state 0 is no longer absorbing, we make the Markov chain
{Zl(u

0,v0) : l ≥ 0} irreducible. With a slight abuse of notation, we continue to
denote the modified chain by {Zl(u

0,v0) : l ≥ 0}.
As in [GRS04], to show that the modified chain is recurrent, we show that the

estimates (3), (4) and (5) of [GRS04] hold in this case too, i.e., we need appropriate

bounds of E
[(
||Zl+1(u

0,v0)||22 − ||Zl(u
0,v0)||22

)m | Zl(u
0,v0) = x

]
for x ∈ Z2 and

m = 1, 2, 3.

1Suppose u := (1, 0) and v := (0, 0) and h(v) = (i, j). If i > 0 then the region {(x, y) : y >
0 and ||(x, y) − u||1 ≤ i + j − 1} ⊂ {(x, y) : y > 0 and ||(x, y) − v||1 ≤ i + j} and since the
interior of neither of these regions contain open vertices, so h(u) = (i, j). If i ≤ 0, then for the
edge 〈u, h(u)〉 to cross the edge 〈v, h(v)〉 it must be that ||h(u)− u||1 > i+ j + 1; which is not
possible because ||h(v) − u||1 = i + j + 1. Now for vertices u and v which are not neighbours
consider all the vertices in between. Since the edges from any pair of neighbouring vertices do
not cross each other, neither do the edges from u and v.
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Since our model is translation invariant spatially and Zl(u
0,v0) is a time ho-

mogeneous Markov chain, we may take v0 = 0 = (0, 0, 0) and u0 = (x, 0) and
l = 0.

Now, we use the coupling described in last section, with k = 2 and r = dmin/3 =
(|x(1)|+ |x(2)|)/3. First we observe that ||Z1(u

0,v0)− x||2 ≤ ||Z1(u
0,v0)− x||1 ≤

W1(u
0,v0) and ||ψ(1)

1 −ψ
(2)
1 ||2 ≤ ||ψ(1)

1 −ψ
(2)
1 ||1 ≤ W

(Ind)
1 (u0,v0), where W1(u

0,v0)

and W
(Ind)
1 (u0,v0) are as defined in (9) and (21) respectively. Also, on the event

(AGood(r))c, we haveW1(u
0,v0) > dmin/3 = (|x(1)|+|x(2)|)/3 andW (Ind)

1 (u0,v0) >

dmin/3 = (|x(1)| + |x(2)|)/3. Thus, with ψ
(i)
l as in (23), from the definition of

AGood(r) and the equation (24), we have∣∣∣∣E[(||Z1(u
0,v0)||22 − ||x||22

)m | Z0(u
0,v0) = x

]
− E

[(
||(u0 + ψ

(1)
1 )− (v0 + ψ

(2)
1 )||22 − ||x||22

)m]∣∣∣∣
=

∣∣∣∣E[(||Z1(u
0,v0)||22 − ||x||22

)m
1
(
(AGood(r))c

)
| Z0(u

0,v0) = x
]

− E
[(
||(u0 + ψ

(1)
1 )− (v0 + ψ

(2)
1 )||22 − ||x||22

)m
1
(
(AGood(r))c

)]∣∣∣∣
≤ E

[
2m

(
||Z1(u

0,v0)||2m2 + ||x||2m2
)
1
(
(AGood(r))c

)]
+ E

[
2m

(
||(ψ(1)

1 − ψ
(2)
1 ) + x||2m2 + ||x||2m2

)
1
(
(AGood(r))c

)]
≤ 2mE

[(
||x||2m2 + 22m

[
||Z1(u

0,v0)− x||2m2 + ||x||2m2
])

1
(
(AGood(r))c

)]
+ 2mE

[(
||x||2m2 + 22m

[
||ψ(1)

1 − ψ
(2)
1 ||2m2 + ||x||2m2

])
1
(
(AGood(r))c

)]
≤ 24m

[
||x||2m2 P

(
(AGood(r))c

)
+ E

[(
W1(u

0,v0)
)2m

1(W1(u
0,v0) > dmin/3)

]
+ E

[(
W

(Ind)
1 (u0,v0)

)2m
1(W

(Ind)
1 (u0,v0) > dmin/3)

]]
≤ C17 exp(−C18||x||2)

for a proper choice of C17, C18 > 0.
Now, the estimates (3), (4) and (5) of [GRS04] follow from direct computations

of the moments of the marginals ψ
(1)
1 and ψ

(2)
1 . For example, when m = 1, with

ψ
(i)
1 (j) denoting the the j th co-ordinate of ψ

(i)
1 for i = 1, 2 and j = 1, 2, using

the observations made about the marginals in Section 3, we have E
[
||(u0+ψ

(1)
1 )−

(v0+ψ
(2)
1 )||22−||x||22

]
= E

[(
x(1)+ψ

(1)
1 (1)−ψ(2)

1 (1)
)2
+
(
x(2)+ψ

(1)
1 (2)−ψ(2)

1 (2)
)2−(

x(1)
)2 − (

x(2)
)2]

= 4E
[(
ψ

(1)
1 (1)

)2]
which yields (3). Similar calculations yield

(4) and (5). This completes the proof for d = 3. �
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4.3 d ≥ 4

We present the proof for d = 4; the argument being similar for d > 4. We first
show that P(G is disconnected) > 0, which by ergodicity of the model implies that
P(G is disconnected) = 1.

We start with two open vertices u0 and v0 in Z4 with u0(4) = v0(4) = 0 and
show that for the Markov chain {Zl(u

0,v0); l ≥ 0} there is a positive probability
that it does not get absorbed at (0, 0, 0). We follow the same technique as in
[GRS04] to achieve the above, viz., we run the chain for n4 time units, starting
from u0 and v0 sufficiently far apart (of the order n). Then, with a very high
probability the Markov chain has travelled further away (of the order of n2), and
using the Markov property, we start from these new vertices and continue this
process.

More precisely, for ε > 0, define the event

An,ε(u
0,v0) :=

{
Zn4(u0,v0) ∈ Dn2(1+ε) \Dn2(1−ε)

}
,

where Dr := {x ∈ Z3 : ||x||1 ≤ r}. We show

Proposition 4.1 For 0 < ε < 1
3
, there exist constants C19, β > 0 and n0 ≥ 1 such

that, for all n ≥ n0,

inf
v0∈u0+Dn1+ε\Dn1−ε

P
(
An,ε(u

0,v0)
)
≥ 1− C19n

−β.

Following the steps of [GRS04], it is enough to prove Proposition 4.1. Again we
use the coupling described earlier for k = 2. Consider the event

A(Ind)
n,ε (u0,v0) :=

{
v0 +

n4∑
l=1

ψ
(2)
l ∈ u0 +

n4∑
l=1

ψ
(1)
l +Dn2(1+ε) \Dn2(1−ε) ,

v0 +

j∑
l=1

ψ
(2)
l 6∈ u0 +

j∑
l=1

ψ
(1)
l +DK logn for all j = 1, . . . , n4

}
,

where K is a suitably chosen large constant. This event corresponds to the event
(19) defined in [GRS04] for which it was shown that there exists n0 such that

inf
v0∈u0+Dn1+ε\Dn1−ε

P
(
A(Ind)

n,ε (u0,v0)
)
≥ 1− C20n

−α,

for some constant C20, α > 0 and for all n ≥ n0.
Now, we employ the coupling described earlier in Subsection 3.3 with k =

2. This time we will continue this coupling step by step for n4 simultaneous
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regeneration steps of independent paths. At each step we choose r = K log n/3
and say that the coupling is successful at step j if the event AGood(r) occurs. We
do the coupling at step j + 1 if the coupling is successful at step j. Note, if the
coupling is successful at every step j = 1, . . . , n4, we have, for j = 1, 2, . . . , n4,

u0 +

j∑
l=1

ψ
(1)
l = gτj(u0,v0)(u

0) and v0 +

j∑
l=1

ψ
(2)
l = gτj(u0,v0)(v

0).

Therefore, we get

P
(
An,ε(u

0,v0)
)
≥ P

(
A(Ind)

n,ε (u0,v0) ∩ {Coupling is successful for j = 1, 2, . . . , n4}
)
.

Using the Markov property and the estimate of the coupling being successful, given
in (24), we obtain, for all sufficiently large n,

P
(
An,ε(u

0,v0)
)
≥ 1− C20n

−α − C
(2)
15 n

4 exp(−C(2)
16 K log n/3) ≥ 1− C19n

−β

for suitable choice of β > 0 and C19. This proves the proposition and completes
the proof for this case. �

5 Brownian Web

In this section we prove Theorem 1.2. We begin by recalling that the Brownian web
takes values in the metric space H equipped with the Hausdorff metric dH where
H is the space of compact subsets of the path space (Π, dΠ) (see the discussion in
the paragraphs after the statement of Theorem 1.1 in Section 1). As introduced
earlier, for any n ≥ 1, the collection of scaled paths Xn(γ, σ) is obtained from G
with normalization constants γ, σ and we had remarked that the closure of Xn(γ, σ)
in (Π, dΠ) denoted by X n(γ, σ) is a (H,BH) valued random variable.

We require some more notations. For a compact set of paths K ∈ H and for
t ∈ R let Kt := {π ∈ K : σπ ≤ t} be the set of paths which start ‘below’ t. For
t > 0 and t0, a, b ∈ R with a < b, we define two counting random variables as
follows

ηK(t0, t; a, b) := #{π(t0 + t) : π ∈ Kt0 and π(t0) ∈ [a, b]} and

η̂K(t0, t; a, b) := #{π(t0 + t) : π ∈ Kt0 and π(t0 + t) ∈ [a, b]}.

Theorem 2.2 in Fontes et al. [FINR04] provided a criteria for a sequence of (H,BH)
valued random variables with non-crossing paths to converge weakly to the Brown-
ian web. In the following we denote, the standard independent Brownian motions
starting from x1, . . . ,xk respectively, by (Bx1

, . . . , Bxk
) and standard coalescing

Brownian motions starting from x1, . . . ,xk respectively, by (W x1
, . . . ,W xk

).
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Theorem 5.1 [FINR04] Suppose χ1, χ2, . . . are (H, BH) valued random variables
with non-crossing paths. Assume that the following conditions hold.

(I1) Let D be a deterministic countable dense subset of R2. Suppose that, for any
k ≥ 1, and for any x1, . . . ,xk ∈ D, there exists π1

n, . . . , π
k
n ∈ χn such that, as

n→ ∞,
(π1

n, . . . , π
k
n) ⇒ (W x1

, . . . ,W xk

).

(B1) For all t > 0, lim supn→∞ sup(a,t0)∈R2 P(ηχn(t0, t; a, a+ ε) ≥ 2) → 0 as ε→ 0+

(B2) For all t > 0, 1
ε
lim supn→∞ sup(a,t0)∈R2 P(ηχn(t0, t; a, a + ε) ≥ 3) → 0 as ε →

0+.

Then χn converges in distribution to the standard Brownian web W.

The convergence in (I1) occurs in the space Πk. Note that the convergence in Π
implies that the starting points converge as points in R2 and the paths converge
uniformly on the compact sets of time.

In Theorem 1.4 and Lemma 6.1 of Newman et al. [NRS05], it was further
proved that the condition (B2) can be replaced by (E ′

1) where

(E ′
1) if Z t0 is any subsequential limit of χt0

n for any t0 ∈ R, then for all t, a, b ∈ R
with t > 0 and a < b, E[η̂Zt0 (t0, t; a, b)] ≤ E[η̂W(t0, t; a, b)] =

b−a√
tπ
.

It is worthwhile mentioning here that for a sequence of (H,BH) valued random
variables χn with non-crossing paths, property (I1) implies tightness (see Propo-
sition B.2 in the Appendix of [FINR04]) and hence such a subsequential limit Z t0

exists. Our model X 1 consists of non-crossing paths only. Thus, to prove Theorem
1.2 we need to show that for some γ(p) > 0 and σ(p) > 0 the sequence X n(γ, σ)
satisfies the conditions (I1), (B1) and (E ′

1) and hence converges to the standard
Brownian web.

5.1 Proof of condition (I1)

We follow the argument of Ferrari et al. [FFW05]. It should be noted here that
dependency structure of our model is quite different from that in [FFW05] and we
require significant modifications of their argument. First, to show (I1) we need to
control the tail of the distribution of the coalescing time of two paths starting at
the same instant of time but at a unit distance apart.

Lemma 5.1 Fix u = (1, 0), v = (0, 0) ∈ Z2, let ν = inf{l : gτl(u,v)(u) =
gτl(u,v)(v)}, where τl(u,v) is the l th regeneration step as defined in (1). For the ν
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th regeneration time Tν(u,v) as defined in (10), there exist positive constants C21

and C22, such that, we have

P(ν > t) ≤ C21√
t

and P(Tν(u,v) > t) ≤ C22√
t
.

Corollary 5.1 For u = (a, 0), v = (0, 0) ∈ Z2, let ν(a) = inf{l : gτl(u,v)(u) =
gτl(u,v)(v)}, where a > 0 is any positive integer. Then

P(ν(a) > t) ≤ C21a√
t

and P(Tν(a)(u,v) > t) ≤ C22a√
t
.

The corollary follows from Lemma 5.1, using the fact that the the coalescence time
ν(a) is given by the maximum of the coalescence times of the martingales starting
from the pairs (i, 0) and (i− 1, 0) for i = 1, . . . , a.
Proof of Lemma 5.1: Consider the nonnegative martingale, {Zj(u,v),FTj(u,v)}
defined in (16). We use the method in Theorem 4 of Coletti et al. [CFD09] to
achieve the bound on Tν(u,v). In order to use the result of [CFD09], it is enough
to prove that

sup{P(Zj+1(u,v) = m|Zj(u,v) = m) : m ≥ 1} ≤ θ (26)

for some θ ∈ (0, 1).

(0, 0)(m, 0)Case : m ≥ 2(0, 0)(m, 0)Case : m = 1

Figure 6: One possible realization of the event {Zj+1 = m + 1 | Zj = m}. The
bold vertices are open and all other vertices depicted are closed.

To show (26), we observe that for m ≥ 2, P(Zj+1(u,v) = m + 1|Zj(u,v) =
m) ≥ (1 − p)6p3 and P(Zj+1(u,v) = 2|Zj(u,v) = 1) ≥ (1 − p)4p3 (see Figure 6).
Therefore, we have

P(Zj+1(u,v) = m|Zj(u,v) = m)

≤ 1− P(Z1(u, (m, 0)) = m+ 1|Z0(u, (m, 0)) = m)

≤ 1−min{(1− p)6p3, (1− p)4p3} = 1− (1− p)6p3.

This establishes

P(ν > t) ≤ C21√
t
. (27)
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To complete the result, we choose C23 = E(WM)/2 whereWM is as in Proposition
2.3. Note that, it is also the case that Tl(u,v) ≤

∑l
i=1W

M(i), for any l ≥ 1,
where {WM(i) : i ≥ 1} is an i.i.d. sequence, each having the same distribution as
that of WM (see discussion before the statement of Proposition 2.3). Using (27),

P(Tν(u,v) > t) ≤ P(Tν(u,v) > t, ν ≤ C23t) + P(ν > C23t)

≤ P(TbC23tc(u,v) > t) +
C21√
C23t

≤ P(
bC23tc∑
i=1

WM(i)− E(WM(i)) > t− E(WM)bC23tc) +
C21√
C23t

≤
Var

(∑bC23tc
i=1 WM(i)

)
(t− E(WM)bC23tc))2

+
C21√
C23t

≤ C22√
t

for a suitable choice of constant C22. This completes the proof. �

Let x1, . . . ,xk ∈ R2 be k fixed points, ordered in such a way that either xi(2) <
xi+1(2) or xi(2) = xi+1(2),xi(1) < xi+1(1) for all i = 1, . . . , k−1. Let xi

n = xi
n(γ, σ)

be such that for any n ≥ 1, xi
n ∈ Z2 and xi

n(1)/nσ → xi(1) and xi
n(2) = bn2γxi(2)c

so that (xi
n(1)/nσ,x

i
n(2)/n

2γ) → xi as n→ ∞, for i = 1, . . . , k. Note that we have
kept the choice of xi

n(1) in our hand and we can suitably adapt our choice later.
There are several choices which will work. For example, we can choose xi

n(1) so
that it corresponds to first open point to the left of (bnσxi(1)c,xi

n(2)), i.e., x
i
n(1) =

max{bnσxi(1)c + j : j ≤ 0, (bnσxi(1)c + j,xi
n(2)) ∈ V }. Another choice that we

may consider is any open point on the interval,
[
bnσxi(1)c − bnαc, bnσxi(1)c +

bnαc
]
× {xi

n(2)} for some 0 < α < 1. We now consider the joint process starting
from x1

n, . . . ,x
k
n and define, for i = 1, . . . , k, the n th order diffusively scaled version

of these paths as

πi
n(t) = πi

n(γ, σ)(t) :=
1

nσ
πxi

n(γn2t) for t ≥ xi
n(2)/n

2γ. (28)

To obtain (I1), it is sufficient to show

Proposition 5.1 There exist γ := γ(p) and σ := σ(p) such that, as n→ ∞,

{π1
n(γ, σ), . . . , π

k
n(γ, σ)} converges weakly to {W x1

, . . . ,W xk}.

We prove the Proposition 5.1 through a series of other propositions. The
strategy we adopt to prove this proposition is, to show that until the time when
two paths come ‘close to each other’, they can be approximated by independent
paths, and after that time they coalesce very quickly, which is negligible in the
scaling.
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Towards this end, we start with k independent collections of i.i.d. uniform
random variables and we construct the path π

i,(Ind)
n , starting from xi

n using the i th
collection only for each i = 1, . . . , k. Therefore, we have k independent processes,
(π

1,(Ind)
n , . . . , π

k,(Ind)
n ) where the i th path, π

i,(Ind)
n , is an independent copy of the πi

n,
for i = 1, . . . , k with πi

n as defined in (28).
We first show that

Proposition 5.2 There exist γ := γ(p) and σ := σ(p) such that, as n→ ∞,

(π1,(Ind)
n , . . . , πk,(Ind)

n ) ⇒ (Bx1

, . . . , Bxk

).

Proof: Since the paths π
i,(Ind)
n are pairwise independent, it is enough to show that

the marginals converge. So, it suffices to prove that π
1,(Ind)
n converges weakly to

the standard Brownian motion Bx1
, starting at x1. Furthermore, by translation

invariance of our model, we may write

{gm(x1
n) : m ≥ 0} d

= x1
n + {gm(0) : m ≥ 0}

where gm(u) is the position of the path after the m th step, starting from u. Since,
x1
n → x1, it is enough to show that the path starting from 0, scaled diffusively,

will converge to the standard Brownian motion, starting from 0. In other words,
it is enough to consider x1 = 0.

Let τj and Tj denote the j th regeneration step and time respectively for the

process starting from 0 (see (1) and (10)). Let Yj = Y
(0)
j = gτj(0)− gτj−1

(0) (see

(13)). Now, we define a piecewise linear path π̃1,(Ind) and its diffusively scaled

version π̃
1,(Ind)
n as

π̃1,(Ind) :=gτn(0) +
t− Tn

Tn+1 − Tn
(gτn+1(0)− gτn(0)) for Tn ≤ t < Tn+1

π̃1,(Ind)
n (t) =π̃1,(Ind)

n (γ, σ)(t) :=
1

nσ
π̃1,(Ind)(γn2t) for t ≥ 0.

Next we define another stochastic process, S on [0,∞), as follows:

S(t) = Tj + (t− j)(Tj+1 − Tj) for j ≤ t < j + 1, j ≥ 0.

Clearly, S(t) is a strictly increasing process. Hence, t → S(t) admits an inverse
S−1(t) which is also strictly increasing. The process S(t) denotes the time change
required to track the path π̃1,(Ind). More precisely, we have, for t ≥ 0,

π̃1
n(t) = Xn

(
S−1(n2γt)/n2

)
.
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where the process Xn = Xn(γ, σ) on [0,∞) is defined as follows: Xn(0) = 0 and
for t > 0,

Xn(t) :=
1

nσ

[
(n2t− bn2tc)Ybn2tc+1 +

bn2tc∑
i=1

Yi

]
.

From Remark in 2.2, Yi’s are symmetric and i.i.d., so that E(Y1) = 0. Thus, from
Donsker’s invariance principle, it follows that, for σ = σ0 :=

√
Var(Y1), the process

Xn converges weakly to the standard Brownian motion starting from 0.
Let N(t) be the number of the renewals for the process S(t) up to time t, i.e.,

N(t) = bS−1(t)c so that, N(t) ≤ S−1(t) ≤ N(t)+1. Hence by the renewal theorem
S−1(n2γt)/n2 → g(t) := γt

E(T1)
, t ≥ 0 almost surely (see Theorem 4.4.1 of Durrett

[D10]). Taking γ = γ0 := E[T1], we conclude that

π̃1,(Ind)
n ⇒ Bx1

.

Finally to conclude the result, it is enough to show that, for any s > 0 and
ε > 0

P
[
sup{|π̃1,(Ind)

n (t)− π1,(Ind)
n (t)| : t ∈ [0, s]} > ε

]
= P

[
sup{|π̃1,(Ind)(t)− π1,(Ind)(t)| : t ∈ [0, sn2]} > εn

]
→ 0

as n→ ∞. Since N(sn2) ≤ bsn2c, we have{
sup{|π̃1,(Ind)(t)− π1,(Ind)(t)| : t ∈ [0, sn2]} > εn

}
⊆

bsn2c⋃
j=1

{
sup{|π̃1,(Ind)(t)− π1,(Ind)(t)| : t ∈ [Tj, Tj+1]} > εn

}
.

Now, on the interval [Tj, Tj+1], both the paths π1,(Ind) and π̃1,(Ind) agree at the end
points. Furthermore, both the paths are piecewise linear. From the definition of
Wj(0) (see equation (9)), for any t ∈ [Tj, Tj+1], |π1,(Ind)(t)− π1,(Ind)(Tj)| ≤ Wj and
|π̃1,(Ind)(t)− π̃1,(Ind)(Tj)| ≤Wj. Thus, we have{

sup{|π̃1,(Ind)(t)− π1,(Ind)(t)| : t ∈ [Tj, Tj+1]} > εn
}
⊆ {2Wj(0) > εn},

and

P
[
sup{|π̃1,(Ind)(t)− π1,(Ind)(t)| : t ∈ [0, sn2]} > εn

]
≤ P

[
2max{Wj(0) : j = 1, . . . , bsn2c} > εn

]
≤ bsn2cP(2W1(0) > εn) → 0

as n→ ∞. This proves Proposition 5.2. �

28



Henceforth, we assume that we are working with γ = γ0 and σ = σ0 and for
the ease of writing we drop (γ, σ) from our notation unless required.

First we consider the case where second co-ordinate of all xi’s equal 0, i.e.,
x1(2) = · · · = xk(2) = 0. Hence, we must have x1

n(2) = · · · = xk
n(2) = 0. Note

that 0 is not important, it is just easy for notation.
We think of the paths as coming from a metric space (C[0,∞), d̃) with d̃ given

by

d̃(π1, π2) :=
∞∑
j=0

2−j min
{
1, sup{|π1(t)− π2(t)| : t ∈ [j, j + 1]}

}
for π1, π2 ∈ C[0,∞). Consider the product metric space (C[0,∞)k, d̃k), where d̃k

is a metric on C[0,∞)k such that the topology generated by it coincides with the
corresponding product topology. In particular, we consider the metric

d̃k
(
(π1,1, . . . , πk,1), (π1,1, . . . , πk,2)

)
:= max

{
d̃(πi,1, πi,2) : i = 1, . . . , k

}
for πi,1, πi,2 ∈ C[0,∞), i = 1, . . . , k.

First, we prove a sandwich lemma, which we require later for proving our result.

Lemma 5.2 (Sandwich Lemma) Let {πn : n ≥ 1} be any family of diffusively
scaled paths such that σπn ≤ 0 for each n ≥ 1. Further, let un = (un, 0) and
vn = (vn, 0) be two open points with un < 0 < vn and (vn − un)/n → 0. Further,
we assume that un ≤ πn(0)nσ0 ≤ vn, then

(πun
n , πn|[0,∞), π

vn
n ) ⇒ (B0, B0, B0) (29)

where πun
n and πvn

n are the diffusively scaled paths starting from un and vn respec-
tively, πn|[0,∞) is the restriction of the path πn on [0,∞), and B0 is the standard
Brownian motion starting at 0.

Proof of Sandwich Lemma: In view of the Proposition 5.2, we have, for any x ∈
R2, πxn(γ0n

2t)/nσ0 ⇒ Bx such that xn(1)/σ0n → x(1) and xn(2) = bx(2)γ0n2c.
Taking x = 0, we observe that πun

n ⇒ B0.
Since the paths in our model are non-crossing and un ≤ πn(0)nσ0 ≤ vn, we also

have πun
n (t) ≤ πn|[0,∞)(t) ≤ πvn

n (t) for all t ≥ 0. Therefore, to prove our result, it
is enough to show that πvn

n converges to the same Brownian motion B0. Thus, to
complete the proof, we need to show that for any ε > 0, P

[
d̃
(
πvn
n , πun

n

)
≥ ε

]
→ 0

for which it is sufficient to show

P
[
sup
t≥0

∣∣πvn
n (t)− πun

n (t)
∣∣ ≥ ε

]
= P

[
sup
t≥0

∣∣πvn(t)− πun(t)
∣∣ ≥ εσ0n

]
→ 0.

Recall that the difference between the two paths starting at vn and un observed
at the simultaneous regeneration steps of the joint path forms a nonnegative mar-
tingale, denoted by {Zl = (Zl(vn,un)) : l ≥ 0}, as described in (16). Fix any
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0 < α < 1 and let νn := inf{l ≥ 0 : Zl = 0}. On the intersection of the events
{νn < n2} and {Wj = Wj(vn,un) < nα for all j = 1, . . . , n2}, we have that{
supt≥0

∣∣πvn(t) − πun(t)
∣∣ ≥ εσ0n

}
⊆

{
max{Zl : l = 1, . . . , n2} ≥ εσ0n − 2nα

}
⊆{

max{Zl : l = 1, . . . , n2} ≥ εσ0n/2
}
for all large n. Thus, we have,

P
[
sup
t≥0

∣∣πvn(t)− πun(t)
∣∣ ≥ εσ0n

]
≤ P

[
max{Zl : l = 1, . . . , n2} ≥ εσ0n/2

]
+ P(νn ≥ n2) + P

(
∪n2

j=1{Wj > nα}
)
.

From Corollary 5.1, we have P(νn ≥ n2) ≤ C21(vn − un)/n → 0 as n → ∞.
The third term converges to 0 by Proposition 2.3. For the first term, using by
Doob’s maximal inequality, we have P

[
max{Zl : l = 1, . . . , n2} ≥ εσ0n/2

]
≤

2E(|Zn2 |)/εσ0n = 2E(Zn2)/εσ0n = 2E(Z0)/nσ0ε = 2(vn−un)/εσ0n→ 0 as n→ ∞.
This completes the proof. �

Now, we concentrate on the coalescence of paths starting far apart. Towards
that, we define a subset A of C[0,∞)k as follows:

A =
{
(π1, . . . , πk) ∈ C[0,∞)k : πi’s satisfy the following conditions

a) π1(0) < π2(0) < · · · < πk(0);

b) t(i,j) := inf{t ≥ 0 : πi(t) = πj(t)} <∞ for all i, j = 1, . . . , k, i < j;

c) t(i1,j1) 6= t(i2,j2) for all i1, j1, i2, j2 = 1, . . . , k, i1 < j1, i2 < j2

and (i1, j1) 6= (i2, j2);

d) for any δ > 0 and i, j = 1, . . . , k, i < j, there exist t ∈ (t(i,j) − δ, t(i,j))

and s ∈ (t(i,j), t(i,j) + δ) such that (πi(t)− πj(t))(πi(s)− πj(s)) < 0
}
.

Note that A consists of all k-tuples of continuous paths ordered by their starting
points where each pair of paths intersect at distinct time points and two paths
cross each other instantaneously after they intersect. Clearly, from the indexing of
xi’s and the path property of standard independent Brownian motions, we have

P
[
(Bx1

, . . . , Bxk

) ∈ A
]
= 1. (30)

We define a ‘coalescence map’ f : C[0,∞)k → C[0,∞)k as follows:

f(π1, . . . , πk) :=

{
(π1, . . . , πk) for (π1, . . . , πk) ∈ A

(π1, . . . , πk) otherwise

where π1 ≡ π1 and for 1 < l ≤ k

πl(t) :=

{
πl(t) for t ≤ s(l)

πl−1(t) for t > s(l)
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where s(l) := inf{t ≥ 0 : πl(t) = πl−1(t)}. For x1, . . . ,xk ∈ R2 with x1(2) = · · · =
xk(2) = 0 and x1(1) < . . . < xk(1), from the strong Markov property, it follows
that f(Bx1

, . . . , Bxk
) has the same distribution as that of k standard coalescing

Brownian motions starting from x1, . . . ,xk, (see Arratia [A79]), i.e.,

f(Bx1

, . . . , Bxk

)
d
= (W x1

, . . . ,W xk

). (31)

Next, we define a sequence of subsets of C[0,∞)k where the pair of functions
come close to each other. We fix α ∈ (0, 1) for the rest of this section. For n ≥ 1,
define

Aα
n =

{
(π1, . . . , πk) ∈ C[0,∞)k : πi’s satisfy the following conditions

a) π1(0) < π2(0) < · · · < πk(0);

b) t(i,j)n := inf{t ≥ 0 : |πi(t)− πj(t)| ≤ 3nα−1} <∞
for all i, j = 1, . . . , k, i < j;

c) |t(i1,j1)n − t(i2,j2)n | > 1

n2
for all i1, j1, i2, j2 = 1, . . . , k,

i1 < j1, i2 < j2 and (i1, j1) 6= (i2, j2)
}
. (32)

Next we define the ‘α-coalescence map’ f
(α)
n : C[0,∞)k → C[0,∞)k as follows:

f (α)
n (π1, . . . , πk) :=

{
(π1, . . . , πk) for (π1, . . . , πk) ∈ Aα

n

(π1, . . . , πk) otherwise

where π1 ≡ π1 and, for 1 < l ≤ k, we define it inductively, by setting

πl(t) :=


πl(t) for t ≤ s

(l)
n

πl(s
(l)
n ) + n2(t− s

(l)
n )

[
πl−1(s

(l)
n + 1

n2 )− πl(s
(l)
n )

]
for s

(l)
n < t ≤ s

(l)
n + 1

n2

πl−1(t) for t > s
(l)
n + 1

n2

where s
(l)
n = inf{t ≥ 0 : πl(t)−πl−1(t) ≤ 3nα−1}. The α-coalescence map tracks πl

until s
(l)
n , then linearly interpolates to πl−1(s

(l)
n + 1

n2 ) in the time interval [s
(l)
n , s

(l)
n +

1
n2 ] and then tracks the function πl−1 after that time point, for every l ≥ 2.

Before proceeding, we state the following deterministic lemma (which is a
slightly stronger version of Lemma 19 of Colletti et al. [CFD09]). The proof
of this lemma has been relegated to the appendix and it will be used in the proof
of Proposition 5.3.

Lemma 5.3 Let (π1, . . . , πk) ∈ A and {(π1,n, . . . , πk,n) : n ≥ 1} ⊆ C[0,∞) be such
that d̃(πi,n, πi) → 0 as n→ ∞. Then, for n large enough, we have (π1,n, . . . , πk,n) ∈

31



Aα
n and limn→∞ s

(l)
n = s(l) for all l = 2, . . . , k, where {s(l), s(l)n : l = 2, . . . , k} are

as defined above. Further,

d̃k
(
f (α)
n (π1,n, . . . , πk,n), f(π1, . . . , πk)

)
→ 0 as n→ ∞. (33)

Now, we consider the case when x1, . . . ,xk ∈ R2 have the same second co-
ordinates as 0, i.e., x1(2) = · · · = xk(2) = 0. We prove the following

Proposition 5.3 We have

(a) f
(α)
n (π

1,(Ind)
n , . . . , π

k,(Ind)
n ) ⇒ (W x1

, . . . ,W xk
);

(b) f
(α)
n (π1

n, . . . , π
k
n) ⇒ (W x1

, . . . ,W xk
);

(c) P
[
d̃k
(
f
(α)
n (π1

n, . . . , π
k
n), (π

1
n, . . . , π

k
n)
)
≥ ε

]
→ 0 for any ε > 0 as n→ ∞.

Proof of Proposition 5.3: Lemma 5.3 and the observation in equation (30),
allow us to use the extended continuous mapping theorem (see Theorem 4.27 in

Kallenberg [K02]) to conclude that f
(α)
n (π

1,(Ind)
n , . . . , π

k,(Ind)
n ) ⇒ f(Bx1

, . . . , Bxk
).

We conclude the result of (a) using equation (31).

To prove (b), we show that f
(α)
n (π1

n, . . . , π
k
n) and f

(α)
n (π

1,(Ind)
n , . . . , π

k,(Ind)
n ) have

the same limit. Towards that end, it is enough to show that for any s > 0 and for
any bounded uniformly continuous function H : C[0, s]k → R, we have

lim
n→∞

∣∣∣E[H(
f (α)
n (π1,(Ind)

n , . . . , πk,(Ind)
n )

∣∣
[0,s]

)]
− E

[
H
(
f (α)
n (π1

n, . . . , π
k
n)
∣∣
[0,s]

)]∣∣∣ = 0.

where (π1, . . . , πk)|[0,s] denotes the restriction of (π1, . . . , πk) over time [0, s]. To
achieve this, we describe a coupling procedure such that the individual paths of
the joint process (π1

n, . . . , π
k
n) starting sufficiently far apart, agree with the corre-

sponding individual paths of the independent processes (π
1,(Ind)
n , . . . , π

k,(Ind)
n ).

We employ the same coupling idea used earlier. Starting from k+1 independent
families of i.i.d. U [0, 1] random variables {U i

w : w ∈ Z2, 1 ≤ i ≤ k+1} and vertices
x1, . . . ,xk with x1

n(2) = · · · = xk
n(2) = 0 and x1

n(1) < · · · < xk
n(1) we construct the

individual process {g(Ind)m (xi),m ≥ 0} using the random variables {U i
w : w ∈ Z2}

for each i = 1, . . . , k. Let πi,(Ind) = πxi
n,(Ind) be the piecewise linear path obtained

for the i th process and π
i,(Ind)
n be the n th order diffusively scaled version.

For the joint process we first select the set of vertices such that their horizontal
distances are at least 3nα apart, where α ∈ (0, 1) is as chosen in the definition

of f
(α)
n . We call these vertices special vertices. More precisely, let xi1

n = x1
n and

having defined xi1
n , . . . ,x

im−1
n we define xim

n with

im := inf{j > im−1 : x
j
n(1)− xim−1

n (1) > 3nα}
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if such an im exists, otherwise we stop the selection. Let I1 := {xi1
n , . . . ,x

il
n} be

the special vertices thus selected. We define a new collection of uniform random
variables {Ũ1

w : w ∈ Z2,w(2) ≥ xn
i1
(2) = 0} by

Ũ1
w :=

{
U i
w if |w(1)− xi

n(1)| < nα for xi
n ∈ I1

Uk+1
w otherwise

and construct the joint process
{
(gm(x

1
n), . . . , gm(x

k
n)), m ≥ 0

}
, as in Section 2,

using the collection {Ũ1
w : w ∈ Z2,w(2) ≥ 0} till the first simultaneous regenera-

tion time T1(x
1
n, . . . ,x

k
n) of the joint process.

Having constructed the joint process till the j−1 th simultaneous regeneration
time Tj−1(x

1
n, . . . ,x

k
n) of the joint processes with the Ij−1 being the special vertices,

we first choose the next set Ij of special vertices as follows xj1
n = xi1

n ∈ Ij. For
xjm−1
n ∈ Ij, we choose xjm

n ∈ Ij with

jm := inf{j > jm−1 : x
j
n ∈ Ij−1 and gτj−1

(xj
n)(1)− gτj−1

(xjm−1
n )(1) > 3nα}

if such an jm exists, otherwise we stop the selection. The process from time Tj−1

onwards is constructed with the collection

Ũ j
w :=

{
U i
w if |w(1)− gτj−1

(xi
n)(1)| < nα for xi

n ∈ Ij

Uk+1
w otherwise

until the time of the next simultaneous regeneration of the joint process.
Let (πx1

n , . . . , πxk
n) be the paths obtained from this joint process starting from

(x1
n, . . . ,x

k
n) and with (π1

n, . . . , π
k
n) being the diffusively scaled versions. To compare

f
(α)
n (π1

n, . . . , π
k
n) with f

(α)
n (π

1,(Ind)
n , . . . , π

k,(Ind)
n ) we define the events

En := {(π1,(Ind)
n , . . . , πk,(Ind)

n ) ∈ Aα
n}

Bn,s := {W (Ind)
j (k) < nα : for all j ≥ 1 with T

(Ind)
j (k) ≤ sn2},

where Aα
n,W

(Ind)
j (k) and T

(Ind)
j (k) are as defined in (32), (21) and (19) respectively.

Note that, from Proposition 5.2 and using Skorohod’s representation theorem,
we can assume that (π

1,(Ind)
n , . . . , π

k,(Ind)
n ) converges to (Bx1

, . . . , Bxk
) as elements

in (C[0,∞)k, d̃k), almost surely. Observe that on the event Bn,s ∩En, the coupled

processes satisfy f
(α)
n (π1

n, . . . , π
k
n)|[0,s] = f

(α)
n (π

1,(Ind)
n , . . . , π

k,(Ind)
n )|[0,s] for n large.

This observation yields∣∣∣E[H(
f (α)
n (π1,(Ind)

n , . . . , πk,(Ind)
n )

∣∣
[0,s]

)]
− E

[
H
(
f (α)
n (π1

n, . . . , π
k
n)
∣∣
[0,s]

)]∣∣∣
≤

∣∣∣E[[H(
f (α)
n (π1,(Ind)

n , . . . , πk,(Ind)
n )

)
−H

(
f (α)
n (π1

n, . . . , π
k
n)
)]
1Bc

n,s∪Ec
n

]∣∣∣
≤ 2||H||∞P(Bc

n,s ∪ Ec
n).
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Finally, from Lemma 5.3, P(Ec
n) → 0. Using a similar calculation, used in the last

part of Proposition 5.2, P(Bc
n,s) → 0 as n→ ∞, which completes the proof of (b).

We write the proof of (c) for k = 2; the argument for general k being similar. By

definition of f
(α)
n , we have π1

n(t) = π1
n(t) for all t ≥ 0 and π1

n(t) = π2
n(t) for t ≤ s

(2)
n ,

where s
(2)
n = inf{t ≥ 0 : π2

n(t) − π1
n(t) ≤ 3nα−1} = inf{t ≥ 0 : π2

n(t) − π1
n(t) ≤

3nα−1}. From the definition of the metric d̃k, it suffices to show that, for any ε > 0,

P
[
sup
t≥s

(2)
n

∣∣π1
n(t)− π2

n(t)
∣∣ ≥ ε

]
= P

[
sup

t≥s
(2)
n γ0n2

∣∣π1(t)− π2(t)
∣∣ ≥ εσ0n

]
→ 0

as n→ ∞.
Let κn := inf{j : Tj(x

1
n,x

2
n) ≥ s

(2)
n γ0n

2} where Tj(x
1
n,x

2
n) is the j th simulta-

neous regeneration time of the joint paths starting from (x1
n,x

2
n) and define the

event D = {Wκn(x
1
n,x

2
n) < nα}. We have

P
[

sup
t≥s

(2)
n γ0n2

∣∣π1(t)−π2(t)
∣∣ ≥ εσ0n

]
≤ P(Dc)+P

[{
sup

t≥s
(2)
n γ0n2

∣∣π1(t)−π2(t)
∣∣ ≥ εσ0n

}
∩D

]
.

The first term P(Dc) = P{Wκn(x
1
n,x

2
n) ≥ nα} → 0 from Proposition 2.3. For

the second term, we note that, on the event D, the width of the explored re-
gion is at most nα, hence the difference of the paths, at the previous simultane-
ous regeneration time before s

(2)
n γ0n

2, is at most 5nα, i.e., |π1(Tκn−1(x
1
n,x

2
n)) −

π2(Tκn−1(x
1
n,x

2
n))| ≤ 5nα. Also, for t ∈ [Tκn−1(x

1
n,x

2
n), Tκn(x

1
n,x

2
n)], we have

|π1(t) − π2(t)| ≤ 7nα < εσ0n for all large n. Hence, using the Markov prop-
erty, non-crossing property of paths and the translation invariance of our model,
it follows that, for all large n,

P
[{

sup
t≥s

(2)
n γ0n2

∣∣π1(t)− π2(t)
∣∣ ≥ εσ0n

}
∩D

]
≤ P

[
sup

t≥Tκn(x
1
n,x

2
n)

∣∣π1(t)− π2(t)
∣∣ ≥ εσ0n

]
≤ P

[
sup
t≥0

∣∣π(7nα,0)(t)− π(0,0)(t)
∣∣ ≥ εσ0n

]
→ 0

as n→ ∞, using the same calculations as in the Sandwich Lemma. �
Proof of Proposition 5.1: First we consider the case when x1(2) = · · · =
xk(2). With the choices of x1

n, . . . ,x
k
n, made in equation (28) and using the

translation invariance of the model, we note that the joint distribution of the
paths starting from (x1

n, . . . ,x
k
n) is the same as that of the paths starting from

((x1
n(1), 0), . . . , (x

k
n(1), 0)) and then translated by (0,x1

n(2)). By Proposition 5.3,
the diffusively scaled paths starting from ((x1

n(1), 0), . . . , (x
k
n(1), 0)) converge weakly

to coalescing Brownian motions starting from ((x1(1), 0), . . . , (xk(1), 0)). Since
(0,x1

n(2)) → (0,x1(2)) as n→ ∞, we have the result for this case.
For the general case, using similar arguments as above, it is enough to consider

x1, . . . ,xk starting at different levels with x1(2) ≤ · · · ≤ xk(2) = 0. We proceed
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by induction using arguments similar to that of Colletti et al [CFD09]. First,
the result holds for k = 1, from Proposition 5.2. For k ≥ 2, we assume that
the result holds for k − 1, and we start with any k points x1, . . . ,xk ∈ R2 with
x1(2) ≤ · · · ≤ xk(2) = 0 and let i0 := inf{i : xi(2) = 0}.

We construct the process from these k vertices, noting that the vertices at the
highest level do not move until the process from the vertices below catches up
with the vertices at the highest level. We stop the process as soon as it needs
information of vertices on or above the x-axis. As per the construction of the
process, at any step m, the points at the lowest level, viz., Wmove

m , are allowed
to move and they have the same second co-ordinate. If all of them can find the
next vertex such that the explored region lies below the x-axis we run the process;
otherwise we stop at that step. More precisely, define

ln := max
{
m : for each u ∈ Wmove

m ,
(
S(u,−u(2)− 1) \ {y ≤ u(2)}

)
∩ V 6= ∅

}
,

where S(u, r) = {w ∈ Z2 : ||w − u||1 ≤ r}.
At this step ln, all vertices lie below the x-axis and no points on or above

x-axis have been explored. For the vertices below the x-axis we consider their
projection on the x-axis. We think of the process is being restarted from these
projected vertices (even though they many not be open) together with the paths
from the vertices which were originally on the x-axis. Since the number of vertices
below the x-axis from which we started the process is k − 1 or less, the induction
hypothesis gives us that the scaling limit of these paths until they reach the x-
axis is a system of coalescing Brownian motions. Using the previous case of this
proof and the sandwich lemma, we show that the scaling limit of the paths from
the projected vertices on the x-axis and the original vertices is the same system
coalescing Brownian motions. We also show that at the ln th step the location of
the vertices of the process below the x-axis is close to the x-axis so that on scaling
this difference vanishes.

First we observe that, if the maximum gap of the second co-ordinates at step
ln from the x-axis is at least m + 1, then for some u ∈ Wmove

ln
, all the m vertices

lying above u (and below the x-axis) must be closed. Thus,

P
[
max

{
−gln(xi

n)(2) : 1 ≤ i ≤ i0 − 1
}
≥ m+ 1

]
≤ P

[
for some xi

n with gln(x
i
n) ∈ Wmove

ln , g↑jln (x
i
n) /∈ V for 1 ≤ j ≤ m

]
≤ (i0 − 1)(1− p)m.

Fix 0 < ν < α. Define the event

Fn :=
{
max{−gln(xi

n)(2) : 1 ≤ i < i0} ≥ nν
}
. (34)
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Applying Borel Cantelli lemma, we get that P(lim supn Fn) = 0 and hence

gln(x
i
n)(2)/n

2γ0 → xi0(2) = 0 as n→ ∞ for all 1 ≤ i < i0 almost surely. (35)

By the induction hypothesis, we have that for paths starting from first i0 − 1
vertices,

(π1
n, . . . , π

i0−1
n ) ⇒ (W x1

, . . . ,W xi0−1

).

Using Skorohod representation theorem, we can assume that the convergence is
almost sure as elements in Πi0−1, i.e.,

(π1
n, . . . , π

i0−1
n ) → (W x1

, . . . ,W xi0−1

) as n→ ∞ in Πi0−1 (36)

almost surely. From (35) and (36) we have,

(
{πi

n(t) : σπi
n
≤ t ≤ gln(x

i
n)(2)

n2γ0
}, 1 ≤ i < i0

)
→

(
{W xi

(t) : xi(2) ≤ t ≤ 0}, 1 ≤ i < i0
)

almost surely. (37)

Here we need to remark that although the process starts with k vertices, till
the ln th step only the first i0 − 1 vertices move and their movement till the ln th
step is as if the process started with only these i0− 1 vertices. Thus the induction
hypothesis may be applied.

Let (P , ρP) be the space of compact subsets of (R2
c , ρ) with ρP the induced

Hausdorff metric, i.e., for A1, A2 ∈ P ,

ρP := sup{ sup
x1∈A1

inf
x2∈A2

ρ(x1,x2), sup
x2∈A2

inf
x1∈A1

ρ(x1,x2)}.

Denoting by x̃i
n, the projection of the vertex gln(x

i
n) on the x-axis and

Qn :=
⋃

1≤i<i0

{( x̃
i
n(1)

nσ0
, 0)

}
∪

⋃
i0≤i≤k

{xi} and Q :=
⋃

1≤i<i0

{(W xi

(0), 0)} ∪
⋃

i0≤i≤k

{xi},

we have, from (37), Qn → Q as n → ∞ almost surely in (P , ρP). Conditioned on
Qn, let XQn

n be the n th order diffusively scaled version of the paths starting from
the random point set {(nσ0x(1), n2γ0x(2)) : x ∈ Qn} = {x̃i

n : 1 ≤ i < i0} ∪ {xi
n :

i0 ≤ i ≤ k}. Using the first part where x1(2) = · · · = xk(2), and Lemma 6.5 of
Newman et al. [NRS05] we conclude that XQn

n converges in distribution to WQ,
i.e., coalescing Brownian motions starting from a random point set distributed as
Q.

Finally we need to show that the paths starting from
{
gln(x

1
n), . . . , gln(x

i0−1
n )

}
∪

{xi0
n , . . . ,x

k
n}, and the paths starting from the projected vertices

{
x̃1
n, . . . , x̃

i0−1
n

}
∪
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{xi0
n , . . . ,x

k
n} converge to the same limit. Using (35), we conclude that the starting

points of the paths converge almost surely. For the local convergence of paths from
time 0 onwards, we will use the Sandwich Lemma.

We fix α < β < 1 and for each i = 1, . . . , i0−1, two open points ui
n = (uin, 0) and

vi
n = (vin, 0) such that x̃i

n(1)−nβ < uin < x̃i
n(1)−nα < x̃i

n(1)+n
α < vin < x̃i

n(1)+n
β.

Note that the probability of existence of such points converges to 1 as n→ ∞ (since
the points on the x-axis are yet to be explored). From the Sandwich Lemma, any
path which crosses the x-axis, in between uin and vin will converge to the same
Brownian motion. It is therefore enough to prove that, for i = 1, . . . , i0 − 1,

P
{
πxi

n(0) /∈ [uin, v
i
n]
}
= P

{
πgln (x

i
n)(0) /∈ [uin, v

i
n]
}
→ 0

as n → ∞. On the complement of the event Fn, defined in (34), the path from
gln(x

i
n) needs at most nν steps to ensure that thereafter all the vertices of the

path are on or above the x-axis. Therefore, the maximum displacement of the first
co-ordinate of the path starting from gln(x

i
n) when it crosses the x-axis is bounded

by
∑nν

j=1 ||hj(gln(xi
n))− hj−1(gln(x

i
n))||1. Define the event

D(i)
n :=

{ nν∑
j=1

||hj(gln(xi
n))− hj−1(gln(x

i
n))||1 < nα

}
.

If (D
(i)
n )c occurs, then we must have ||hj(gln(xi

n))− hj−1(gln(x
i
n))||1 ≥ nα−ν for

some j = 1, . . . , nν . Thus, using the bound in (2.3), we conclude that P
(
(D

(i)
n )c

)
≤

nνC7 exp(−C8n
α−ν) → 0 as n → ∞. Finally, on the event D

(i)
n ∩ F c

n, we have
πgln (x

i
n)(0) ∈ [uin, v

i
n]. Thus,

P
{
πgln(x

i
n)(0) /∈ [uin, v

i
n]
}
≤ P(Fn) + P

(
(Dn(i))

c
)
→ 0

as n→ ∞. This completes the proof. �

5.2 Proof of (B1) and (E ′
1)

The proof of condition (B1) is standard and follows by the same argument as in
Coletti et al. [CFD09].

In order to prove (E ′
1), recall that X t0

n is the collection of n th order diffusively
scaled paths obtained from our random graph G which start before time t0 and

X t0
n is the closure of X t0

n in (Π, dΠ). Note that condition (I1) guarantees that X n

is tight. Being a subset of X n, for any t0, the sequence X
t0
n is also tight and hence

such subsequential limit(s) exist.
For K ∈ H, let K(s) := {(π(s), s) : π ∈ K,σπ ≤ s} ⊂ R2. Also de-

fine Z t0;(t0+ε)+ := {π : σπ = t0 + ε and there exists π′ ∈ Z t0 such that π(u) =
π′(u) for all u ≥ t0 + ε}.

The equivalent of Lemma 6.2 and Lemma 6.3 of [NRS05] for our model is
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Lemma 5.4 Z t0(t0 + ε) is a.s. locally finite for any ε > 0, and Z t0;(t0+ε)+ is dis-
tributed as WZt0 (t0+ε), i.e., coalescing Brownian motions starting from the random
point set Z t0(t0 + ε) ⊂ R2.

Proof: Using Lemma 5.1 and Proposition 5.1, the same proof as that of Lemma
6.2 of [NRS05] proves that Z t0(t0 + ε) is a.s. locally finite for our model.

Finally we need to prove Z t0;(t0+ε)+ is distributed as coalescing Brownian mo-
tions starting from the locally finite point set Z t0(t0 + ε). Because of translation
invariance of our model we choose t0 = 0. Using Skorohod’s representation theo-
rem, we may assume that we are working on a probability space such that X 0

n → Z0

as n→ ∞ in (H, dH) almost surely. Hence we have

ρP(X 0
n(ε),Z0(ε)) → 0 as n→ ∞ almost surely. (38)

The rest of the proof follows a similar line as in last part of Proposition 5.1
and we provide a sketch. We again create a set of open points, Qn, on the line
bγ0εn2c such that ρP(Q̃n,X 0

n(ε)) → 0 as n → ∞ almost surely, where Q̃n is the
scaled version of points of Qn. Again, for any interval [a, b], this can be done
in a similar way as in Proposition 5.1, so that no information about points on
the line {y = bγ0εn2c} or above is required. Using the Proposition 5.1 and the
fact that ρP(X 0

n(ε),Z0(ε)) → 0 and ρP(Q̃n,X 0
n(ε)) → 0, we now conclude that the

scaled paths starting from Q̃n converge to a coalescing system of Brownian motions
starting from Z0(ε). Finally, using the sandwich lemma, we conclude that X 0

n |[ε,∞)

converges to the same coalescing system of Brownian motions starting from Z0(ε)
where X 0

n |[ε,∞) is the restriction of paths in X 0
n on [ε,∞). �

Now, to prove (E1), for any ε such that 0 < ε < t, we have,

E[η̂Zt0 (t0, t; a, b)] = E
[
η̂Zt0;(t0+ε)+(t0 + ε, t− ε; a, b)

]
≤ E[η̂W(t0 + ε, t− ε; a, b)] =

b− a√
π(t− ε)

.

Letting ε→ 0, we conclude (E ′
1).

6 Appendix

Proof of Lemma 2.1: It suffices to prove that, for some α > 0, we have
E(exp(ατM)) < ∞. Since Mn+1 is a function of Mn and an independent se-
quence of random variables, {Mn : n ≥ 0} is a Markov chain. Furthermore, it is
irreducible and recurrent.

Note first that, using 1 to denote the indicator function,

Mn+1 −Mn = −1(θn+1 ≤Mn) +
[
θn+1 −Mn − 1

]
1(θn+1 > Mn).
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Choose m0 large such that E
[
(θ1 − m0 − 1)1(θ1 > m0)

]
< P(θ1 ≤ m0). This is

possible because E
[
(θ1 −m − 1)1(θ1 > m)

]
− P(θ1 ≤ m) → −1 as m → ∞. By

the choice of m0, we have that E[Mn+1 −Mn | Mn = m0] < 0. Since the random
variable θ1 has an exponentially decaying tail, we can choose α > 0 sufficiently
small and r > 1 so that E

[
exp

(
α(Mn+1 −Mn)

)
|Mn = m0

]
< 1/r.

Furthermore, we observe that given Mn = m > m0, the distribution of Mn+1−
Mn is the same as that of −1(θn+1 ≤ m) +

[
θn+1 −m− 1

]
1(θn+1 > m); the latter

random variable being dominated by−1(θn+1 ≤ m0)+
[
θn+1−m0−1

]
1(θn+1 > m0).

Therefore, we conclude that, for all m > m0,

E
[
exp

(
α(Mn+1 −Mn)

)
|Mn = m

]
< 1/r.

Hence, taking E = {0, 1, . . . , l0 − 1} and f : {0, 1, 2, . . . , } → R by f(i) = exp(αi)
and using Proposition 5.5, Chapter 1 of Asmussen [A03], we obtain the result. �
Proof of Lemma 3.1: Define Ln := max{R(i)

n : i = 1, . . . , k} and set τL :=
inf{n ≥ 1 : Ln = 0}. Then, we have, τR = τL. Again, we define a new Markov
chain which dominates Ln and satisfies the conditions of Lemma 2.1, from which
we will conclude the result.

We start with k families of independent copies of the inter-arrival times, say

{η(i)n : n ≥ 1} with η
(i)
1

d
= ξ

(i)
1 for i = 1, . . . , k. Now, keeping the same notation as

in the proof of Proposition 2.2, we set Wmove
n := {i : R(i)

n = 0, for i = 1, . . . , k}
and W stay

n := {1, . . . , k} \Wmove
n . Now, for i ∈ Wmove

n we have S
(i)
li(n)

= n for some

li(n) ≥ 0, and for i ∈ W stay
n we have S

(i)
l 6= n for every l ≥ 0. Define

Jn+1 = max
{
max{ξ(i)li(n)+1 : i ∈ Wmove

n },max{η(i)n+1 : i ∈ W stay
n }

}
and

M0 := 0 and Mn+1 := max{Mn, Jn+1} − 1 for n ≥ 0.

We now claim Mn ≥ Ln for all n ≥ 0. Clearly, M0 = L0 = 0. Assume that the
result holds for n. For i ∈ W stay

n (i.e., R
(i)
n ≥ 1) we have R

(i)
n+1 = R

(i)
n − 1. While,

for i ∈ Wmove
n (i.e., S

(i)
li(n)

= n for some li(n) ≥ 0) we have

R
(i)
n+1 = inf{S(i)

k : S
(i)
k ≥ n+ 1} − n− 1 = S

(i)
li(n)+1 − n− 1

= S
(i)
li(n)

+ ξ
(i)
li(n)+1 − n− 1 = ξ

(i)
li(n)+1 − 1.
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Thus we have

Ln+1 = max{R(i)
n+1 : i = 1, 2, . . . , k}

= max
{
max{R(i)

n+1 : i ∈ Wmove
n },max{R(i)

n+1 : i ∈ W stay
n }

}
= max

{
max{ξ(i)li(n)+1 − 1 : i ∈ Wmove

n },max{R(i)
n − 1 : i ∈ W stay

n }
}

≤ max
{
max{ξ(i)li(n)+1 : i ∈ Wmove

n },max{R(i)
n : i = 1, . . . , k},

max{η(i)n+1 : i ∈ W stay
n }

}
− 1

=Mn+1.

The independence of the families of random variables, {ξ(i)n } and {η(i)n } and

the fact that ξ
(i)
1

d
= η

(i)
1 , for i = 1, . . . , k, implies that we can write Mn+1 =

max{Mn, θn+1} − 1 where {θn : n ≥ 1} is a sequence of i.i.d. random variables

with θ1
d
= max{ξ(i)1 : i = 1, . . . , k}. The assumptions imposed on ξ

(i)
n ’s imply that

the Markov chain satisfies the conditions of Lemma 2.1 and the result follows from
that. �
Proof of Lemma 5.3: We prove this lemma for k = 2, the proof for general k
being similar. Fix 0 < ε < min{s(2), 1}. To prove limn→∞ s

(2)
n = s(2) we show that

lim infn s
(2)
n ≥ s(2) − ε and lim supn s

(2)
n ≤ s(2) + ε.

Let ν1 := inft∈[0,s(2)−ε](π2(t)−π1(t)) > 0 and choose n1 large enough so that for

all n ≥ n1 we have max
{
max{supt∈[0,s(2)+1] |πin(t)−πi(t)| : i = 1, 2}, nα−1

}
< ν1/4.

Hence, for t ≤ s(2) − ε, we have π2n(t)− π1n(t) ≥ π2(t)− π1(t)− |π2n(t)− π1(t)| −
|π2n(t) − π2(t)| > ν1/2 > nα−1 so that s

(2)
n ≥ s(2) − ε for all n ≥ n1 and hence

lim infn s
(2)
n ≥ s(2) − ε.

For the upper bound, fix s ∈ [s(2), s(2) + ε], such that π1(s) − π2(s) > 0. Set
ν2 := min{π1(s) − π2(s), inf [0,s(2)/2] π2(t) − π1(t)}. Now choose n2 large enough so
that for all n ≥ n2 we have supt∈[0,s1+1] |πin − πi| < ν2

4
for i = 1, 2. Thus, for all

n ≥ n2, we have π2n(0)−π1n(0) ≥ π2(0)−π2(0)−|π1n(0)−π1(0)|−|π2n(0)−π2(0)| >
ν2/2 > 0, so that π2n(0) > π1n(0). Also, π1n(s)−π2n(s) ≥ π1(s)−π2(s)−|π1n(s)−
π1(s)| − |π2n(s) − π2(s)| > ν2/2 > 0. Thus, π1n and π2n cross each other before

time s(2) + ε and hence s
(2)
n ≤ s(2) + ε. This completes the proof of first part of the

Lemma.
To prove the second part of the lemma, observe that it suffices to show that

supt∈[0,s(2)+1] |π2n(t)−π2(t)| → 0 as n→ ∞. Fix η > 0 and choose β > 0 such that
supt,s∈[s(2)−β,s(2)+β] max{|π1(t)−π1(s)|, |π2(t)−π2(s)|, |(π2−π1)(t)−(π2−π1)(s)|} <
η. Take n0 such that for all n ≥ n0 we have (a) 1

n2 < β, (b) s
(2)
n , s

(2)
n + 1

n2 ∈
(s(2) − β, s(2) + β) and (c) supt∈[0,s(2)+1] max{|π1n(t)− π1(t)|, |π2n(t)− π2(t)|} < η.
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Further

sup
t∈[0,s(2)+1]

|π2n(t)− π2(t)| ≤ sup
t∈[0,s(2)−β]

|π2n(t)− π2(t)|

+ sup
t∈[s(2)−β,s(2)+β]

|π2n(t)− π2(t)|+ sup
t∈[s(2)+β,s(2)+1]

|π1n(t)− π1(t)|.

Note that for n ≥ n0 we also have

sup
t∈[s(2)−β,s(2)+β]

max{|π2n(t)− π1(s)|, |π1n(t)− π2(s)|, |π1n(t)− π2n(s)|} < 3η. (39)

Since we obtain π2n by linearly joining π2n(s
(2)
n ) and π1n(s

(2)
n + 1

n2 ), for n ≥ n0 from
(39) we have supt∈[s(2)−β,s(2)+β] |π2n(t)− π2(s)| < 3η. Combining, we conclude that
supt∈[0,s(2)+1] |π2n(t)− π2(t)| ≤ 3η for all n ≥ n0. �
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Statist. 40, 141–152, 2004.

[GRS04] S. Gangopadhyay, R. Roy, and A. Sarkar. Random oriented Trees: a
Model of drainage networks. Ann. Appl. Probab. 14, 1242–1266, 2004.

[K02] O. Kallenerg. (2002). Foundations of Modern Probability. Springer.

[LPW] D.A. Levin, Y. Peres, and E.L. Wilmer. (2008). Markov Chains and
Mixing Times. A. M. S.

[NRS05] C.M. Newman, K. Ravishankar, and R. Sun. Convergence of coalescing
nonsimple random walks to the Brownian web. Electron. J. Prob. 10,
21–60, 2005.

[RR97] I. Rodriguez-Iturbe, and A. Rinaldo. (1997). Fractal river basins: chance
and self-organization. Cambridge Univ. Press, New York.

[S67] Scheidegger, A. E. (1967). A stochastic model for drainage pattern into
an intramontane trench. Bull. Ass. Sci. Hydrol. 12, 15-20.
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