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Abstract

Let X1, X2,Θ and Θ′ be independent non-negative random variables. The residual life of Xi

at random time Θ, that is, XΘ
i = Xi − Θ|Xi > Θ is considered. Some sufficient conditions

which lead to the likelihood ratio ordering, the failure rate ordering, the reverse failure
rate ordering and the mean residual life ordering between XΘ

1 and XΘ
2 are obtained and

an application in queuing theory is explained. A set of conditions which lead to the same
stochastic orderings between XΘ

1 and XΘ′
1 are also derived.
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1 Introduction

Let X be a non-negative random variable with distribution function F . The residual lifetime
of X at t, t > 0, denoted by X t, is a random variable whose distribution is the same as the
distribution of X−t given that X > t, that is X t =st (X−t|X > t). Stochastic characteristics
like survival function and mean of X t are great tools to evaluate the stochastic behavior
of X. For more details about residual random variable the reader is referred to Guess and
Proschan (1988), Shaked and Shanthikumar (2007, Chapters 1 and 2), Nanda, Bhattacharjee
and Balakrishnan (2010) and Cai and Zheng (2012).

If we replace t with a random variable Θ, independent of X, then the residual lifetime of
X at Θ, denoted by XΘ, is defined to be residual lifetime of X at random time Θ. Stochastic
aging properties and stochastic comparisons of residual lifetimes at random time have been
investigated by Yue and Cao (2000), Yue and Cao (2001), Li and Zuo (2004), Misra, Gupta
and Dhariyal (2008) and Eryilmaz (2013). The aim of this paper is to obtain some new
stochastic orderings results among residual lifetimes at random time in one sample as well
as two sample problems and give simpler proofs of some known results in the literature.

First let us recall some definitions of stochastic orders that are used later in this paper.
Assume the positive random variables X and Y have distribution functions F and G, survival
functions F̄ = 1−F and Ḡ = 1−G, density functions f and g, reverse failure rate functions
r̃X = f/F and r̃Y = g/G and failure rate functions rX = f/F̄ and rY = g/Ḡ, respectively.
The following stochastic orders are usually used to compare the random variables X and Y .

Definition 1.1. X is said to be smaller than Y in the

(i) likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f(x) is increasing in x;

(ii) failure rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄ (x) is increasing in x;

(iii) reverse failure rate order (denoted by X ≤rh Y ) if G(x)/F (x) is increasing in x;

(iv) stochastic ordering (denoted by X ≤st Y ) if F (x) ≤ G(x) for every x;

(v) mean residual life order, denoted by X ≤mrl Y , if∫∞
t
F̄ (x)dx

F̄ (t)
≤
∫∞
t
Ḡ(x)dx

Ḡ(t)
;

(vi) increasing convex order ( denoted by X ≤icx Y ) if∫ ∞
t

F̄ (x)dx ≤
∫ ∞
t

Ḡ(x)dx.

It is well known that X ≤st Y is equivalent to that

E[φ(X)] ≤ (≥ )E[φ(Y )] (1.1)

for all increasing ( decreasing ) functions φ : R → R, for which the expectations exist. It is
also known that (cf. Shaked and Shanthikumar (2007)),

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤mrl Y ⇒ EX ≤ EY
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and

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤icx Y ⇒ EX ≤ EY.

We shall also use the notions of totally positive of order 2 and reverse regular of order 2.
Karlin (1968) is a comprehensive reference for TP2 and RR2 functions.

Definition 1.2. (i) A non-negative function h(x, y) is said to be totally positive of order
2 (TP2) if

h(x, y)h(x′, y′) ≥ h(x′, y)h(x, y′)

whenever x ≤ x′ and y ≤ y′.

(ii) A non-negative function h(x, y) is said to be reverse regular of order 2 (RR2) if

h(x, y)h(x′, y′) ≤ h(x′, y)h(x, y′)

whenever x ≤ x′ and y ≤ y′.

Let X1, X2, Θ1 and Θ2 be independent non-negative random variables. Yue and Cao
(2000) considered stochastic comparisons between XΘ1

1 and XΘ2
1 , the residual lifetime of

X1 at two different random times Θ1 and Θ2 . They proved that if Θ1 ≤rh Θ2 and X is
DFR (decreasing failure rate), then XΘ1 ≤st XΘ2 . The inequality is reversed if X is IFR
(increasing failure rate). Misra, Gupta and Dhariyal (2008) in their Theorem 3.1 gave a
lengthy proof for extending this result from the usual stochastic ordering to the failure rate
ordering. We give a simpler proof of their result (Theorem 2.2 (c)).

Yue and Cao (2000) also showed that if Θ1 ≤rh Θ2 and X is IMRL (increasing mean
residual life), then

E(XΘ1) ≤ E(XΘ2). (1.2)

The inequality in (1.2) is reversed if X is DMRL (decreasing mean residual life). Li and Zuo
(2004) extended the above expectation order result to the increasing convex order. That is

XΘ1 ≤icx XΘ2 . (1.3)

Misra, Gupta and Dhariyal (2008) further considered this problem and extended (1.2) to the
mean residual life order. That is, they showed that if Θ1 ≤rh Θ2 and X is IMRL (DMRL),
then

XΘ1 ≤mrl (≥mrl)XΘ2 . (1.4)

We also give a simpler proof of the above result (Theorem 2.2 (d)).
In Section 2, we make stochastic comparisons between XΘ

1 and XΘ
2 , the residual lifetimes

of X1 and X2 at the same random time Θ. We provide some sufficient conditions under which
XΘ

1 is comparable with XΘ
2 according to the likelihood ratio order, the failure rate order, the

reverse failure rate order and the mean residual order. We also make stochastic comparisons
between XΘ1 and XΘ2 , the residual life time of X at two different random times Θ1 and Θ2

according to the likelihood ratio order and the reverse failure rate order. An application in
queuing theory is explained in Section 3.
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2 Main Results

We need the following lemma, which might be of independent interest, to prove the main
results in this section.

Lemma 2.1. Let hi(x, θ), i = 1, 2, be a non-negative real valued function on R× X, where
X is a subset of real line. If

(i) h2(x, θ)/h1(x, θ) is increasing in x and θ and

(ii) if either h1(x, θ) or h2(x, θ) is TP2 in (x, θ),

then

si(x) =

∫
X
hi(x, θ)l(θ)dθ (2.1)

is TP2 in (x, θ), where l is a continuous function with
∫
X l(θ)dθ <∞.

Proof. First, we prove the required result when h1(x, θ) is TP2 in (x, θ).
Let Θ∗(x) denote a random variable with density function given by

h1(x, θ)l(θ)∫
X h1(x, θ)l(θ)dθ

.

Then the assumption (ii) is equivalent to the fact that for x1 ≤ x2, Θ∗(x1) ≤lr Θ∗(x2), which
in turn implies that Θ∗(x1) ≤st Θ∗(x2).

Let x1 ≤ x2. Then

s2(x2)

s1(x2)
=

∫
X h2(x2, θ)l(θ)dθ∫
X h1(x2, θ)l(θ)dθ

=

∫
X

h2(x2, θ)

h1(x2, θ)

h1(x2, θ)l(θ)∫
X h1(x2, θ)l(θ)dθ

dθ

≥
∫
X

h2(x2, θ)

h1(x2, θ)

h1(x1, θ)l(θ)∫
X h1(x1, θ)l(θ)dθ

dθ (2.2)

≥
∫
X

h2(x1, θ)

h1(x1, θ)

h1(x1, θ)l(θ)∫
X h1(x1, θ)l(θ)dθ

dθ (2.3)

=
s2(x1)

s1(x1)
.

Note that inequality (2.2) follows from the assumption (i) that h2(x, θ)/h1(x, θ) is in-
creasing in θ for each x ∈ R and the inequality (1.1). The inequality (2.3) follows from the
assumption (i) that h2(x, θ)/h1(x, θ) is increasing x for each θ ∈ X .
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Next assume that h2(x, θ) is TP2 in (x, θ). Let x1 ≤ x2. Then

s1(x2)

s2(x2)
=

∫
X h1(x2, θ)l(θ)dθ∫
X h2(x2, θ)l(θ)dθ

=

∫
X

h1(x2, θ)

h2(x2, θ)

h2(x2, θ)l(θ)∫
X h2(x2, θ)l(θ)dθ

dθ

≤
∫
X

h1(x2, θ)

h2(x2, θ)

h2(x1, θ)l(θ)∫
X h2(x1, θ)l(θ)dθ

dθ (2.4)

≤
∫
X

h1(x1, θ)

h2(x1, θ)

h2(x1, θ)l(θ)∫
X h2(x1, θ)l(θ)dθ

dθ (2.5)

=
s1(x1)

s2(x1)
.

The inequalities (2.4) and (2.5) follow using arguments similar to the ones used to show
inequalities (2.2) and (2.3).

Let X and Θ be two independent non-negative random variables with distribution func-
tions F and H, survival functions F and H, density functions f and h, respectively. The
residual life time of X at Θ, denoted by XΘ, is defined to be a random variable with a dis-
tribution function equal to that of X−Θ given that X > Θ, that is XΘ =st (X−Θ|X > Θ).
Then, the density function, distribution function, survival function and mean residual life
(mrl) function of XΘ, are respectively given by

gXΘ(x) =

∫∞
0
f(x+ θ)h(θ)dθ

P (X > Θ)
. (2.6)

GXΘ(x) =

∫∞
0
F (x+ θ)h(θ)dθ

P (X > Θ)
, (2.7)

GXΘ(x) =

∫∞
0
F (x+ θ)h(θ)dθ

P (X > Θ)
, (2.8)

and

mXΘ(x) =

∫∞
x
GXΘ(u)du

P (XΘ > x)
. (2.9)

Theorem 2.2. Let Xi, i = 1, 2 be two independent random variables with Xi, i = 1, 2 having
density function fi, distibution function Fi, survival function F i and mrl function mi. Let Θ
be a random variable with density function h and distribution function H. Θ is independent
of X1 and X2.

(a) If X1 ≤lr X2 and either X1 or X2 is ILR, then

XΘ
1 ≤lr XΘ

2 .

(b) If X1 ≤rh X2 and either X1 or X2 is IRFR, then

XΘ
1 ≤rh XΘ

2 .
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(c) If X1 ≤hr X2 and either X1 or X2 is DFR, then

XΘ
1 ≤hr XΘ

2 .

(d) If X1 ≤mrl X2 and either X1 or X2 is IMRL, then

XΘ
1 ≤mrl XΘ

2 .

Proof. (a) From (2.6), the density function of XΘ
i is

gXi
Θ(x) =

∫∞
0
fi(x+ θ)h(θ)dθ

P (X > Θ)
, i = 1, 2.

In Lemma 2.1, replace l(θ) with h(θ) and hi(x, θ) with fi(x + θ) for i = 1, 2. The random
variable Xi is ILR if and only if fi(x+ θ) is TP2 in x and θ. On the other hand, X1 ≤lr X2

if and only if f2(u)/f1(u) is increasing in u which in turn implies that f2(x + θ)/f1(x + θ)
is increasing in x as well as θ. Combining these observations, the required result of part (a)
follows from Lemma 2.1.

(b) Xi is IRFR if and only if Fi(x+ θ) is TP2 in x and θ. On the other hand, X1 ≤rh X2

if and only if F2(u)/F1(u) is increasing in u which in turn implies that F2(x+ θ)/F1(x+ θ)
is increasing in x as well as θ. That is, the conditions of Lemma 2.1 (b) are satisfied by
replacing the function l(θ) with h(θ) and hi(x, θ) with Fi(x + θ), i = 1, 2. This proves part
(b).

(c) Xi is DFR if and only if F i(x+ θ) is TP2 in x and θ. On the other hand, X1 ≤hr X2

if and only if F 2(u)/F 1(u) is increasing in u which in turn implies that F 2(x+ θ)/F 1(x+ θ)
is increasing in x as well as θ. That is, the conditions of Lemma 2.1 (c) are satisfied by
replacing the function l(θ) with h(θ) and hi(x, θ) with F i(x + θ), i = 1, 2. This proves part
(c).

(d) Using (2.9), the mrl function of XΘ
i , i = 1, 2 can be written as

mXΘ
i

(x) =

∫∞
x
GXΘ

i
(u)du

P (XΘ
i > x)

=

∫∞
0
{
∫∞
x
F i(u+ θ)du}h(θ)dθ

P (XΘ
i > x)

=

∫∞
0
{
∫∞
x+θ

F i(u)du}h(θ)dθ

P (XΘ
i > x)

Xi is IMRL if and only if
∫∞
x+θ

F i(u)du is TP2 in x and θ. On the other hand, X1 ≤mrl X2

implies that
∫∞
x+θ

F 2(u)du/
∫∞
x+θ

F 1(u)du is increasing in x and θ. That is, the conditions
of Lemma 2.1 (d) are satisfied by replacing the function l(θ) with h(θ) and hi(x, θ) with∫∞
x+θ

F i(u)du, i = 1, 2. This proves part (d).
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Example 2.3. Let Xi, i = 1, 2 be a gamma random variable with density function

f(x;αi, β) =
βα

Γ(αi)
xαi−1e−xβ, x > 0; αi > 0, β > 0.

If α1 < 1 and α1 ≤ α2, then it is easy to see that X1 ≤lr X2 and X1 is ILR. Therefore it
follows from Theorem 2.2 (a) that for any non-negative random variable Θ, XΘ

1 ≤lr XΘ
2 .

Example 2.4. Let X1 be a random variable with density function

fX1(x) =

(
1√
x

+ 1

)
exp(−2

√
x− x), x > 0

and X2 be another random variable with density function

fX2(x) =

(
1√
x

+
1

2

)
exp(−2

√
x− x

2
), x > 0.

It is easy to see that X1 ≤hr X2 and both X1 and X2 are DFR. Therefore it follows from
Theorem 2.2 (c) that for any non-negative random variable Θ, XΘ

1 ≤hr XΘ
2 . Note that in

this example X1 �lr X2.

The following three lemmas will be used below to obtain stochastic orderings between
XΘ1 and XΘ2

Lemma 2.5. (Karlin (1968), p.99) Let g1 : R → R and g2 : R → R be two continuous
functions and f1 and f2 be two density functions. Suppose that∫

R
gk(s) fi(s)ds exists and is finite, k = 1, 2, i = 1, 2

and

(i) fi(s) is TP2 (RR2) in (i, s) ∈ {1, 2} × R,

(ii) gk(s) is TP2 in (k, s) ∈ {1, 2} × R,

Then
∫
gk(s)fi(s) ds is TP2 (RR2) in (i, k) ∈ {1, 2} × {1, 2}.

Lemma 2.6. (Joag-Dev, Kochar and Proschan (1995), p. 115) Let g1 : R → R and g2 :
R → R be two differentiable functions with derivatives g′1 and g′2, and let F1 and F2 be two
distribution functions with respective density functions f1 and f2, and respective survival
functions F 1 and F 2. Suppose that∫

R
gk(s) dFi(s) exists and is finite, k = 1, 2, i = 1, 2

and
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(i) F i(s) is TP2 in (i, s) ∈ {1, 2} × R,

(ii) gk(s) is TP2 in (k, s) ∈ {1, 2} × R,

(iii) g1(s) is increasing in s ∈ R, for k = 1, 2.

Then
∫
gk(s)fi(s) ds is TP2 in (i, k) ∈ {1, 2} × {1, 2}.

Lemma 2.7. (Khaledi and Shaked (2010), p. 2490) Let g1 : R → R and g2 : R → R be
two differentiable functions with derivatives g′1 and g′2, and let F1 and F2 be two distribution
functions with respective density functions f1 and f2, and respective survival functions F 1

and F 2. Suppose that∫
R
gk(s) dFi(s) exists and is finite, k = 1, 2, i = 1, 2

and

(i) Fi(s) is TP2 in (i, s) ∈ {1, 2} × R,

(ii) gk(s) is RR2 in (k, s) ∈ {1, 2} × R,

(iii) gk(s) is decreasing in s ∈ R, for k = 1, 2.

Then
∫
gk(s)fi(s) ds is RR2 in (i, k) ∈ {1, 2} × {1, 2}.

Theorem 2.8. Let Θi, i = 1, 2 be two independent random variables with Θi, i = 1, 2
having density function hi, distibution function Hi, survival function H i and mrl function
µi. Let also X be a random variable with density function f , distribution function F , survival
function F . X is independent of Θ1 and Θ2.

(a) If X is ILR (DLR) and Θ1 ≤lr Θ2, then

XΘ1 ≤lr (≥lr)XΘ2 .

(b) X is IRFR and Θ1 ≤hr Θ2, then

XΘ1 ≤rh XΘ2 .

(c) (Theorem 3.1 of Misra et al. (2008)) If X is IFR and Θ1 ≤rh Θ2, then

XΘ1 ≥hr XΘ2 .

(d) (Theorem 3.2 of Misra et al. (2008)) If X is DMRL and Θ1 ≤rh Θ2, then

XΘ1 ≥mrl XΘ2 .
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Proof. (a) From (2.6), the density function of XΘi is

gXΘi (x) =

∫∞
0
f(x+ θ)hi(θ)dθ

P (X > Θi)
, i = 1, 2.

f(x+θ) is TP2 (RR2) in (x, θ), since X is ILR (DLR). hi(θ) is TP2 in (i, θ), since Θ1 ≤lr Θ2.
Using these results, it follows from Lemma 2.5 that the function∫ ∞

0

f(x+ θ)hi(θ)dθ

is TP2 (RR2) in (i, x) which proves the required results of part (a).

(b) From (2.7), the distribution function of XΘi , i = 1, 2, is

GXΘi (x) =

∫∞
0
F (x+ θ)hi(θ)dθ

P (X > Θi)
.

F (x+ θ) is TP2 in (x, θ), since X is IRFR. H i(θ) is TP2 in (i, θ), since Θ1 ≤hr Θ2. Hence,
it follows from Lemma 2.6 that ∫ ∞

0

F (x+ θ)hi(θ)dθ

is TP2 in (i, x) which is the required result of part (b).

(c) From (2.8), the survivial function of XΘi , i = 1, 2, is

GXΘi (x) =

∫∞
0
F (x+ θ)hi(θ)dθ

P (X > Θi)
.

F (x + θ) is RR2 in (x, θ), since X is IFR. Hi(θ) is TP2 in (i, θ), since Θ1 ≤rh Θ2. The
function F (x+ θ) is decreasing in θ. Therefore, it follows from Lemma 2.7 that the function∫ ∞

0

F (x+ θ)hi(θ)dθ

is (RR2) in (i, x) which proves part (c).

(d) The mrl function of XΘi , i = 1, 2, is

mXΘi (x) =

∫∞
0
{
∫∞
x+θ

F (u)du}hi(θ)dθ
P (XΘi > x)

X is DMRL is equivalent to
∫∞
x+θ

F (u)du is RR2 in (x, θ). Hi(θ) is TP2 in (i, θ), since
Θ1 ≤rh Θ2. The function is decreasing in θ. Combining these results, it follows from Lemma
2.7 that mXΘi (x) is RR2 in (i, x) which proves part (d).
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3 An Application in Queuing Theory

In a GI/G/1 queue, let Tn with distribution FT , denote the time between nth and (n+ 1)th
arrival, Wn with distribution FW , denote the waiting time in the queue for the nth customer,
Sn with distribution FS, denote service time of the nth customer and I with distribution
H, denote the length of idle period between busy periods. It is well known that Wn+1 =
max{0,Wn + Sn − Tn} and I =st (T − (W + S)|W + S > T ), where st stands for equal in
distribution (cf. Marshall (1968)).

Suppose that distributions of T , W and S are not completely known and only we know
that the hazard rate of T is bounded by some positive known constants. That is suppose
that for 0 < λ1 < λ2,

λ1 ≤ rT (t) ≤ λ2, (3.1)

then it follows from Theorem 2.2 (c) that

λ1 ≤ rI(t) ≤ λ2. (3.2)

To prove this observation, let Eλi , i = 1, 2, be an exponential random variable with hazard
rate λi independent of S and W . Then (3.1) is equivalent to that

Eλ2 ≤hr T ≤hr Eλ1 . (3.3)

On the other hand, from (2.6), it is easy to see that Ii =st Eλi , i = 1, 2, where Ii is the length
of idle period between busy periods of a queue with inter-arrival time Eλi and an arbitrary
servicing time. Using this observation, (3.3), the fact that exponential random variable is
DFR and Theorem 2.2 (c), we obtain that

I2 =st Eλ2 =st E
S+W
λ2

≤hr T S+W ≤hr ES+W
λ1

=st Eλ1 =st I1,

which is equivalent to (3.2). Inequalities (3.2) gives a lower bound and upper bound on the
hazard rate of rI without any IFR assumption on T . Therefore it is comparable to the ones
given in Theorem 6 of Marshall (1968) and it is a generalization of Theorem 4 in Marshall
(1968) which is discussed next.

If instead of (3.1) it is known that the mean residual life function of T is bounded with
some known constants, that is

γ1 ≤ mT (t) ≤ γ2, (3.4)

then, using similar kind of arguments, it follows from Theorem 2.2 (d) that

γ1 ≤ mI(t) ≤ γ2. (3.5)

Inequalities (3.5) were directly proved in Marshall (1968).
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