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Abstract By elementary matrix algebra we show that every real 2n× 2n matrix
admits a dilation to an element of the real symplectic groupSp(2(n+m)) for some
nonnegative integerm. Our methods do not yield the minimum value ofm, for which
such a dilation is possible.
After listing some of the main properties of Gaussian statesin L2(Rn), we analyse
the implications of symplectic dilations in the study of quantum Gaussian channels
which lead to some interesting open problems, particularly, in the context of the
work of Heinosaari, Holevo and Wolf [3].
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1 Symplectic Dilation Theorem

Throughout this section we shall deal with matrices having real entries. Denote by
Mn the real linear space of alln×n matrices. Write
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J2 =

[
0 −1
1 0

]
,

J2n =




J2 0 0 . . . 0
0 J2 0 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . 0 J2


 (1)

where the right hand side is a block diagonal matrix with diagonal blocksJ2 and the
nondiagonal entries are 2×2 zero matrices. Let

Sp(2n) =
{

L |L ∈ M2n, LTJ2nL = J2n
}
. (2)

be the realsymplectic Lie groupof order 2n,where the indexT stands for transpose.
It is known that every elementL in Sp(2n) has determinant unity and has the prop-
erty thatLT ∈ Sp(2n). Any element ofSp(2n) will be called asymplecticmatrix of
order 2n.

The importance ofSp(2n) in quantum probability lies in the property that the
linear transformation

L




p1

q1
...

pn

qn



=




p′1
q′1
...

p′n
q′n




of the canonical position and momentum observables inL2(Rn) preserves the
Heisenberg canonical commutation relations (CCR) if and only if L ∈ Sp(2n).

The main aim of this section is to establish a dilation theorem according to which
any real linear transformationA of the canonical momentum and position observ-
ables{pr ,qr , r = 1,2, . . . ,n} can be dilated to a symplectic linear transformation of
a larger system{pr ,qr , r = 1,2, . . . ,n+m} of such canonical observables obeying
CCR. This is the essence of the following theorem in linear algebra whose proof
will be accomplished by examining several special cases.

Theorem 1.Let A∈ M2n. Then there exists a nonnegative integer m, not depending
on A and matrices B,C,D of respective order2n×2m, 2m×2n, 2m×2m such that
the block matrix

Ã=

[
A B
C D

]
(3)

is a symplectic matrix of order2(n+m).

Lemma 1. The following matrices of order4×4 are symplectic.

(i)

[
0 B
C 0

]
where B,C∈ SL(2,R).
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(ii)




α 0 0 x
0 0 y 0
0 x α 0
y 0 0 0


 whereα 6= 0, 1+ xy= 0.

(iii)




α 0 x 0
0 α 0 y
−y 0 α 0
0 −x 0 α


 where xy= 1−α2.

(iv)




α 0 x 0
0 −α 0 y
y 0 α 0
0 x 0 −α


 where xy= 1+α2.

Proof. Straightforward verificaion. ⊓⊔

Lemma 2. Theorem 1 holds for n= 1 with m= 1.

Proof. We make a general observation that if an 2n×2n matrixA satisfies Theorem
1, then so does any matrixL1AL2 whereL1 andL2 are arbitrary elements ofSp(2n).
SinceSp(2) = SL(2,R) and for any 2× 2 matrix A there existL1,L2 in SL(2,R)
such thatL1AL2 has one of the following forms:

[
0 0
0 0

]
,

[
α 0
0 0

]
,

[
α 0
0 α

]
,

[
α 0
0 −α

]

whereα 6= 0 is a real scalar. By Lemma 1 each of the four matrices above satisfies
Theorem 1 withm= 1. ⊓⊔

Definition 1. Let A∈ M2n. If there exists a matrix̃A ∈ Sp(2(n+m)) such that (3)
holds we say that̃A is asymplectic dilationof A of order2(n+m).

Lemma 3. If Ai ∈M2ni admits a symplectic dilation of order2(ni+mi), i = 1,2, . . . ,k
then their direct sum

k⊕

i=1

Ai =




A1 0 0 . . . 0
0 A2 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . Ak




admits a symplectic dilation of order2
k
∑

i=1
(ni +mi).

Proof. It is enough to prove for the casek= 2. Let

Ãi =

[
Ai Bi

Ci Di

]

be a symplectic dilation ofAi of order 2(ni +mi), i = 1,2. Then
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Ã1⊕ Ã2 =




A1 B1 0 0
C1 D1 0 0
0 0 A2 B2

0 0 C2 D2




is symplectic. First, interchange rows 2 and 3 followed by aninterchange of columns
2 and 3 in order to obtain the symplectic matrix




A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2




of order 2(n1+m1+n2+m2). This is clearly a symplectic dilation ofA1⊕A2. ⊓⊔

Lemma 4. Let Ai , 1≤ i ≤ k be elements of M2n, admitting symplectic dilations̃Ai

of order2(n+m) for each i. If pi > 0, 1≤ i ≤ k and
k
∑

i=1
pi = 1, then

k
∑

i=1
piAi admits

a symplectic dilation of order2k(n+m).

Proof. Consider the symplectic matrixL =
⊕k

i=1
Ãi of order 2k(n+m). Let ((si j )) be

a real orthogonal matrix with its first row equal to
(√

p1,
√

p2, . . . ,
√

pk
)
. Then

S= ((si j I2(n+m)))

whereIr denotes identity matrix of orderr, is a symplectic matrix of order 2(n+m)k.
ThusSLST is also symplectic. Considering this as a block matrix of theform (3) we

see thatSLST is a symplectic dilation of
k
∑

i=1
piAi . ⊓⊔

Lemma 5. Let A be a real strictly positive definite matrix of order2n. Then A admits
a symplectic dilation of order4n.

Proof. By Williamson’s theorem [1], [9] there exists a symplectic matrix L of order
2n such that

LTAL= κ1I2⊕κ2I2⊕·· ·⊕κnI2

whereI2 is the identity matrix of order 2 andκ1 ≥ κ2 ≥ ·· · ≥ κn > 0 are the unique
Williamson parameters ofA. By expression (iii) in Lemma 1, eachκ j I2 has a sym-
plectic dilation of order 4. Now Lemma 3 implies thatLTAL has a symplectic dila-
tion of order 4n. ⊓⊔

Lemma 6. Let A be a symmetric matrix of order2n. Then A admits a symplectic
dilation of order8n.

Proof. Choose and fix a constantλ > 0 so thatλ I +A andλ I −A are both strictly
positive definite. By Lemma 5 bothλ I +A andλ I −A admit symplectic dilations
of order 4n. WhenL is symplectic so is−L and thereforeA−λ I has a symplectic
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dilation of order 4n. Now, by Lemma 4,A= 1
2(A+λ I+A−λ I) admits a symplectic

dilation of order 8n. ⊓⊔

Lemma 7. Let D,E,F,G be2×2 matrices such that

[
D E
F G

]
is symplectic of order

4. Then the8×8 matrix 


0 D E 0
−DT 0 0 −FT

0 F G 0
−ET 0 0 −GT




is symplectic. In particular, any4×4 skew symetric matrix of the form

[
0 D

−DT 0

]

admits a symplectic dilation of order8.

Proof. Straightforward algebra. ⊓⊔

Proof of Theorem 1.By Lemma 1 it is enough to consider the casen> 1. Express
the 2n×2n matrixA as ann×n block matrix

A= [Ai j ] , i, j ∈ {1,2, . . . ,n}

where eachAi j is of order 2×2. ThenA can be written as

A= A1+A2+A3

whereA1 =
1
2(A+AT) is symmetric,A2 is the block diagonal matrix

1
2

{
(A11−AT

11)⊕ (A22−AT
22)⊕·· ·⊕ (Ann−AT

nn)
}

and
A3 = ∑

1≤i< j≤n

Bi j

with Bi j being a block matrix withi j th block 1
2

(
Ai j −AT

ji

)
and ji th block 1

2

(
A ji −AT

i j

)

and all other blocks equal to 0. Write A1 =A+
1 −A−

1 whereA±, are positive and neg-
ative parts ofA1. PutB1 = A+

1 +εI , B2 =A−
1 +εI whereε > 0, so thatB1 andB2 are

strictly positive definite. ThenA1 = B1−B2 where, by Lemma 5,B1 andB2 admit
symplectic dilations of order 4n. By Lemma 2 and Lemma 3,A2 has a symplectic
dilation of order 4n. Now each of the matricesBi j can be looked upon as a direct
sum of 

 0 1
2

(
Ai j −AT

ji

)

1
2

(
A ji −AT

i j

)
0




and the zero matrix of order(2n−4)× (2n−4). By Lemma 7 and Lemma 3 and
the fact that
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[
0 I2n−4

I2n−4 0

]
∈ Sp(4n−8)

it follows that eachBi j has a symplectic dilation of order 8+4n−8= 4n. The same
arguments apply to scalar multiples ofB1,B2,A2 and theBi j ’s. Putk=

(n
2

)
+3 and

write

A=
1
k

(
kB1+(−k)B2+ kA2+ ∑

1≤i< j≤n

kBi j

)
, (4)

a convex combination of the summands within the brackets( ) . Each summand
on the right hand side of (4) has a symplectic dilation of order 4n. By Lemma 4 it
now follows thatA admits a symplectic dilation of order 4n(

(n
2

)
+3). ⊓⊔

Remark 1.Theorem 1 and its proof show that every real matrixA of order 2n×2n
admits a symplectic dilation of order 4n(

(n
2

)
+3). The problem of finding the size

of the minimal symplectic dilation of a matrix of ordern×n remains open.

2 The Symplectic Group, Weyl operators and Gaussian States

We shall present in this section a brief account of the role ofthe groupSp(2n) in
describing Gaussian states inL2(R) and some of their properties which are impor-
tant in the formulation of the notion of Gaussian channels inquantum information
theory. For proofs of results stated here we refer to Holevo [4] and Parthasarathy
[6], [7].

Consider the complex Hilbert spaceCn and L2(Rn), the space of complex-
valued, absolutely square integrable functions with respect to then-dimensional
Lebesgue measure. We shall write all scalar products in the Dirac notation. For
anyu = (u1,u2, . . . ,un)

T in Cn, associate theexponential vector e(u) in L2(Rn) by

e(u)(x) = (2π)−n/4 exp
n

∑
j=1

(
u jx j −

1
2

u2
j −

1
4

x2
j

)
(5)

for x ∈ Rn. Exponential vectors span a dense linear manifoldE ⊂ L2(Rn) and any
finite number of exponential vectors are linearly independent. Furthermore,

〈e(u)
∣∣e(v)〉 = exp〈u|v〉

= exp
n

∑
j=1

u jv j .

In particular,

|ψ(u)〉= e−
1
2‖u‖2|e(u)〉

is a unit vector and the pure state determined by this vector is called thecoherent
stateassociated withu.
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For any u ∈ Cn, there exists (an exponential like) unitary operatorW(u) in
L2(Rn), calledWeyl operatorassociated withu, satisfying the relations

W(u)|e(v)〉= e−
1
2‖u‖2−〈u|v〉 |e(u+ v)〉 (6)

for all v ∈ Cn. For a givenu such aW(u) is uniquely defined. They obey the Weyl
commutation relations

W(u)W(v) = e−iI m〈u|v〉W(u+ v). (7)

It is a multiplicative family of operators modulo a scalar multiplier. From (7) one
gets

W(u)W(v)W(u)−1 = e−2iI m〈u|v〉W(v). (8)

The correspondenceu →W(u) is a strongly continuous, projective, unitary and ir-
reducible representation of the additive groupCn. If we identify L2(Rn+m) with
L2(Rn)⊗ L2(Rm) and Cn+m with Cn ⊕Cm, then W(u ⊕ v) gets identified with
W(u)⊗W(v) and we simply writeW(u⊕ v) = W(u)⊗W(v). This is called the
factorizabilityproperty of the Weyl representationu →W(u).

Supposeu →W′(u) is a strongly continuous map fromCn into the unitary group
of a complex separable Hilbert spaceH satisfying equation (7) withW replaced by
W′. Then, according to Stone-von Neumann theorem there is a unitary isomorphism
Γ from H ontoL2(Rn)⊗ k for some Hilbert spacek such that

ΓW′(u)Γ −1 =W(u)⊗ Ik ∀ u ∈ C
n,

Ik being the identity opertor ink. If W′ is also irreducible thenW andW′ are unitarily
equivalent.

For anyL ∈ Sp(2n) define the action ofL onu by L ·u = u′ where

L




Reu1
I mu1

...
Reun

I mun



=




Reu′1
I mu′1

...
Reu′n

I mu′n




∀ u ∈C
n.

Then such an action preserves the real bilinear formI m〈u|v〉 and therefore

W(L ·u)W(L ·v) = e−i I m〈u|v〉W(L · (u+ v)).

Hence by the discussion above there exists a unitary operator, sayΓ (L), such that

Γ (L)W(u)Γ (L)−1 =W(L ·u) ∀ u ∈ C
n. (9)

Since the projective representationu → W(L ·u) is also irreducible it follows that
the choice of the unitary operatorΓ (L) is unique upto a scalar multiple of modulus
unity. Thus the mapL → Γ (L) is a projective unitary representation ofSp(2n). If U
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is a unitary matrix of ordern×n, U preserves the scalar product inCn and hence
preservesI m〈u|v〉. In other words there exists a matrixLU ∈Sp(2n)∩SO(2n) such
thatLU ·u =Uu. There exists a unique unitary operatorΓ0(U) in L2(Rn) such that

Γ0(U)e(u) = e(Uu) ∀ u ∈C
n.

ThenΓ0(U)Γ0(U ′) = Γ0(UU ′) for anyU,U ′ ∈ U(n) andΓ (LU) can be chosen to
beΓ0(U). The representationU → Γ0(U) of U(n) is called thesecond quantization
map. Thus we get a projective unitary representationL → Γ (L) of Sp(2n) such that
(9) holds,Γ (L1)Γ (L2) = Γ (L1L2) wheneverL1 andL2 are symplectic and orthogo-
nal but, in general,

Γ (L1)Γ (L2) = σ(L1,L2)Γ (L1L2)

whereσ(L1,L2) is a scalar of modulus unity.

Definition 2. A stateρ in L2(Rn) is a positive operator of unit trace and itsquantum
Fourier transformρ̂(u) is the complex-valued function onCn defined by

ρ̂(u) = Tr ρ W(u) ∀ u ∈ C
n.

The quantum Fourier transform of a state satisfies the following properties:

(i) ρ̂(0) = 1 and the mapu → ρ̂(u) is continuous onCn.
(ii) The kernel

kρ(u,v) = ei I m〈u|v〉ρ̂(v−u),u,v ∈C
n

is positive definite, i.e., for any finite set{ur ,1≤ r ≤ m}⊂Cn and scalarscr ,1≤
r ≤ m

Σcrcs kρ(ur ,us)≥ 0.

(iii) (Inversion formula) For any stateρ in L2(Rn)

ρ =
1

πn

∫
ρ̂(u)W(−u)d2nu

=
1

πn

∫
ρ̂(u)W(u)d2nu,

whered2nu is the 2n-dimensional Lebesgue measure whenCn is considered as
the real linear spaceR2n.

(iv) (Quantum Bochner’s Theorem) letϕ be any complex-valued continuous func-
tion onCn such thatϕ(0) = 1 and the kernelk(u,v) = ϕ(v− u)exp i〈u|v〉 is
positive definite. Then there exists a unique stateρ in L2(Rn) such that̂ρ = ϕ

(v) For any stateρ in L2(Rn) and anyL ∈ Sp(2n)

[
Γ (L) ρ Γ (L)−1]∧ (u) = ρ̂(L−1u) ∀ u ∈ C

n.

(vi) For any stateρ in L2(Rn+m) = L2(Rn)⊗L2(Rm) define themarginalstatesρ1

andρ2 in L2(Rn) andL2(Rm) respectively by
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ρ1 = Tr2 ρ , ρ2 = Tr1 ρ

where Tr1 and Tr2 are the relative traces ofρ over the factorsL2(Rn) andL2(Rm)
respectively. Then

ρ̂1(u) = ρ̂(u⊕0),

ρ̂2(v) = ρ̂(0⊕ v)

whereu ∈ Cn, v ∈ Cm.

Definition 3. A stateρ in L2(Rn) is said to beGaussianif its quantum Fourier
transform has the form

ρ̂(u) = exp P(x1,y1, . . . ,xn,yn) ∀ u ∈ C
n

wherex j =Reu j , y j = Im uj andP is a polynomial in 2n variables of degree at most
2.

Theorem 2.A stateρ in L2(Rn) is Gaussian if and only there exist vectorsℓ, m in
Rn and a real positive definite matrix S of order2n satisfying the inequality

2S− i J2n ≥ 0, (10)

such that the quantum Fourier transform̂ρ(u) is given by

ρ̂(u) = exp−i
√

2
(
ℓ

T x−mTy
)
−
(
xT ,yT)S

(
x
y

)
∀ u ∈ C

2n (11)

where xj = Reuj , y j = Imuj , 1≤ j ≤ n and J2n is given by (1).

Proof. See [6].

Remark 2.We shall give now an interpretation of the parametersℓ,m andSoccuring
in (11) and also the matrix inequality (10) in the language ofthe momentum and
position observables obeying CCR. To this end we first observe that (7) implies that
for any fixedu, {W(tu), t ∈ R} is a strongly continuous one parameter group of
unitary operators admitting a self adjoint Stone generatorp(u) so that

W(tu) = e−it p(u),u ∈ C
n, t ∈ R.

Writing ej = (0, . . . ,0,1,0, . . . ,0)T for 1≤ j ≤ n, where 1 occurs in thejth position
and putting

p j = 2−
1
2 p(ej), q j =−2−

1
2 p(ie j)

we obtain selfadjoint operators obeying CCR on the linear manifold E generated by
the exponential vectors. ThenW(u) can be expressed as

W(u) = exp−i
√

2
n

∑
j=1

(x j p j − y jq j)
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with x j = Reu j , y j = I muj for every j and∑n
j=1 (x j p j − y jq j) being the selfad-

joint closure fromE . From the definition of quantum Fourier transform and (11) it
follows that each observablep(u) has a normal distribution in the Gaussian stateρ
with characteristic function

exp−it
√

2
n

∑
j=1

(ℓ j x j −mjy j)− t2ξ TSξ , t ∈R

whereξ T = (x1,y1,x2,y2, . . . ,xn,yn). Thus

ℓ j = Trρ p j , mj = Trρ q j

and the covariance matrix of(p1,−q1, . . . , pn,−qn) is S. When (11) holds we write

ρ = ρg(ℓ,m,S) (12)

in order to indicate thatρ is a Gaussian state withmeanmomentum and position
vectorsℓ,m respectively andcovariance matrix S. If we write

(Z1,Z2, . . . ,Z2n) = (p1,−q1, . . . , pn,−qn)

then

Cov(Zr ,Zs) = Tr
ZrZs+ZsZr

2
ρ − (TrZrρ)(TrZsρ)

is the rs-th entry of S. With this convention the inequality (10) encapsulates the
uncertainty principle for all momentum - position pairs(P,Q) where

Q =
n

∑
r=1

(xr pr − yrqr)

P =
n

∑
r=1

(
x′r pr − y′rqr

)

and
n
∑

r=1
(xry′r − x′ryr) = 1, xr , yr , x′r ,y

′
r being real scalars.

We now enumerate some of the basic properties of Gaussian states, parametrized
as in (12). They are essentially corollaries of Theorem 2 andthe basic properties of
quantum Fourier transform mentioned earlier.

(i) Tensor products and marginals of Gaussian states are Gaussian.
(ii) (Tranformation property) For anyu = s+ it,s, t ∈ Rn,

W(u)ρg(ℓ,m,S)W(u)−1 = ρg(ℓ+
√

2t,m+
√

2s,S),

and for anyL ∈ Sp(2n),

Γ (L)ρg(ℓ,m,S)Γ (L)−1 = ρg(ℓ
′,m′,S′)



Symplectic Dilations, Gaussian States and Gaussian Channels 13

where



ℓ′1
−m′

1
...
ℓ′n

−m′
n



= (L−1)T




ℓ1

−m1
...
ℓn

−mn



,

S′ = (L−1)TSL−1

(iii) If Γ is any unitary operator inL2(Rn) satisfying the property thatΓ ρΓ −1 is a
Gaussian state wheneverρ is a Gaussian state inL2(Rn) thenΓ is given by

Γ = λW(u)Γ (L) (13)

for some complex scalarλ of mudulus unity,u ∈Cn andL ∈ Sp(2n).
In view of properties (ii) and (iii) any unitary operatorΓ of the form (13) is called
aGaussian symmetry operator. All Gaussian symmetry operators inL2(Rn) con-
stitute a groupGn.
SupposeU is a unitary operator inL2(Rn) such that for every pure Gaussian state
|ψ〉 the pure stateU |ψ〉 is also Gaussian. IsU a Gaussian symmetry operator?
We do not know the answer.

(iv) The covariance matrixS in ρg(ℓ,m,S) admits a representation

S= LT(κ1I2⊕κ2I2⊕·· ·⊕κnI2)L

for someL∈Sp(2n), κ1 ≥ κ2 ≥ ·· · ≥ κn ≥ 1
2. In such a representationL need not

be unique butκ1,κ2, . . . ,κn are unique. Theκ j ’s are theWilliamson parameters
of S.

(v) The covariance matrixSof a Gaussian state inL2(Rn) admits a representation

S=
1
4

(
LTL+MTM

)

for someL,M in Sp(2n). Such a representation need not be unique. In the con-
vex setKn of all Gaussian covariance matrices of order 2n, an elementS is an
extreme point if and only ifS= 1

2LTL for someL in Sp(2n). A Gaussian state
ρ in L2(Rn) is pure if and only if its covariance matrix is of the form12LTL for
someL in Sp(2n) and in such a case its wave function|ψ〉 has the form

|ψ〉=W(u)Γ (L) |e(0)〉.

Every coherent state is Gaussian with covariance matrix1
2I2n.

(vi) (Gaussian purification property) Letρg(ℓ,m,S) be a Gaussian state inL2(Rn)
with

S=
1
4

(
LT

1 L1+LT
2 L2
)
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as in property (v). Put

|ψ j〉= Γ (L j )
−1|e(0)〉, j = 1,2,

and define the second quantization unitary operatorΓ0 in L2(Rn)⊗L2(Rn) by the
relations

Γ0e(v⊕ v′) = e

(
v+ v′√

2
⊕ v− v′√

2

)
∀ v,v′ ∈ C

n.

Putting

Γ =

(
W

(
m+ iℓ√

2

)
⊗ I

)
Γ0

one gets a purification ofρg(ℓ,m,S) as

ρg(ℓ,m,S) = Tr2Γ (|ψ1〉〈ψ1|⊗ |ψ2〉〈ψ2|)Γ −1

where the pure state within Tr2 is also Gaussian.
(vii) (von Neumann entropy ofρg(ℓ,m,S))

First write

ρg(ℓ,m,S) =W

(
m+ iℓ√

2

)
ρg(0,0,S)W

(
m+ iℓ√

2

)−1

using transformaton property (ii). Using property (iv) andthe Williamson param-
etersκ1 ≥ κ2 ≥ ·· · ≥ κn ≥ 1

2 we express

ρg(ℓ,m,S)=W

(
m+ iℓ√

2

)
Γ (L)−1

r⊗

j=1

ρg(0,0,κ j I2)
⊗

ρg(0,0,
1
2

I2)
⊗n−r Γ (L)W

(
m+ iℓ√

2

)

where we assume

κ j >
1
2

if 1 ≤ j ≤ r,

=
1
2

if r +1≤ j ≤ n.

In L2(R) denote the momentum and position operators byp andq respectively and
note that

ρg(0,0,κ I2) =

{
|e(0)〉〈e(0| if κ = 1

2,

(1−e−se−
1
2s(p2+q2−1)) if κ > 1

2

(14)

where s is given by κ = 1
2 coth1

2s with s > 0. Writing κ j =
1
2 coth1

2sj , sj >
0, 1 ≤ j ≤ r we see thatρg(ℓ,m,S) is unitarily equivalent to the tensor product
state

r⊗

j=1

(
1−e−sj

)
e−

1
2sj (p2

j+q2
j−1)⊗ (|e(0)〉〈e(0)|)⊗n−r .
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In particular, every Gaussian state is conjugate by a Gaussian symmetry operator to
a product ofr thermal states and(n− r) vaccuum states inL2(R) where 0≤ r ≤ n.

The von Neumannentropyof a stateρ denoted byS(ρ) is defined as the quantity
−Tr ρ log ρ . If ρ has eigenvaluesλ1,λ2, . . . inclusive of multiplicity thenS(ρ) =
−∑

j
λ j log λ j . ThusS(UρU−1) =S(ρ) for any unitary operatorU andS(ρ1⊗ρ2) =

S(ρ1)+S(ρ2) for any product stateρ1⊗ρ2. Thus

S(ρg(ℓ,m,S)) =
r

∑
j=1

S(ρg(0,0,κ j I2)).

Since the number operator1
2(p

2+q2−1) has eigenvalues 0,1,2, . . . with multiplic-
ity 1 each, it follows from (14) that

S(ρg(0,0,κ I2)) =

{
0 if κ = 1

2,
2

2κ+1H
(2κ−1

2κ+1

)
if κ > 1

2

whereH is the Shannon entropy function given byH(t) =−t log t−(1− t) log(1−
t), 0≤ t ≤ 1 with H(0) = H(1) = 0. Thus

S(ρg(ℓ,m,S)) =
n

∑
j=1

2
2κ j +1

H

(
2κ j −1
2κ j +1

)

whereκ1 ≥ κ2 ≥ ·· · ≥ κn ≥ 1
2 are the Williamson parameters ofS.

3 Gaussian Channels

A quantum channelis a completely positive, trace preserving and linear map onthe
algebraB(H ) of all bounded operators on a complex Hilbert spaceH . If T is such
a channel andρin = ρ is an input state the channel gives an output stateρout= T(ρ).
Such a channel is treated as a communication resource. IfH = L2(Rn) we say that
a channelT is Gaussianif, for every Gaussian stateρ , the output stateT(ρ) is also
Gaussian. The set of all channels inL2(Rn) is a semigroup under composition and
also a convex set under mixture. The set of all Gaussian channels is a subsemigroup
of the semigroup of all channels inL2(Rn). We shall present some examples of
Gaussian channels and conclude with some open problems.

Example 1 (Reversible Gaussian Channels).If U is a Gaussian symmetry operator
as defined at the end of property (iii) of Gaussian states in Section 2, thenT(ρ) =
UρU−1 defines a Gaussian channel.T−1(ρ) = U−1ρU is the reverse of such a
Gaussian channel withT−1 ◦T = identity. These are the only reversible Gaussian
channels.

Example 2 (Bosonic Gaussian channels [2], [5]).Let ξ j ,η j , 1 ≤ j ≤ n be real-
valued mean zero random variables with a joint normal distribution and letζ j =
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ξ j + iη j . Write ζ T = (ζ1,ζ2, . . . ,ζn) and put

T(ρ) = EW(ζ ) ρ W(ζ )−1 (15)

whereE denotes expectation with respect to the probability distribution of ζ and
W(ζ ) is the Weyl operator atζ . If ρ = ρg(ℓ,m,S) in L2(Rn) as defined in (12), then
(8) implies that the quantum Fourier transform ofT(ρ) is given by

T(ρ)∧(u) = TrEW(ζ )ρg(ℓ,m,S)W(ζ )−1W(u)

= ρg(ℓ,m,S)∧(u)Ee2iI m〈ζ |u〉.

If u = s+ it wheres and t are inRn and the covariance matrix of the Gaussian
random vector

√
2(−ηT ,ξ T) is C then it follows that

T(ρg(ℓ,m,S)) = ρg(ℓ,m,S+C).

ThusT is a Gaussian channel which changes the covariance matrixS of the input
Gaussian state to the covariance matrixS+C of the output Gaussian state but leaves
the mean momentum-position vector unchanged.

If P is the probability distribution of the Gaussian random vector ζ in (15)
and{Hk ,k = (k1,k2, . . . ,k2n)} is the Hermite basis of orthonormal polynomials in
L2(P), define the operators

Lk = E Hk(ξ ,η)W(ζ ).

Then the channelT in (15) can also be written as

T(ρ) = ∑
k

Lk ρ L†
k

in the Kraus or operator sum form.

Example 3 (Symplectic Gaussian channels).Choose and fix a mean0 Gaussian state
ρ0 inL2(Rm) and fix a symplectic matrixL∈Sp(2(n+m)).For any stateρ in L2(Rn)
define

T(ρ) = Tr2 Γ (L)(ρ ⊗ρ0)Γ (L)† (16)

whereΓ (L) is the Gaussian symmetry operator associated withL and Tr2 is the
relative trace over the componentL2(Rm) in L2(Rn)⊗L2(Rm) = L2(Rn+m). Since
conjugation by a unitary operator and relative trace are completely positive and trace
preseving, it follows thatT as defined in (16) is a channel. Ifρ is Gaussian it follows
from Example 1 and property (i) of Gaussian states in Section2 thatT is Gaussian.
We callT in (16) asymplectic Gaussian channel.

We shall now examine how asymplectic Gaussian channelchanges the mean and
covariance parameters of a Gaussian state. By the Gaussian purificaton property (vi)
of a Gaussian state in Section 2,L2(Rm) can be replaced byL2(Rm)⊗L2(Rm) and
ρ0 in (16) by a pure Gaussian state which is determined by a unit vector of the form
Γ (M) |e(0)〉 in L2(R2m) with M ∈ Sp(2m). Putk = 2m and note thatT in (16) can
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as well be replaced by

T(ρ) = Tr2 Γ (L) ρ ⊗|e(0)〉〈e(0)| Γ (L)† (17)

with a differentL in Sp(2(n+ k)). Note that

|e(0)〉〈e(0)| = ρg(0,0,
1
2

I2k),

ρg(ℓ,m,S)⊗ρg(0,0,
1
2

I2k) = ρg(ℓ⊕0,m⊕0,S⊕ 1
2

I2k).

By the transformation property of Gaussian states we have from (7)

T(ρg(ℓ,m,S)) = ρg(ℓ
′⊕a,m′⊕b,S′)

where

S′ = (L−1)T
[

S 0
0 1

2I2k

]
L−1

andℓ′,m′, a, b are obtained as follows. Defineµ ,µ ′ by µT =(ℓ1,−m1, . . . , ℓn,−mn,0,0, . . . ,0),
(µ ′)T = (ℓ′1,−m′

1, . . . , ℓ
′
n,−m′

n,a1,−b1, . . . ,ak,−bk). Then

µ ′ = (L−1)T µ in R
2(n+k).

Writing

L−1 = M =

[
M11 M12

M21 M22

]
, S′ =

[
S′11 S′12
S′21 S′22

]

in block notation where 11 and 22 blocks are of order 2n×2n and 2k×2k respec-
tively we see that, forT as in (17),

T(ρg(ℓ,m,S)) = ρg((ℓ
′,m′,S′11)

where

S′11 = MT
11SM11+

1
2

MT
21M21,




ℓ′1
−m′

1
...
ℓ′n

−m′
n



= MT

11




ℓ1

−m1
...
ℓn

−mn



.

We summarize our algebra in the form of a theorem.

Theorem 3.The most general symplectic Gaussian channel T has the property that
for all Gaussian statesρg(ℓ,m,S) in L2(Rn),

T(ρg(ℓ,m,S)) = ρg((ℓ
′,m′,S′)
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where

S′ = MT
11 S M11+

1
2

MT
21 M21 (18)

for some M∈ Sp(2(n+ k)) for some k with

M =

[
M11 M12

M21 M22

]
(19)

where the blocks with labels11 and22 are matrices of order2n×2n and2k×2k
respectively and the vectorsµ ,µ ′ defined by

µT = (ℓ1,−m1, . . . , ℓn,−mn), (20)

µ ′T = (ℓ′1,−m′
1, . . . , ℓ

′
n,−m′

n), (21)

where
µ ′ = MT

11 µ . (22)

We shall denote byTM any symplectic Gaussian channel inL2(Rn) satisfying The-
orem 3 for somek, someM ∈ Sp(2(n+k)) and equations (18)-(22) for all Gaussian
statesρg(ℓ,m,S).

Theorem 4.Let TL, TM be symplectic Gaussian channels in L2(Rn) where L∈
Sp(2(n+ ℓ)), M ∈ Sp(2(n+m)). Then there exists a symplectic Gaussian chan-
nel TN in L2(Rn) for some N∈ Sp(2(n+ ℓ+m)) such that for every Gaussian state
ρ in L2(Rn)

TN(ρ) = TL(TM(ρ)).

Proof. Express the matricesL andM in block notation

L =

[
L00 L01

L10 L11

]
, M =

[
M00 M02

M20 M22

]

whereL00 andM00 are of order 2n×2n, L11 is of order 2ℓ×2ℓ andM22 is of order
2m×2m. Define

L̃ =




L00 L01 0
L10 L11 0
0 0 I2m


 , M̃ =




M00 0 M02

0 I2ℓ 0
M20 0 M22


 ,

N = M̃L̃ =




M00L00 M00L01 M02

L10 L11 0
M20L00 M20L01 M22


 .

Then M̃, L̃ and N are all elements ofSp(2(n+ ℓ+m)). Consider the symplectic
Gaussian channelTN as described in Theorem 3. Then

TN(ρg(ℓ,m,S)) = ρg(ℓ
′,m′,S′) (23)

where
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S′ = (M00L00)
TS M00L00+

1
2
(LT

10L10+(M20L00)
TM20L00)

= LT
00

{
MT

00SM00+
1
2

MT
20M20

}
L00+

1
2

LT
10L10

which is also the covariance matrix of the Gaussian stateTL(TM(ρg(ℓ,m,S))). Since
N is a symplectic dilation ofM00L00, equations (20)-(22) in Theorem 3 imply that
the momentum and position meansℓ′,m′ in (23) agree with the momentum and
position means ofTL(TM(ρg(ℓ,m,S))). ⊓⊔

Corollary 1. Let A,B be real2n× 2n matrices admitting symplectic dilations of
order2(n+ ℓ), 2(n+m) respectively. Then AB admits a symplectic dilation of order
2(n+ ℓ+m).

Proof. This is seen immediately from the proof of Theorem 4 if we write A= M00,
B= L00. ⊓⊔

Remark 3.From equation (17) we can easily write down a Kraus or operator sum
representation of the symplectic Gaussian channel. Indeed, in (17) putU = Γ (L)
whereL ∈ Sp(2(n+ k)). Consider the particle number basis{|r1, r2, . . . , rk〉, r j ∈
{0,1,2, . . . ,}∀ j} in L2(Rk) when identified with the boson Fock space overC

k.
Define the operatorsUr ,s in L2(Rn) by the identity

〈ψ ⊗ r |U |ψ ′⊗ s〉= 〈ψ |Ur ,s|ψ ′〉 ∀ ψ ,ψ ′ ∈ L2(Rn).

Then

T(ρ) = Tr2 Γ (L) (ρ ⊗|0〉〈0|)Γ (L)†

= Tr2 U(ρ ⊗|0〉〈0|)U†)

= ∑
r

Ur ,0 ρ U†
r ,0

Example 4 (Quasifree channels[3], [8]).This example is from the construction
given by Heinosaari, Holevo and Wolf [3]. To describe this werewrite the Weyl op-
eratorsW(u) asW(ξ )whereξ T =(ξ1,ξ2, . . . ,ξ2n)= (Reu1, Imu1, . . . ,Reun, Im un)
for u∈Cn. Then there exists a unital completely positive mapT0 onB(L2(Rn)) sat-
isfying

T0(W(ξ )) = e−
1
2ξ TBξ W(Aξ ), ξ ∈R

2n (24)

wheneverA andB are 2n×2n real matrices,B is symmetric and the matrix inequality

B+ i(ATJ2nA− J2n)≥ 0 (25)

holds withJ2n given by (1). The left hand side of (25) is a complex hermitianmatrix
and (25) implies thatB≥ 0.

Now choose and fixA,B as above and considerT0 satisfying (24). For any state
ρ in L2(Rn) define the stateT(ρ) by
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Tr T(ρ)W(ξ ) = Tr ρ T0(W(ξ ))

= Tr ρ W(Aξ )e−
1
2ξ TBξ ∀ ξ . (26)

Then for any Gaussian stateρg(ℓ,m,S) we have from (11)

Tr T(ρg(ℓ,m,S)) = ρg(ℓ
′,m′,S′)

where

S′ = ATSA+
1
2

B

andℓ′,m′ are given by

AT




ℓ1

−m1
...
ℓn

−mn



=




ℓ′1
−m′

1
...
ℓ′n

−m′
n




ThusT is a Gaussian channel which changes the means and the covariance matrix
exactly in the same manner as for the symplectic Gaussian channelTM of Theorem
3 by writing M11 = A andM†

21M21 = B, associated with the symplectic matrixM.
We call the channel defined through (24) and (25), aquasifree Gaussian channel.

The inequality (26) raises some questions concerning symplectic dilations. To
any 2n×2n real matrixA, associate the convex sets

Kn = {S|S≥ 0, 2S− iJ2n ≥ 0} ,

Fn(A) =

{
B|B≥ 0,ATSA+

1
2

B≥ 0 ∀ S∈ Kn

}
,

F
0
n (A) =

{
B|B≥ 0, i(ATJ2nA− J2n)+B≥ 0

}
.

By Theorem 2,Kn is the set of all 2n×2n covariance matrices of Gaussian states,
B∈Fn(A) if and only if the affine tranformatonS→ATSA+ 1

2B leavesKn invariant
andF 0

n (A) is the set of all 2n×2n positive definite matrices such that(A,B) defines
a quasifree Gaussian channel. since

2

(
AT S A+

1
2

B

)
− i J2n

= AT (2S− i J2n) A+ i
(
AT J2nA− J2n

)
+ B

it follows thatF 0
n (A) ⊂ Fn(A). Is it true for everyB in Fn(A) there is a Gaussian

channel with the property that it transforms a Gaussian state ρg(ℓ,m,S) to a Gaus-
sian state with covariance matrixATSA+ 1

2B? To anyB∈ F 0
n (A) does there exist a

symplectic dilatioñA=

[
A P
Q R

]
such thatB= QTQ? If this holds we can realize the

quasifree channel associated with(A,B) by a symplectic channel associated with
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Ã. If

[
A P
Q R

]
is a symplectic matrix doesQTQ ∈ F 0

n (A)? Finally, are there Gaus-

sian channels not belonging to the semigroup generated by all reversible, bosonic,
symplectic and quasifree Gaussian channels? It would be interesting to find answers
to all the questions raised above. One would also like to havea description of the
extreme points ofFn(A) andF 0

n (A).
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