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Abstract By elementary matrix algebra we show that every reak2n matrix
admits a dilation to an element of the real symplectic grép{2(n+ m)) for some
nonnegative integen. Our methods do not yield the minimum valuemffor which
such a dilation is possible.

After listing some of the main properties of Gaussian statég(R"), we analyse
the implications of symplectic dilations in the study of guiam Gaussian channels
which lead to some interesting open problems, particylamlyhe context of the
work of Heinosaari, Holevo and Wolf [3].

Key words: Symplectic matrix and dilation; Weyl operator; Gaussiatestsym-
metry operator and channel.
1 Symplectic Dilation Theorem

Throughout this section we shall deal with matrices havesj entries. Denote by
M, the real linear space of allx n matrices. Write
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J2 = {(1)01} ;
J OO 0

A ®
00..0%

where the right hand side is a block diagonal matrix with diza blocksl, and the
nondiagonal entries arex22 zero matrices. Let

Sp(2n) = {L|L € Man, LTk = Jon } - (2)

be the realsymplectic Lie groupf order 2h, where the indeX stands for transpose.
It is known that every elemeiitin Sp(2n) has determinant unity and has the prop-
erty thatL™ € Sp(2n). Any element ofS(2n) will be called asymplectianatrix of
order 2.

The importance o5p2n) in quantum probability lies in the property that the
linear transformation

P1 p/1
(o] q’l
LI =1
Pn Ph
On On

of the canonical position and momentum observables3fR") preserves the
Heisenberg canonical commutation relations (CCR) if arlg ibrl. € Sp(2n).

The main aim of this section is to establish a dilation thevaecording to which
any real linear transformatiof of the canonical momentum and position observ-
ables{pr,qr,r =1,2,...,n} can be dilated to a symplectic linear transformation of
a larger syster{pr,or,r = 1,2,...,n+ m} of such canonical observables obeying
CCR. This is the essence of the following theorem in linegebta whose proof
will be accomplished by examining several special cases.

Theorem 1.Let A€ My,. Then there exists a nonnegative integemnot depending
on A and matrices EC, D of respective ordePn x 2m, 2m x 2n, 2m x 2m such that

the block matrix
~ AB
Ao [C D] 3)

is a symplectic matrix of orde2(n+ m).

Lemma 1. The following matrices of ordet x 4 are symplectic.

() {g g] where BC € SL(2,R).
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[a 0 0x
.~ |00yO0
(i) Oxa0
|y000
[ 0 xO0
.10 a Oy
(iii) y0ao
| 0 x0a
[ 0 x O
-a
0
X

wherea # 0, 1+xy=0.
where xy=1—a?.

(iv) where xy=1+a?.

0y
a 0
0-a

o O

Proof. Straightforward verificaion. O
Lemma 2. Theorem 1 holds for & 1 with m= 1.

Proof. We make a general observation that if and2n matrix A satisfies Theorem
1, then so does any matrix AL, wherel; andL; are arbitrary elements &p(2n).
SinceSp(2) = SL2,R) and for any 2x 2 matrix A there existL1,L, in SL(2,R)
such that 1AL, has one of the following forms:

a 0

0 a}

00] |50/ [6a

wherea # 0 is a real scalar. By Lemma 1 each of the four matrices abdisfisa
Theorem 1 withm= 1. O

)

Definition 1. Let A € Myy. If there exists a matri@ € Sp2(n+ m)) such that (3)
holds we say thah is asymplectic dilatiorof A of order2(n+m).

Lemma 3.If Aj € My, admits a symplectic dilation of ord&(n;+m),i=1,2,...,k
then their direct sum

. A 0O 0...0
0A0...0

a-| "
0 0 0...A

k
admits a symplectic dilation of ord@ 'y (nj +m;).
i1

Proof. It is enough to prove for the cake= 2. Let

ey

be a symplectic dilation o& of order Zn; +m),i = 1,2. Then
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A1B1 0 O
C,D;1 0O
0 0AB;
0 0C, D2

i&l@'E\z:

is symplectic. First, interchange rows 2 and 3 followed binéerchange of columns
2 and 3 in order to obtain the symplectic matrix

At 0B; O
0A 0B
C 0Dy O
0C, 0 Dy

of order Zn; + my 4+ np + My). This is clearly a symplectic dilation ¢ @ A,. O

Lemma 4.Let A, 1 <i <k be elements of §j, admitting symplectic dilationgi
k k
of order2(n+m) foreachilf pi >0,1<i<kandy pi=1,theny pA admits
i=1 i=1
a symplectic dilation of orde2k(n-+ m).

Proof. Consider the symplectic matrix= @* A; of order X(n+m). Let ((s;)) be
i=1
a real orthogonal matrix with its first row equal tg/p1, /P2, - - -, /P«) - Then

S=((sj |2(n+m))>

wherel; denotes identity matrix of ordeyis a symplectic matrix of order(®8-+ m)k.
ThusSLS is also symplectic. Considering this as a block matrix offtiren (3) we

k
see thaBLS is a symplectic dilation ofy piA. a
i=1

Lemma 5. Let A be a real strictly positive definite matrix of ordar. Then A admits
a symplectic dilation of ordefn.

Proof. By Williamson’s theorem [1], [9] there exists a symplectiatnix L of order
2n such that
LTAL= K112 @ Kol @ - © Kl

wherel; is the identity matrix of order 2 ank > K, > --- > K, > 0 are the unique
Williamson parameters ok By expression (iii) in Lemma 1, eact)l> has a sym-
plectic dilation of order 4Now Lemma 3 implies that™ AL has a symplectic dila-
tion of order 4. a

Lemma 6. Let A be a symmetric matrix of ord@n. Then A admits a symplectic
dilation of order8n.

Proof. Choose and fix a constait> 0 so thatA| + A andAl — A are both strictly
positive definite. By Lemma 5 bothl + A andA | — A admit symplectic dilations
of order /. WhenL is symplectic so is-L and thereforéd — Al has a symplectic
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dilation of order 4. Now, by Lemma 4A = %(A+/\ I +A—Al) admits a symplectic
dilation of order &. O

Lemma 7.Let D,E,F,G be2 x 2 matrices such thaE DE is symplectic of order

2cl
4. Then the8 x 8 matrix

0 DE O
-DT 0 0 —FT
0 FG O
—-ET00-G"

is symplectic. In particular, ang x 4 skew symetric matrix of the for%gT I(D)}

admits a symplectic dilation of ord&
Proof. Straightforward algebra. O

Proof of Theorem 1.By Lemma 1 it is enough to consider the case 1. Express
the 2n x 2n matrix A as am x n block matrix

where eaclfj is of order 2< 2. ThenA can be written as
A=A1+Ax+Ag

whereA; = %(A+AT) is symmetricA; is the block diagonal matrix

%{(An—AL)@(Azz—Alz)@---@(Ann—AIn>}

and
Az = Bij
1§iZJ§n
with By being a block matrix withjth block (A; — A} ) andjith block (A — AT
and all other blocks equal to Write Ay = A] — A] whereA*, are positive and neg-
ative parts ofA;. PutB; = Air +¢l, By = A + €l wheree > 0, so thatB; andB, are
strictly positive definite. The#; = B; — B, where, by Lemma 58; andB; admit

symplectic dilations of orderrt By Lemma 2 and Lemma 3, has a symplectic
dilation of order 4. Now each of the matrice8;j; can be looked upon as a direct

sum of
IRTORE)
%(Aji *Aﬁ) 0

and the zero matrix of ordé@n— 4) x (2n—4). By Lemma 7 and Lemma 3 and
the fact that
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0 I2n-4
€eSp4n—8
|:|2n4 0 ] K )
it follows that eactB;; has a symplectic dilation of order84n— 8 = 4n. The same
arguments apply to scalar multiples®f, B,, A, and theBj;’s. Putk = (5) + 3 and

write

A%(kBpL(k)BvakszL > an>, )
1<i<j<n

a convex combination of the summands within the brackets ). Each summand
on the right hand side of (4) has a symplectic dilation of odtte By Lemma 4 it
now follows thatA admits a symplectic dilation of orden4(5) + 3). O

Remark 1Theorem 1 and its proof show that every real ma#iaf order 21 x 2n
admits a symplectic dilation of ordené(}) + 3). The problem of finding the size
of the minimal symplectic dilation of a matrix of orderx n remains open.

2 The Symplectic Group, Weyl operators and Gaussian States

We shall present in this section a brief account of the rolthefgroupSp(2n) in
describing Gaussian statesljﬁ(R) and some of their properties which are impor-
tant in the formulation of the notion of Gaussian channelgiantum information
theory. For proofs of results stated here we refer to Holéyapd Parthasarathy
(6], [7].

Consider the complex Hilbert spad® and L?(R"), the space of complex-
valued, absolutely square integrable functions with respe the n-dimensional
Lebesgue measure. We shall write all scalar products in thachotation. For
anyu = (ug,Uy,...,un)T in C", associate thexponential vector (@) in L>(R") by

e(u)(x) = (2m)~"4 expi1 (Uij — %ujz ~ %x,z) (5)

for x € R". Exponential vectors span a dense linear manifld L?(R") and any
finite number of exponential vectors are linearly independeurthermore,

(e(u)|e(v)) = explulv)
n
=exp$ hjv;.
;1 iVi
In particular,

() = e 21 equ))

is a unit vector and the pure state determined by this vestoalied thecoherent
stateassociated with.
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For anyu € C", there exists (an exponential like) unitary operaféfu) in
L?(R"), calledWeyl operatomssociated withi, satisfying the relations

W(u)le(v)) = e 2IUIP=U) ey +v)) (6)

for all v € C". For a givenu such aWV(u) is uniquely defined. They obey the Weyl
commutation relations

W(UW(v) = e ™UVW(u +v). (7)

It is a multiplicative family of operators modulo a scalar livplier. From (7) one
gets .
W)W (V)W (u) ™t = e 2/muviyy (v). (8)

The correspondenee— W(u) is a strongly continuous, projective, unitary and ir-
reducible representation of the additive gra@ify If we identify L>(R™™) with
L2(R") @ L2(R™M) and C™™ with C" & C™, thenW(u @ V) gets identified with
W(u) @ W(v) and we simply writdV(u & v) = W(u) @ W(v). This is called the
factorizability property of the Weyl representation— W(u).

Supposa — W’ (u) is a strongly continuous map fro@f into the unitary group
of a complex separable Hilbert spagé satisfying equation (7) witklV replaced by
W’. Then, according to Stone-von Neumann theorem there is arytisomorphism
I from . ontoL?(R") @ k for some Hilbert spack such that

rwurt=wuely v ueC",

I being the identity opertor ik. If W’ is also irreducible thew andwW’ are unitarily
equivalent.
For anyL € Sp(2n) define the action of onu by L-u=u" where

Reuy Rey
smu Jmy

L = : vV ueC.
Rew Re,

My Jmy,
Then such an action preserves the real bilinear fgfm(u|v) and therefore
W(L-u)W(L-v) = e /MUMW(L. (u+v)).
Hence by the discussion above there exists a unitary opesaid™ (L), such that
rLOWurLt=w(Lr.u) Yuec" (9)

Since the projective representation~ W(L - u) is also irreducible it follows that
the choice of the unitary operatbi(L) is unique upto a scalar multiple of modulus
unity. Thus the map — " (L) is a projective unitary representation®f(2n). If U
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is a unitary matrix of orden x n, U preserves the scalar product@ and hence
preserves? m(u|v). In other words there exists a mattiX € Sp2n)NSQ(2n) such
thatLY - u = Uu. There exists a unique unitary operafgfU ) in L?(R") such that

lU)e(u)=eUu) VvV uecC"

Then(U)o(U’) = M(UU’) for anyU,U’ € U(n) andl (LY) can be chosen to
bely(U). The representatiod — y(U) of U(n) is called thesecond quantization
map. Thus we get a projective unitary representdtien I (L) of Sp2n) such that
(9) holds,I" (L1)I" (L) = I" (L1L2) whenevel; andL; are symplectic and orthogo-
nal but, in general,

F(Ll)r(Lz) = O'(Ll,Lz)r(Lle)

whereo(L1,L>) is a scalar of modulus unity.

Definition 2. A statep in L2(R") is a positive operator of unit trace anddgsantum
Fourier transformp(u) is the complex-valued function " defined by

p(uy=TrpW(u) V ueC"

The quantum Fourier transform of a state satisfies the fatigwroperties:

(i) p(0) =1 andthe map — p(u) is continuous orC".
(i) The kernel

i .7 m(u|v)

Ko(u,v) = p(v—u),u,veC"

is positive definite, i.e., for any finite sét;, 1 < r <m} C C" and scalars;,1 <
r<m
2TrCs Ko (Ur,us) > 0.

(iii) (Inversion formula) For any state in L(R")
o= [ PU)W(-udu
= = [ Bl weu,

whered?u is the h-dimensional Lebesgue measure wi@his considered as
the real linear space?".

(iv) (Quantum Bochner's Theorem) l¢tbe any complex-valued continuous func-
tion on C" such thatg (0) = 1 and the kernek(u,v) = ¢(v —u)expi(ulv) is
positive definite. Then there exists a unique state L?(R") such thap = ¢

(v) For any statg in L2(R") and anyL. € Sp(2n)

[’_(L)P’_(L)flr(u)zﬁ(L’lu) vV uecCn

(vi) For any state in L2(R™™M) = L?(R") @ L?(R™) define themarginalstatesp;
andp, in L2(R") andL?(R™) respectively by



Symplectic Dilations, Gaussian States and Gaussian Clganne 11

p1=Trzp, p2=Tr1p

where Ty and Tp are the relative traces pfover the factor&?(R") andL?(R™)
respectively. Then

Pi(u) = B(ue0),
P2(v) = PO V)

©

whereu € C", v e C™

Definition 3. A statep in L2(R") is said to beGaussianif its quantum Fourier
transform has the form

/p\(u) :eXp P(leyla"'vxnvyn) V uc Cn

wherex; = Reuj, y; = Im u; andP is a polynomial in 2 variables of degree at most
2.

Theorem 2. A statep in L?(R") is Gaussian if and only there exist vectdtsn in
R" and a real positive definite matrix S of ordam satisfying the inequality

2S—iJon >0, (10)

such that the quantum Fourier transfoiu) is given by
p(u) =exp—iv2(e" x—mTy) — (xT,y") SC) YueC™ (12)

where x = Rey, yj =Imuj, 1 < j <nand 3, is given by (1).
Proof. See [6].

Remark 2We shall give now an interpretation of the parametfens andSoccuring

in (11) and also the matrix inequality (10) in the languagéhef momentum and
position observables obeying CCR. To this end we first olesrat (7) implies that
for any fixedu, {W(tu),t € R} is a strongly continuous one parameter group of
unitary operators admitting a self adjoint Stone genenafoj so that

W(tu) = e W y e C"t e R.

Writing ej = (0,...,0,1,0,...,0)T for 1 < j < n, where 1 occurs in thgth position
and putting
_1 1
Pj =22 p(ej), qj = —2"2p(iej)
we obtain selfadjoint operators obeying CCR on the linearifoldl & generated by
the exponential vectors. Th&W(u) can be expressed as

W(u) = exp—iv2 3 (Xjpj —Y;dj)
; I M)
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yvith Xj = Reuj, yj = muy; for ev_eryj andyi_; (Xjp;j —yj_qj) being the selfad- .
joint closure fromé&. From the definition of quantum Fourier transform and (11) it

follows that each observabfgu) has a normal distribution in the Gaussian sgate
with characteristic function

n
expfit\/éz (€jxj —myyj) —t2ETSE, teR
=1

whereé T = (x1,¥1,%2,¥2, ..., %, Yn). Thus
£y =Trppj, mj=Trpgq;
and the covariance matrix ¢p1, — 0, ..., Pn, —dn) IS S. When (11) holds we write
p=pg(t.m,S) (12)

in order to indicate thap is a Gaussian state witheanmomentum and position
vectorse, m respectively andovariance matrix SIf we write

(21722; v 7ZZI'I) = (pla _q17 ey pm _Qn)

then 2 Zs+ZsZ
%p— (TrZ:p)(TrZsp)

is thers-th entry of S. With this convention the inequality (10) encapsulates the
uncertainty principle for all momentum - position pa{3Q) where

COV(Zr 5 Zs) = Tr

n

Q= r; (X Pr —Yr @)

n

P= Z (X; Pr —)/rQr)

r=1
n
and ¥ (XY, —Xyr) =1, X, yr, X,y; being real scalars.
r=1

We now enumerate some of the basic properties of Gaussias,gparametrized
asin (12). They are essentially corollaries of Theorem 2thadasic properties of
quantum Fourier transform mentioned earlier.

(i) Tensor products and marginals of Gaussian states arszau
(i) (Tranformation property) For any = s+ it,s,t € R",

W(u)pg(£,m, W (u) " = pg(£+ V2t,m+ /25 9),
and for anyL € Sp(2n),

F(L)pg(zv m, S)r (L)il = pg(zla mlvs)
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where
?) 01
—rr(l —m
. = (Lil)T . )
I8 ln
—m, —Mmy
S=(L1YHTsLt

(iii) If I is any unitary operator ih?(R") satisfying the property thdtpl" ~1is a
Gaussian state wheneyeis a Gaussian state Iif(R") thenl is given by

I =AW(u)r (L) (13)

for some complex scalar of mudulus unityu € C" andL € Sp(2n).

In view of properties (ii) and (iii) any unitary operatbrof the form (13) is called
aGaussian symmetry operatdkll Gaussian symmetry operatorsliA(R") con-
stitute a grouw.

SupposeJ is a unitary operator ih?(R") such that for every pure Gaussian state

|@) the pure stat®) |) is also Gaussian. Id a Gaussian symmetry operator?
We do not know the answer.

(iv) The covariance matri$in pg(¢,m,S) admits a representation
S=L"(Kil2® Kal2®--- ® Knl2)L

forsomeL € Sp(2n), K1 > Ko > -+ > Kn > % In such a representatikmeed not

be unique buky, ko,..., Ky are unique. The;’s are theWilliamson parameters
of S

(v) The covariance matrigof a Gaussian state Ief(R") admits a representation
s=1 (LTL+MTM)
4

for someL,M in Sp2n). Such a representation need not be unique. In the con-
vex set.#;, of all Gaussian covariance matrices of ordar &n elemenSis an
extreme point if and only iS= 3LTL for someL in Sp2n). A Gaussian state

p in L2(RM) is pure if and only if its covariance matrix is of the fOl‘%‘lh.TL for
someL in Sp(2n) and in such a case its wave functiay) has the form

@) =W(u)r (L) [€(0))-

Every coherent state is Gaussian with covariance mét@i,x
(vi) (Gaussian purification property) Lgt(¢,m,S) be a Gaussian state i} (R")
with

1
S= 7 (LiL1+L3Lp)
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as in property (v). Put
@) =T (L) He(0), j=1.2,
and define the second quantization unitary opergtor L?(R") © L>(R") by the

relations
v+v v—V

V2

- (o))

one gets a purification gig(£,m,S) as

I'oe(v@v’)e< ) vV ov,vecC

Putting

Pg(€,m,S) =Tra T (|¢hn) (Y| @ [2) (Y2|) T ~*

where the pure state within Jis also Gaussian.
(vii) (von Neumann entropy gfg(£,m,S))
First write

p@Mm$:w(m%¥)%@&$W(m%¥)l

using transformaton property (ii). Using property (iv) @hd Williamson param-
etersky > Ko > -+ > Kp > % we express

m-+if e 1 on (m+i£)
Lm,S) =W | —— (L 0,0,k;l 0,0, Z1,)*" " F(LW [ ——
a9 =W (2 ) L) @001 @00, 31 T Lw (T
where we assume

Kj > if 1<j<r,

NI =N

if r+41<j<n.

In L?(R) denote the momentum and position operatorlayndgq respectively and

note that
e(0))(e(0] if k=3,

1

Pg(0,0,kl2) = { (1- e Se 3P +-0) jf x> 1 (14)
wheres is given byk = }cothis with s> 0. Writing kj = Scothls;, s >

0, 1< j<r we seethapg(£,m,S) is unitarily equivalent to the tensor product
state

(1—e) e 0T Y o ((0)) (e(0)) "

r
=1

J
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In particular, every Gaussian state is conjugate by a Gansyimmetry operator to
a product ofr thermal states angh — r) vaccuum states ib?(R) where 0<r < n.
The von Neumanentropyof a statep denoted by§(p) is defined as the quantity
—Trp log p. If p has eigenvalued;, A,,... inclusive of multiplicity thenS(p) =
— Y AjlogAj. ThusS(UpU ~1) = §(p) for any unitary operatdd andS(p; ® pp) =
]

S(p1) + S(p2) for any product statp; ® p,. Thus
r
S(pg(£,m,§)) = Z S(pg(0,0, Kjl2)).
=

Since the number operatgtp? + g7 — 1) has eigenvalues @,2, ... with multiplic-
ity 1 each, it follows from (14) that

0 if k=1
0,0,klz)) = _A .
OO = {2l o

whereH is the Shannon entropy function givenHyt) = —t logt — (1—t) log(1—
t),0<t <1withH(0)=H(1)=0. Thus

n 2 2kj—1

whereky > Ko > --- > Kp > % are the Williamson parameters 8f

3 Gaussian Channels

A quantum channe$ a completely positive, trace preserving and linear maghen
algebraz(s¢) of all bounded operators on a complex Hilbert spa€elf T is such

a channel angi, = p is an input state the channel gives an output ptate- T (p).
Such a channel is treated as a communication resourg€.# L2(R") we say that

a channeT is Gaussianif, for every Gaussian stafe, the output statd (p) is also
Gaussian. The set of all channelsif(R") is a semigroup under composition and
also a convex set under mixture. The set of all Gaussian @haisa subsemigroup
of the semigroup of all channels IF(R"). We shall present some examples of
Gaussian channels and conclude with some open problems.

Example 1 (Reversible Gaussian Channdfsl) is a Gaussian symmetry operator
as defined at the end of property (iii) of Gaussian states @i@e2, thenT (p) =
UpU~1 defines a Gaussian chann@&l1(p) = U~ 1pU is the reverse of such a
Gaussian channel with—1o T = identity. These are the only reversible Gaussian
channels.

Example 2 (Bosonic Gaussian channels [2], [SDet &j,nj, 1 < j < n be real-
valued mean zero random variables with a joint normal distion and let{; =
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& +inj. Write {" = ({1,22,...,a) and put
T(p) =EW({) pW(§)™* (15)

whereE denotes expectation with respect to the probability digtion of { and
W() is the Weyl operator &. If p = pg(¢,m,S) in L>(R") as defined in (12), then
(8) implies that the quantum Fourier transformidp) is given by

T(p)"(u) = TrTEW({)pg(£,m, SHW()~*W(u)
= pg(£,m, )" (u) Ee” MW,

If u=s+it wheres andt are inR" and the covariance matrix of the Gaussian
random vector/2(—nT,&T) is C then it follows that

T(pg(& m,S)) = pg(f, m,S+C).

ThusT is a Gaussian channel which changes the covariance natfixhe input
Gaussian state to the covariance ma®ixC of the output Gaussian state but leaves
the mean momentum-position vector unchanged.

If P is the probability distribution of the Gaussian random wed in (15)
and{Hy,k = (ky,ka, ... ,kon)} is the Hermite basis of orthonormal polynomials in
L?(P), define the operators

L = E He (&, mMW(Q).

Then the channdl in (15) can also be written as
UMZZMPQ

in the Kraus or operator sum form.

Example 3 (Symplectic Gaussian channél$)oose and fix a medhGaussian state
o inL2(R™) and fix a symplectic matrik € Sp(2(n+m)). For any statg in L?(R")
define

T(p)=Tr2 [ (L)(p@po)l (L)' (16)

wherel" (L) is the Gaussian symmetry operator associated wigmd Tp is the
relative trace over the compondr(R™) in L?(R") @ L2(R™) = L?(R™™M). Since
conjugation by a unitary operator and relative trace areptetaly positive and trace
preseving, it follows that as defined in (16) is a channeldfis Gaussian it follows
from Example 1 and property (i) of Gaussian states in Se@itratT is Gaussian.
We callT in (16) asymplectic Gaussian channel
We shall now examine howsymplectic Gaussian chanreianges the mean and

covariance parameters of a Gaussian state. By the Gaussifiogton property (vi)
of a Gaussian state in SectionlZ(R™) can be replaced by?(R™) @ L?(R™) and
Po in (16) by a pure Gaussian state which is determined by a entbv of the form
I (M) |&(0)) in L2(R?™) with M € Sp2m). Putk = 2mand note thaT in (16) can
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as well be replaced by
T(p)=Tr2I (L) pe[e(0))(e(0)| I (L)' 17

with a differentL in Sp(2(n+k)). Note that

(0)){€(0)] = (0,0, 3120

1 1
pg(’evmas) ®pg(0707 EIZK) = pg(’e@Oam@oa S@ EIZK)'

By the transformation property of Gaussian states we have (i7)
T(Pg(zv m, S)) = pg(zl S a, ml b ba S)
where

S=@uLHT {S 0 ] Lt

1
O§|2k

and¢’, m’, a, b are obtained as follows. Defing u’ by u™ = (€1, —my, ..., n, —y, 0,0, ...

(UNT = (0, =y, 00, —ml, ag, —Dby,...,a, —by). Then
W= LY g in RAM,
Writing
—one ) <[5

in block notation where 11 and 22 blocks are of ordex2n and X x 2k respec-
tively we see that, fol asin (17),

T(pg(ea m, S)) = pg((ela m,a S11)

where

1
S = M{;SMi; + EMLMZL

?) 2
—rr(l —ImM
Dol =ML
18 ln
—m, —my

We summarize our algebra in the form of a theorem.

Theorem 3. The most general symplectic Gaussian channel T has the pydpat
for all Gaussian statepg(¢,m,S) in L2(R"),

T(pg(& m,S)) = pg((ela m,a S,)
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where 1
S =M{; S M1+ > M31 M2y (18)
for some Me Sp(2(n+Kk)) for some k with
Mi11 M12
M= 19
[le Mzz} (19)

where the blocks with labelkl and 22 are matrices of ordePn x 2n and2k x 2k
respectively and the vectogs p’ defined by

Ut = (0g,—my,... 0y, —y), (20)
IJ/T = ( &a_n{17"'a€;‘]a_nﬂ1)7 (21)

where
W =M p. (22)

We shall denote bffy, any symplectic Gaussian channeLifi R") satisfying The-
orem 3 for somé&, someM € Sp2(n+Kk)) and equations (18)-(22) for all Gaussian
statesog(¢,m,S).

Theorem 4.Let T, T be symplectic Gaussian channels iA(R") where L&
Sp2(n+¢)), M € SE2(n+ m)). Then there exists a symplectic Gaussian chan-
nel Ty in L2(R") for some Ne Sp(2(n+ ¢+ m)) such that for every Gaussian state
p in L?(R")

Tn(P) = TL(Tm(p))-

Proof. Express the matricdsandM in block notation

L— |LooLor| 4 | Moo Moz
LioLi1|’ Mzo M22

wherelLgp andMgg are of order & x 2n, Ly4 is of order Z x 2¢ andM,, is of order
2mx 2m. Define

_ |LooLo1 O N Moo O Mo2
L=|Lyliz O, M=| 0 Iy 0O |,

0 O Iy Mz 0 M22
s MoolLoo MooLo1 Mo2
N =ML = Lio L11 0
MzoLoo M2oLo1 M2z

ThenM,L andN are all elements 08p2(n+ ¢+ m)). Consider the symplectic
Gaussian chann@ly as described in Theorem 3. Then

TN(pg(evmaS)) :pg(e/am/asl) (23)

where
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1
S = (MooLoo)"S MyoLoo + >

1 1
= Lo { MJoSMyo+ > MzToMzo} Loo+ > LioL10

(L{oL1o+ (M20Loo) " MaoLoo)

which is also the covariance matrix of the Gaussian Sigf@v (pg(£,m,S))). Since

N is a symplectic dilation oMggLgg, equations (20)-(22) in Theorem 3 imply that
the momentum and position meaéism’ in (23) agree with the momentum and
position means of (Tm(pg(£,m,S))). O

Corollary 1. Let AB be real2n x 2n matrices admitting symplectic dilations of
order2(n+¢), 2(n+ m) respectively. Then AB admits a symplectic dilation of order
2(n+£+m).

Proof. This is seen immediately from the proof of Theorem 4 if we &ubit= Mg,
B=Lg. 0O

Remark 3From equation (17) we can easily write down a Kraus or opesatm
representation of the symplectic Gaussian channel. Inde€d7) putU = I (L)
whereL € Sp2(n+k)). Consider the particle number bagig1,r2,...,r),rj €
{0,1,2,...,}¥j} in L2(R*) when identified with the boson Fock space 0@t
Define the operatots, s in L?(R") by the identity

(WerU|Y ©s) = (YU W) Vg e L3R
Then

T(p) =Tral (L) (p® [0)(O)r (L)'
= TrU(p®[0)(0)u")
= Z Ur,O p UrTO

Example 4 (Quasifree channels[3], [8]) his example is from the construction
given by Heinosaari, Holevo and Wolf [3]. To describe thisrewarite the Weyl op-
eratordV(u) aswW(&) where€ " = (&1,&,,...,&xn) = (Reup,Imuy,...,Reun, Im uy)
for u € C". Then there exists a unital completely positive rifapn %(L?(R")) sat-
isfying

To(W(E)) = e ¥ BEW(Ag), & eR™ (24)

wheneveA andB are 4 x 2nreal matricesB is symmetric and the matrix inequality
B+ i(ATJaA— Jan) > 0 (25)

holds withJ,, given by (1). The left hand side of (25) is a complex hermitigatrix
and (25) implies thaB > 0.

Now choose and fiXA, B as above and consid&g satisfying (24). For any state
p in L?(R") define the stat& (p) by
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TrT(p)W(E) = Trp To(W(E))
= TrpW(AE)e*%‘STB‘S VE. (26)

Then for any Gaussian statg(¢, m,S) we have from (11)

TrT(pg(£,m,S)) = pg(€',m’,S))

where 1
S =ATSA+ 5B
and#’,m’ are given by
0 A
—ImM —r’dl
AT | =] :
ln A
—my —m,

ThusT is a Gaussian channel which changes the means and the cweanmatrix
exactly in the same manner as for the symplectic Gaussiameliyy of Theorem
3 by writing M;1 = A and MLMZl = B, associated with the symplectic matik
We call the channel defined through (24) and (25)uasifree Gaussian channel

The inequality (26) raises some questions concerning setipldilations. To
any 2 x 2nreal matrixA, associate the convex sets

Jn ={SS>0, 2S5—iJn>0},
Fn(A) = {B|Bzo,ATSA+%Bzo VSe an}
FR(A) = {B[B>0,i(ATJnA— Jpn) + B> 0}

By Theorem 2%} is the set of all B x 2n covariance matrices of Gaussian states,
B .Zn(A) if and only if the affine tranformato®— AT SA+ %B leaves’#, invariant
and.Z2(A) is the set of all & x 2n positive definite matrices such th@t, B) defines

a quasifree Gaussian channel. since

1 .
Z(AT S A—|—§B) —i Jon
= AT(2S—iJ) A+i (AT JnA—Jon) + B
it follows that ZQ(A) C Zn(A). Is it true for everyB in .F,(A) there is a Gaussian

channel with the property that it transforms a Gaussia® gig¢, m, S) to a Gaus-
sian state with covariance matd SA+ %B? To anyB € .Z9(A) does there exist a

g ; such thaB = Q" Q? If this holds we can realize the
quasifree channel associated wih B) by a symplectic channel associated with

symplectic dilationA =
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A If [(AQ E] is a symplectic matrix doe®' Q € .ZJ(A)? Finally, are there Gaus-
sian channels not belonging to the semigroup generated bgvarsible, bosonic,
symplectic and quasifree Gaussian channels? It would beeisting to find answers
to all the questions raised above. One would also like to laagtescription of the

extreme points of7,(A) and.Z(A).
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