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THE GEOMETRIC MEAN OF EXPONENTIALS
OF PAULI MATRICES
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Abstract. An explicit formula is found for the geometric mean
of exponentials of the Pauli matrices.

1. Introduction

Let P(n) be the space of n × n complex positive definite matri-
ces. This space is equipped with a natural Riemannian metric ds =
(tr(A−1 dA)2)1/2. The associated metric distance between A and B is
given by

δ2(A,B) = ‖ log A−1/2BA−1/2‖2, (1)

where ‖X‖2 = (trX∗X)1/2 is the Frobenius norm. With this P(n) is
a complete Riemannian manifold of nonpositive curvature.

LetA1, . . . , Am be any given points in P(n). The Riemannian barycen-
tre of these points is defined as

G(A1, . . . , Am) = argmin
X∈P(n)

m∑
j=1

δ22(X,Aj). (2)

It is a classical theorem of E. Cartan that the minimiser in (2) exists
and is unique. This is also the unique positive definite solution of the
equation.

m∑
j=1

log
(
X1/2A−1j X1/2

)
= 0. (3)

In recent years G(A1, . . . , Am) has been presented as the “geometric
mean” of A1, . . . , Am (See [Bh], [BH], [M1]) and has been variously
called the Riemannian mean, the Karcher mean, or the least squares
mean. Its operator theoretic properties have been studied in several
papers such as [BH], [LL], [LP1]. At the same time this mean has
been adopted as an appropriate notion of averaging (or of smoothing of
data) in areas such as diffusion tensor imaging, radar signal processing,
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elasticity, and statistics on manifolds. See, for example, [Ba], [FJ],
[M2].

For two positive definite matrices A and B, an explicit formula
for G(A,B) has long been known. In this case G(A,B) is denoted by
A#B, and is given by the well-known formula of Pusz and Woronowicz
[PW]

A#B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2. (4)

It is also known that

A#B = A(A−1B)1/2 = (AB−1)1/2B. (5)

See Chapters 4 and 6 of [Bh] for a discussion of these topics and for
references.

In the case of three or more matrices no such expression has been
found. However, good numerical algorithms for its computation have
been developed [BI], [JVV].

To advance our understanding of the multivariate geometric mean
it would be useful to have “by-hand” computations, at least for some
special examples. In this note we present such a computation.

The simplest situation is when n = 2 and m = 3. The most famous
triple of 2× 2 Hermitian matrices is the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (6)

The exponentials of these matrices are

A1 =

[
cosh(1) sinh(1)
sinh(1) cosh(1)

]
, A2 =

[
cosh(1) −i sinh(1)
i sinh(1) cosh(1)

]
,

A3 =

[
e 0
0 e−1

]
. (7)

A little more generally, we consider the triple

A1 =

[
cosh x sinh x
sinh x cosh x

]
, A2 =

[
cosh x −i sinh x
i sinh x cosh x

]
,

A3 =

[
ex 0
0 e−x

]
. (8)

where x is any real number. Then A1, A2, A3 are positive definite
matrices, each having its determinant equal to one. We have the
following theorem.
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Theorem 1. Let A1, A2, A3 be the three matrices in (8). Then

G(A1, A2, A3) =
A1 + A2 + A3

[det(A1 + A2 + A3)]
1/2
. (9)

Apart from the Riemannian mean G defined in (2), other candidates
for a geometric mean have been proposed [ALM]. The first one called
the Ando-Li-Mathias (ALM, for short) mean is given by an inductive
procedure, which in the case of three matrices can be described as
follows. Given A1, A2, A3 define a sequence of triples as follows

A0 = (A1, A2, A3),

A(k+1) =
(
A

(k)
1 #A

(k)
2 , A

(k)
2 #A

(k)
3 , A

(k)
3 #A

(k)
1

)
,

k = 1, 2, 3, . . . . Then as k →∞, the sequence A
(k)
i #A

(k)
j , 1 ≤ i, j ≤ 3,

converges. The limit of this sequence is called the ALM mean of
A1, A2, A3. A variant of this construction is used to define the BMP
mean given by Bini, Meini and Poloni [BMP]. These means share sev-
eral important properties (the 10 “ALM properties”) but are generally
different from each other. We will see that in the example considered
in Theorem 1, the Riemannian, the ALM and the BMP means coin-
cide.

For two 2× 2 matrices of determinant one, a formula similar to (9)
is known to be true. However, for three matrices it holds rarely. After
the proof of Theorem 1 in the next section, we identify some other
triples for which the same formula is valid.

2. Proof

We split the proof of Theorem 1 into two parts. The first is a
proposition about the geometric mean of all 2 × 2 positive matrices,
while the second part exploits the special structure of Pauli matrices.

Proposition 2. Let A1, . . . , Am be 2 × 2 positive definite matrices.
Then G(A1, . . . , Am) is in the linear span of A1, . . . , Am.

Proof. The geodesic segment joining any two points A,B in the man-
ifold P(n) can be naturally parametrised as

A#tB = A1/2
(
A−1/2BA−1/2

)t
A1/2, 0 ≤ t ≤ 1. (10)

It is evident that A#B is the midpoint A#1/2B of this geodesic.
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The Riemannian mean G(A1, . . . , Am) can be obtained as a limit of
“asymmetric averages” constructed from A1, . . . , Am as follows. Let
k = k(modm), and define the sequence Sk as follows

S1 = A1, Sk+1 = Sk#1/(k+1)Ak+1. (11)

Then

G(A1, . . . , Am) = lim
k→∞

Sk+1. (12)

This is a major theorem in the subject, established in a series of papers
[LL], [BK], [H], [LP2].

Now we restrict ourselves to the case n = 2. Then, it is known that
if A and B have determinant one, then

A#1/2B =
A+B

(det A+ det B)1/2

See [M1], and Proposition 4.1.12 in [Bh]. This shows that A#1/2B is
in the linear span of A and B. (This is true for all A,B in P(2).) Taking
the geometric mean of A#1/2B with A and B, we see that A#1/4B
and A#3/4B are in the linear span of A and B. This argument can be
repeated to show that A#tB is in the linear span of A and B for all
dyadic rationals t in [0, 1]. By continuity this is true for all t in [0, 1].

This argument shows that if A1, . . . , Am are 2×2 positive matrices,
then all terms of the sequence Sk defined by (11) are in the linear span
of A1, . . . , Am. Hence, so is their limit G(A1, . . . , Am).

Remark The ALM and BMP means are also defined as limits of
sequences of binary means. So Proposition 2 is equally valid for these
means.

Now we come to the proof of Theorem 1. Let U be the unitary
matrix

U =
1√
2

[
1 1
i −i

]
.

The crux of our argument lies in the observation that the three ma-
trices in (8) satisfy the relations

U∗A1U = A2, U∗A2U = A3, U∗A3U = A1, (13)
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which can be readily verified. So, using the symmetry and congruence-
invariance properties of the geometric mean, we have

G(A1, A2, A3) = G(A2, A3, A1) = G(U∗A1U,U
∗A2U,U

∗A3U)

= U∗G(A1, A2, A3)U. (14)

By Proposition 2, there exist real numbers α1, α2, α3 such that

G(A1, A2, A3) = α1A1 + α2A2 + α3A3. (15)

From the relations (13), (14) and (15) one can see that

α1A1 + α2A2 + α3A3 = α1A2 + α2A3 + α3A1. (16)

But A1, A2, A3 are linearly independent. So, it follows from (16) that
α1 = α2 = α3. Hence G(A1, A2, A3) = α(A1 + A2 + A3) for some
positive real number α. Since A1, A2, A3 all have determinant one,
det G(A1, A2, A3) = 1. Hence

G(A1, A2, A3) =
α(A1 + A2 + A3)

[det(α(A1 + A2 + A3))]1/2

=
A1 + A2 + A3

[det(A1 + A2 + A3)]1/2
.

The properties of G that we have invoked in the proof are possessed
by the ALM and BMP means. So the formula (9) is valid for these
means too.

3. Remarks

The crucial properties of the triple (8) used in the proof of (9)
are that A1, A2, A3 are linearly independent over R, have determi-
nant one, and there exists a matrix X with | det X| = 1 such that
X∗(A1, A2, A3)X = (A2, A3, A1). There are other triples with these
properties.

Let X be any 2 × 2 nonnormal matrix whose spectrum consists of
two different cube roots of unity. Then X is unitarily similar to one
of the matrices [

ω 0
c 1

]
,

[
ω2 0
c 1

]
,

[
ω 0
c ω2

]
,

where c 6= 0. Then the matrices

A1 = X∗X, A2 = X∗2X2, A3 = X∗3X3 = I
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have the properties mentioned above. So the formula (9) is valid for
them.

More generally, if we choose any 2× 2 matrix X with | det X| = 1,
and (trX)2 = det X, and let D be any positive diagonal matrix, then
the triple

A1 = X∗DX, A2 = X∗A1X, A3 = X∗A2X = D,

has the required properties.

References

[ALM] T. Ando, C.-K. Li and R. Mathias, Geometric means, Linear Algebra
Appl., 385 (2004) 305-334.

[Ba] F. Barbaresco, Innovative tools for radar signal processing based on Car-
tan’s geometry of SPD matrices and information geometry, IEEE Radar
Confererence, Rome, May 2008.

[Bh] R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007.

[BH] R. Bhatia and J. Holbrook, Riemannian geometry and matrix geometric
means, Linear Algebra Appl., 413 (2006) 594-618.

[BK] R. Bhatia and R. L. Karandikar, Monotonicity of the matrix geometric
mean, Math. Ann., 353 (2012) 1453-1467.

[BI] D. A. Bini and B. Iannazzo, Computing the Karcher mean of positive
definite matrices, Linear Algebra Appl., 438 (2013), 1700-1710.

[BMP] D. A. Bini, B. Meini and F. Poloni, An effective geometric mean satisfying
the Ando-Li-Mathias properties, Math. Comp., 79 (2010) 437-452.

[FJ] P. Fletcher and S. Joshi, Riemannian geometry for the statistical analysis
of diffusion tensor data, Signal Processing, 87 (2007) 250-262.

[JVV] B. Juris, R. Vanderbil and B. Vandereycken, A survey and comparison
of contemporary algorithms for computing the matrix geometric mean,
Electron. Trans. Numer Anal., 39 (2012) 379-402.

[H] J. Holbrook, No dice: a deterministic approach to the Cartan centroid, J.
Ramanujan Math. Soc., 27 (2012) 509-521.

[LL] J. Lawson and Y. Lim, Monotonic properties of the least squares mean,
Math. Ann., 351 (2011) 267-279.

[LP1] Y. Lim and M. Palfia, Matrix power means and the Karcher mean, J.
Funct. Anal., 262 (2012) 1498-1514.



7

[LP2] Y. Lim and M. Palfia, Weighted deterministic walks for the least squares
mean on Hadamard spaces, Bull. London Math. Soc., to appear.

[M1] M. Moakher, A differential geometric approach to the geometric mean
of symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 26
(2005) 735-747.

[M2] M. Moakher, On the averaging of symmetric positive-definite tensors, J.
Elasticity, 82 (2006) 273-296.

[PW] W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms
and the purification map, Rep. Math. Phys., 8 (1975) 159-170.

Indian Statistical Institute, New Delhi
E-mail address: rbh@isid.ac.in

Indian Statistical Institute, New Delhi
E-mail address: tanvi@isid.ac.in


