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Abstract. In this note, we show that the limiting spectral distribution
of symmetric random matrices with stationary entries is absolutely con-
tinuous under some sufficient conditions. This result is applied to obtain
sufficient conditions on a probability measure for its free multiplicative
convolution with the semicircle law to be absolutely continuous.

1. Introduction

For two probability measures µ and ν on R, one can associate the free ad-
ditive convolution µ�ν. This is defined as the distribution of Xµ+Yν where
Xµ and Yν are self-adjoint variables affiliated to a tracial W ∗- probability
space and are free from each other. Similarly, for probability measures µ and
ν on [0,∞), the free multiplicative convolution is denoted by µ� ν and rep-

resents the law of X
1/2
µ YνX

1/2
µ where Xµ and Yν are free positive variables as

before. In general, one can extend µ�ν to measures µ which are symmetric
and ν which are supported on [0,∞) such that µ({0}) ∨ ν({0}) < 1. We
refer to [4] and [1] for details of these notions. The questions of absolute
continuity of these convolutions, with respect to the Lebesgue measure, are
important. For compactly supported and absolutely continuous measures µ
and ν, [9] showed that µ � ν is absolutely continuous. The result was ex-
tended to the non-compactly supported case when one of the measures is the
semicircle law by [5]. Further regularity properties of additive convolution
were studied by [2].

Some recent works study regularity properties in the context of free multi-
plicative convolutions, see for example [3, 10]. However, absolute continuity
is much less understood. The following question is a step in that direction,
namely, the multiplicative analogue of the problem addressed in [5].

Question 1. Let µ be any probability measure on [0,∞), and let µs denote
the semicircle law, defined in (5). Under what conditions on µ, is µ � µs
absolutely continuous?

Our first result gives a sufficient condition on µ to answer Question 1.
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Theorem 1.1. Let µ be a probability measure on R such that µ([δ,∞)) = 1
for some δ > 0. Assume furthermore that µ has finite mean. Then, µ� µs
is absolutely continuous.

For stating the next question, we need to introduce a random matrix
model. Let f be any non-negative integrable function on [−π, π]2. Then,
there exists a mean zero stationary Gaussian process (Gi,j : i, j ∈ Z) such
that

(1) E (Gi,jGi+u,j+v) =

∫ π

−π

∫ π

−π
eι(ux+vy)f(x, y)dxdy, for all i, j, u, v ∈ Z .

For N ≥ 1, let GN be the N ×N matrix defined by

(2) GN (i, j) := (Gi,j +Gj,i)/
√
N, 1 ≤ i, j ≤ N .

Above and elsewhere, for any matrix H, H(i, j) denotes its (i, j)-th entry.
It has been shown in Theorem 2.1 of [6] that there exists a (deterministic)
probability measure νf such that

(3) ESD(GN )→ νf ,

weakly in probability, as N → ∞. ESD stands for the empirical spectral
distribution for a symmetric N ×N random matrix H, which is a random
probability measure on R defined by

(ESD(H)) (·) :=
1

N

N∑
j=1

δλj (·) ,

where λ1 ≤ . . . ≤ λN are the eigenvalues of H, counted with multiplicity.
The second question that this paper attempts to answer is the following.

Question 2. Under what conditions on f , is νf absolutely continuous?

The answer is provided by the following result.

Theorem 1.2. If

ess inf(x,y)∈[−π,π]2 [f(x, y) + f(y, x)] > 0 ,

then νf is absolutely continuous, where “ess inf” denotes the essential infi-
mum.

While Questions 1 and 2 seem unrelated a priori, the reader will notice
after seeing the proofs that they are not so. This is because random matrix
theory is used as a tool for proving Theorem 1.1, Theorem 1.2 being anyway
a question about a random matrix. It is shown in Proposition 2.1, which
is a consequence of Theorem 1.2, that if a measure satisfies the conditions
of Theorem 1.1 then, its free multiplicative convolution with a semicircle
law is also the free additive convolution of another measure and a dilated
semicircle law. The proofs are compiled in the following section. Many
known facts are used, which are collected in Section 3 for the convenience
of the reader.
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2. Proofs

For the proof of the results we shall refer to various known facts which
are listed in the Appendix of this article. One of the main ingredients is the
following fact which follows from Proposition 22.32, page 375 of [7]. The
latter result reasserts the seminal discovery in [8] that the Wigner matrix
is asymptotically freely independent of a deterministic matrix which has a
compactly supported limiting spectral distribution.

Fact 2.1. Assume that for each N , AN is a N×N Gaussian Wigner matrix
scaled by

√
N , that is, (AN (i, j) : 1 ≤ i ≤ j ≤ N) are i.i.d. normal ran-

dom variables with mean zero and variance 1/N , and AN (j, i) = AN (i, j).
Suppose that BN is a N ×N random matrix, such that as N →∞,

(4)
1

N
Tr(Bk

N )
P−→
∫
R
xkµ(dx), k ≥ 1 ,

for some compactly supported (deterministic) probability measure µ. Fur-
thermore, let the families (AN : N ≥ 1) and (BN : N ≥ 1) be independent.
Then, as N →∞,

1

N
EF Tr

[
(AN +BN )k

]
P−→
∫
R
xkµ� µs(dx) for all k ≥ 1 ,

where F := σ(BN : N ≥ 1) and EF denotes the conditional expectation with
respect to F .

We first proceed towards proving Theorem 1.2. The first step in that
direction is Lemma 2.1 below. However, before stating that, we define a
dilated semicircle law µs(t) for all t > 0. It is a probability measure on R
given by

(5) (µs(t)) (dx) =

√
4t− x2
2πt

1(|x| ≤ 2
√
t), x ∈ R .

For t = 1, it equals the standard semicircle law, that is, µs ≡ µs(1).

Lemma 2.1. Let f be a non-negative trigonometric polynomial on [−π, π]2

as in (8), and α > 0. Denote

(f + α)(·, ·) := f(·, ·) + α .

Then,

νf+α = νf � µs(8π
2α) .

Proof. By Fact 3.5, νf+α and νf have compact supports, and hence so does
νf � µs(8π

2α). Therefore, it suffices to check that

(6)

∫
xkνf+α(dx) =

∫
xk(νf � µs(8π

2α))(dx) for all k ≥ 1 .

Let (Gi,j : i, j ∈ Z) be a mean zero stationary Gaussian process satisfying
(1). Let (Hi,j : i, j ∈ Z) be a family of i.i.d. N(0, 4π2α) random variables,
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independent of (Gi,j : i, j ∈ Z). For N ≥ 1, let GN be as in (2), and further
define the N ×N matrices WN and ZN by

WN (i, j) := (Hi,j +Hj,i)/
√
N, 1 ≤ i, j ≤ N,

ZN := GN +WN .

Fact 3.5 implies that

1

N
Tr
(
G
k
N

)
P−→
∫
xkνf (dx), k ≥ 1 ,

as N → ∞. This, along with Fact 2.1 and the observation that the upper
triangular entries of WN are i.i.d. N(0, 8π2α/N), implies that

(7)
1

N
EF Tr

(
ZkN

)
P−→
∫
xk(νf � µs(8π

2α))(dx), k ≥ 1 ,

where F := σ(Gi,j : i, j ∈ Z).
It is easy to see that (Gi,j + Hi,j : i, j ∈ Z) is a stationary mean zero

Gaussian process whose spectral density is f+α, and hence Fact 3.5 implies
that

E

[
1

N
EF Tr

(
ZkN

)]
= E

[
1

N
Tr
(
ZkN

)]
→
∫
xkνf+α(dx) ,

and

Var

[
1

N
EF Tr

(
ZkN

)]
≤ Var

[
1

N
Tr
(
ZkN

)]
→ 0 ,

as N → ∞, for all k ≥ 1. Combining the above two limits and comparing
with (7) yields (6), and completes the proof. �

Proof of Theorem 1.2. Define

g(x, y) :=
1

2
[f(x, y) + f(y, x)] , −π ≤ x, y ≤ π .

In view of Fact 3.4, it suffices to show that νg is absolutely continuous.
The hypothesis implies that there exists α > 0 such that g ≥ α almost
everywhere on [−π, π]2. Define

h(·, ·) := g(·, ·)− α .

Since the Fourier coefficients of f are real, f is an even function, and hence
so is h. Therefore, by considering the Fourier series of

√
h, one can construct

non-negative trigonometric polynomials hn such that

hn → h in L1 .

Lemma 2.1 implies that

νhn+α = νhn � µs(8π
2α)

w−→ νh � µs(8π
2α) ,
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as n→∞, the second line following from Fact 3.3 combined with Proposition
4.13 of [4]. Applying Fact 3.3 directly to νhn+α and combining with Fact
3.4 yields

νf = νg = νh � µs(8π
2α) .

Fact 3.1 completes the proof. �

For proving Theorem 1.1, we prove the following result which is of some
independent interest. This along with Fact 3.1 establishes Theorem 1.1.

Proposition 2.1. If µ satisfies the hypothesis of Theorem 1.1, then there
exists a probability measure η such that

µ� µs = η � µs(δ
2) .

Proof. Define

r(x) :=
1

23/2π
inf

{
y ∈ R :

x+ π

2π
≤ µ(−∞, y]

}
, −π < x < π .

Let U be an Uniform(−π, π) random variable. Clearly,

P (23/2πr(U) ∈ ·) = µ(·) ,

which implies that∫ π

−π
r(x)dx = 2πE[r(U)] = 2−1/2

∫ ∞
0

xµ(dx) <∞ .

The hypothesis that µ(−∞, δ) = 0 implies that

r(x) ≥ δ

23/2π
, −π < x < π .

Defining

f(x, y) := r(x)r(y) ,

it follows that f is a non-negative integrable function bounded below by α,
where

α :=
δ2

8π2
.

Fact 3.2 implies that

µ� µs = νf

= νf−α � µs(8π
2α) ,

the second equality following from Lemma 2.1. Setting η := νf−α, this
completes the proof. �

Proof of Theorem 1.1. Follows from Proposition 2.1 and Fact 3.1. �
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3. Appendix

In this section, we collect the various facts that have been used in the
proofs in Section 2.

The following fact is Corollary 2 of [5].

Fact 3.1. For any probability measure µ, µ � µs is absolutely continuous
with respect to the Lebesgue measure.

The remaining facts are all quoted from [6].

Fact 3.2 (Theorem 2.4, [6]). Let r be a non-negative integrable function
defined on [−π, π], and

f(x, y) := r(x)r(y), −π ≤ x, y ≤ π .

Then,

νf = µr � µs ,

where νf is as in (3), µr is the law of 23/2πr(U), and U is a Uniform(−π, π)
random variable.

Fact 3.3 (Lemma 3.3, [6]). Suppose that for all 1 ≤ n ≤ ∞, gn is a non-
negative, integrable and even function on [−π, π]2. By even, it is meant that
gn(−x,−y) = gn(x, y) for all x, y. If

gn → g∞ in L1 as n→∞ ,

then

νgn
w−→ νg∞ .

Fact 3.4 (Lemma 3.5, [6]). If f is a non-negative integrable function on
[−π, π]2, and

g(x, y) :=
1

2
[f(x, y) + f(y, x)] ,

then

νf = νg .

The following fact has been proved in the course of proving Proposition
3.1 of [6]; see (3.16) and (3.17).

Fact 3.5. Let f be a non-negative trigonometric polynomial on [−π, π]2,
that is,

(8) f(x, y) =
n∑

j,k=−n
aj,ke

ι(jx+ky) ≥ 0 ,

for some finite n and real numbers aj,k. Let the matrix GN be constructed
as in (2) using the random variables (Gi,j) which are as in (1). Then, νf
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has compact support, and for all k ≥ 1,

lim
N→∞

E

[
1

N
Tr(G

k
N )

]
=

∫
R
xkνf (dx) ,

and lim
N→∞

Var

[
1

N
Tr(G

k
N )

]
= 0 .
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