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Abstract. In this note, we show that the limiting spectral dis-
tribution of symmetric random matrices with stationary entries is
absolutely continuous under some sufficient conditions. This result
is applied to obtain sufficient conditions on a probability measure
for its free multiplicative convolution with the semicircle law to be
absolutely continuous.

1. Introduction

Entanglement is one of the key distinguishing features of quantum
mechanics which separates the quantum description of the world from
its classical counterpart. Ever since its discovery by Schrödinger [Sch35,
Sch36] and its use by Einstein, Podolsky and Rosen [EPR35], the study
of entanglement has played a central role in the area of quantum theory
and a huge volume of literature is available in this context. In recent
years, with the emergence of quantum information where quantum en-
tanglement gets intimately connected to the computational advantage
of quantum computers and to the security of quantum cryptographic
protocols, its study has become even more important. A detailed dis-
cussion on these topics is available in the standard textbook of Nielsen
and Chuang [NC10]. A lucid introduction by Parthasarathy [Par06]
and a rigorous information theoretic account by Wilde [Wil13] are also
very useful resources.

Entangled quantum states are those for which it is not possible to
imagine the physical reality of a composite quantum system as two sep-
arate entities, even when there is no active interaction between the two
subsystems. In general linear combinations of entangled states need
not be entangled, however, there have been constructions of subspaces
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where every state in the subspace is entangled. The first such con-
struction was through the unextendable product basis (UPB) vectors
by Bennett et. al. [BDM+99], and further extended by DiVincenzo
et. al. [DMS+03]. More recently, Parthasarathy [Par04], Bhat [Bha06]
and Johnston [Joh13] have, by their own different methods, constructed
completely entangled subspaces S of maximum possible dimension in
the state space of multipartite quantum systems of finite dimensions.
In such a subspace every state in the subspace is entangled.

Based on their behaviors under partial tranpose, the entangled states
are classified as positive under partial transpose(PPT) and negative un-
der partial transpose(NPT). Johnston [Joh13] constructed a subspace
SJ as large as possible in terms of its dimension, of a bipartite system
(H = H1⊗H2 with dimH1 = d1 and dimH2 = d2) such that every state
with support in SJ is NPT. Obviously, SJ is completely entangled. The
interesting fact is that SJ has the same dimension (d1−1)(d2−1) as that
of a largest possible completely entangled space. Since the maximum
possible dimension for completely entangled subspaces in multipartite
case is available, the natural question is to find out the size of NPT
states embedded inside these completely entangled subspaces. This is
the question that we address in the present paper.

In our work we first focus on projection operators on such completely
entangled subspaces. We give a linking theorem which links the con-
structions of Parthasarathy, Bhat and Johnston. Parthasarathy [Par04]
gave an orthonormal basis for S for the bipartite case of equal dimen-
sions. We develop a method for construction of an orthonormal basis
for the space S in the general case. Further, we construct the (or-
thogonal) projection on the space S and show that it is NPT at any
level j. The proof utilizes the orthonormal basis for S that we develop.
Finally, we show that a large class of positive operators with range in
S are NPT at level j for some j. This extends a substantial part of
Johnston’s result for the bipartite case to the multipartite case by an
altogether different method.

The material in this paper is organized as follows: We begin Sec-
tion 2 with the basics of quantum entanglement. We then describe
the constructions of completely entangled subspaces by Parthasarathy
[Par04], Bhat [Bha06] and Johnston [Joh13]. Next we give a theorem
linking these three constructions. Then we give a construction proce-
dure of an orthonormal basis for these spaces. In Section 3 we discuss
our main results regarding these spaces entanglement properties of pro-
jection operators on completely entangled subspace as also of certain
positive operators with support in this space. Section 4 offers some
concluding remarks.
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2. Completely entangled spaces

We begin with some well known concepts and results.

2.1. Entanglement.

Definition 2.1. A finite dimensional quantum system is described by
a finite dimensional complex Hilbert space H. A Hermitian, positive
semidefinite operator ρ ∈ L(H), the algebra of linear operators on H
to itself, with unit trace is said to be a state of the system H. Rank 1
states are called pure states. A pure state can be written as an outer
product ρ = |ψ〉〈ψ| where |ψ〉 ∈ H and 〈ψ|ψ〉 = 1.

Definition 2.2. A state ρ acting on a bipartite system H1⊗H2 is said
to be separable if it can be written as

(1) ρ =
m∑
j=1

pjρ
(1)
j ⊗ ρ

(2)
j , pj > 0,

m∑
j=1

pj = 1,

where ρ
(1)
j and ρ

(2)
j are states in the system H1 and H2 respectively.

Definition 2.3. A state is said to be entangled, if it is not separable
by the above definition. Entangled states can be pure or mixed. For
an entangled pure state ρ = |ψ〉 〈ψ|, |ψ〉 is called an entangled (unit)
vector and any non-zero multiple of |ψ〉 is called an entangled vector.

If the state is pure and separable, then it can be written in the form
|ψ〉 = |ψ1〉⊗ |ψ2〉, and hence ρ = |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|. If we take partial
trace with respect to any of the subsystems, say H2, then we get a
pure state TrH2ρ = |ψ1〉〈ψ1| as the reduced density matrix. On the
other hand, for an entangled pure state we always get a mixed state
after a partial trace. Hence, a pure state is separable if and only if the
reduced density matrices are of rank one. This method does not work
for mixed states.

We also consider multi-partite quantum systems, where the state
space given by H = H1 ⊗ · · · ⊗ Hk; or in short,

⊗k
j=1Hj. A product

vector in this multipartite system space is written as |x1〉 ⊗ · · · ⊗ |xk〉,
with |xj〉 ∈ Hj or as |x1, · · · , xk〉 or, in short, as

⊗k
j=1 |xj〉. The state

of the system H can be entangled or separable. An important open
problem in the field is to determine whether an arbitrary state ρ of an
arbitrary quantum system H, is entangled or separable. For further
details regarding entanglement we refer the survey article written by
Horodecki et. al. [HHHH09].

For general states, a very important one way condition to check
entanglement is by using partial transpose (PT). If a quantum state
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becomes non-positive after PT then it is called NPT and if it remains
positive after partial transpose it is called PPT. NPT states are def-
initely entangled and separable states are definitely PPT while PPT
states can be entangled or separable. PPT entangled states are also
called bound entangled states and their characterization into entangled
and separable is a major open issue in the field. Checking PPT con-
dition is also known as the ‘Peres test’ because of the significant work
by Peres [Per96]. As remarked by DiVincenzo et. al. [DMS+03], in
the case of multipartite systems, the PPT condition can not be used
directly. We can check the PPT property under every possible bipar-
tite partitioning of the state. We discuss this process in some detail
because of its use in our work.

Definition 2.4. Let, for 1 ≤ j ≤ k, {|pj〉 : pj = 0, 1, · · · , dim(Hj)−1}
be an orthonormal basis in Hj. Let ρ ∈ L(H1⊗· · ·⊗Hk) be an operator.
Then ρ can be expressed in the form

ρ =

dimH1−1∑
p1,q1=0

· · ·
dimHk−1∑
pk,qk=0

ρp1,··· ,pk;q1,··· ,qk

|p1, · · · , pk〉 〈q1, · · · , qk| .(2)

The partial transpose of ρ, with respect to the jth system, is given by

(3) ρPTj =

dimH1−1∑
p1,q1=0

· · ·
dimHk−1∑
pk,qk=0

ρp1,··· ,pk;q1,··· ,qk

|p1, · · · , pj−1, qj, pj+1, · · · , pk〉
〈q1, · · · , qj−1, pj, qj+1, · · · , qk| .

If for a state ρ, ρPTj is positive, then ρ is said to be positive under
partial transpose at the jth level, in short, PPTj. If a state ρ is not
PPTj, then it is said to be not positive under partial transpose at the
jth level, in short, NPTj.

Remark 2.1.

(i) It is a fact that the property PPTj is independent of the choice of
orthonormal basis in Hj.

(ii) In case of any bipartite system ρ, it is said to be PPT if it is PPT1

or PPT2 (in this case PPT1 implies PPT2 and vice versa).
(iii) Woronowicz [Wor76] showed that, a state in C2⊗C2, C2⊗C3 or

C3 ⊗ C2 is separable if and only if it is PPT. For higher dimen-
sions, PPT is necessary, but not sufficient for separability and
there are examples of entangled states which are PPT. First ex-
amples of such states were constructed by Choi [Cho80] for 3⊗ 3,



ENTANGLEMENT PROPERTIES OF POSITIVE OPERATORS 5

Woronowicz [Wor76] for 2 ⊗ 4 and later by Størmer [Stø82] for
3⊗ 3.

Definition 2.5. For any proper subset E of {1, 2, · · · , k} and its com-
plement E ′ in {1, · · · , k} let H(E) =

⊗
j∈EHj and H(E ′) =

⊗
j∈E′Hj.

Then H = H(E)⊗H(E ′). Any such decomposition is called a bipartite
cut. A state ρ ∈ H is said to be positive under partial transpose, in
short, PPT if it is PPT under any bipartite cut.

Remark 2.2. Obviously if ρ is PPT then ρ is PPTj for each j; all we
need to do is is to take E = {j}. In other words, if ρ is NPTj for some
j, then it is NPT.

2.2. Unextendable product bases. One well studied way to con-
struct PPT entangled states was given by Bennett et. al. [BDM+99]
by using unextendable product basis.

Definition 2.6. An incomplete set of product vectors B in the Hilbert
space H =

⊗k
j=1Hj is called unextendable if the space 〈B〉⊥ does not

contain any product vector. The vectors in the set B are usually taken
as orthonormal and are called unextendable product bases, abbreviated
as UPB.

To avoid trivialities, we assume dimHj = dj ≥ 2. LetD = d1d2 · · · dk.
Bennett et. al. [BDM+99] gave three examples of UPB for bipartite
and tripartite systems namely, PYRAMID, TILES and SHIFT. We
state the key theorem of Bennett et. al. [BDM+99] which allows one
to construct PPT entangled states from UPB and which is relevant to
this paper.

Theorem A. [BDM+99] If in the Hilbert space H =
⊗k

j=1Hj of
dimension D = d1 · · · dk, as above, there is a mutually orthonormal set
of unextendable product basis : {|ψs〉 : s = 1, · · · , d}, then the state

(4) ρ =
1

D − d

(
ID −

d∑
s=1

|ψs〉〈ψs|

)
,

where ID is the identity operator on H, is an entangled state which is
PPT.

The proof depends on the orthogonality of the basis vectors |ψs〉.
The above theory was further extended by DiVincenzo et. al. [DMS+03]

to include generalizations of the earlier examples to multipartite sys-
tems and a complete characterization of UPB in C3 ⊗ C3. There is a
large volume of literature in this area. Recently, Johnston has given
explicit computation of four qubit UPB [Joh14].
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2.3. Entangled subspaces. LetH = H1⊗· · ·⊗Hk, where for 1 ≤ j ≤
k, Hj = Cdj for some dj < ∞ as above. Wallach [Wal02] considered
the question of the maximal possible dimension of a subspace S of
H where each nonzero vector is an entangled state. He called such
subspaces entangled subspaces, as they do not contain any nonzero
product vector. He showed that

Theorem B. [Wal02] The dimension of a subspace, where each vector
is entangled, is ≤ d1 · · · dk − (d1 + · · ·+ dk) + k − 1. Furthermore, this
upper bound is attained.

2.4. Parthasarathy’s construction. Parthasarathy [Par04] gave an
explicit construction of such entangled subspaces where the maximal
dimension is attained. Parthasarathy calls such subspaces completely
entangled subspaces. Let H = H1⊗ · · ·⊗Hk be above. Let λ ∈ C. For
1 ≤ j ≤ k, let

(5) vλ,j =


1
λ
λ2

...
λdj−1

 ≡
dj−1∑
x=0

λx |x〉 ;

where {|x〉 : x = 0, 1, · · · , dj − 1} is the standard basis of Hj = Cdj .
Set

(6) |vλ〉 ≡ vλ,1 ⊗ · · · ⊗ vλ,k =
k⊗
j=1

vλ,j.

Set N =
∑k

j=1(dj − 1) =
∑k

j=1 dj − k. Choose any (N + 1) distinct

complex numbers λ0, λ1, · · · , λN and denote the linear span of {vλn :
0 ≤ n ≤ N} by F , i.e. F = 〈vλn : 0 ≤ n ≤ N〉. Then {vλn : 0 ≤ n ≤
N} is a basis of F . Consider the subspace S = F⊥.

It has been shown in [Par04] that the space S does not contain any
product vector and is of dimension M = d1 · · · dk−(d1+· · ·+dk)+k−1.

Simple computations show that the basis vectors of F need not all be
orthogonal, but certain subspaces of F can contain orthonormal basis
of product vectors. Another strong point in this paper is an explicit
construction of an orthonormal basis for S in the case k = 2, d1 = d2.
We shall come back to this later in §2.7 below.

2.5. Bhat’s construction [Bha06]. For notational convenience, he
starts with an infinite dimensional space with an orthonormal basis
{e0, e1, · · · } and identifies Hr = 〈{e0, · · · , edr−1}〉, 1 ≤ r ≤ k, and sets
H = H1 ⊗ · · · ⊗ Hk.
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Let N =
∑k

r=1(dr − 1). For 0 ≤ n ≤ N , let In = {i = (ir)
k
r=1, 0 ≤

ir ≤ dr − 1 for 1 ≤ r ≤ k,
∑k

r=1 ir = n}. Let I =
⋃N
n=0 In. For i ∈ I,

let ei =
⊗k

r=1 eir . For 0 ≤ n ≤ N , let H(n) = 〈{ei : i ∈ In}〉. Then

{ei : i ∈ In} is an orthonormal basis for H(n). Further, H =
⊕N

n=0H(n)

and {ei : i ∈ I} is an orthonormal basis for H. Let 0 ≤ n ≤ N . Let
un =

∑
i∈In ei. Let T (n) = Cun, then H(n) = S(n)

⊕
T (n), where

S(n) = span{ei − ej : i, j ∈ In}.

Clearly S(n) is also equal to the set of all the sums
∑

i∈In αiei such that∑
i∈In αi = 0. Further, S(0) = {0} = S(N). Let T =

⊕N
n=0 T (n) and

SB =
⊕N

n=0 S(n), which is the same as
⊕N−1

n=1 S(n). Then S⊥B = T and
H = SB ⊕ T .

Theorem C. [Bha06] SB is a completely entangled subspace of maxi-
mal dimension.

Remark 2.3.

(i) We note that for λ ∈ C,

∣∣zλ〉 ≡ (
d1−1∑
j1=0

λj1ej1

)
⊗ · · · ⊗

(
dk−1∑
jk=0

λjkejk

)

=
N∑
n=0

λn

(∑
i∈In

ei

)
(7)

=
N∑
n=0

λnun.

(ii) We now consider Hr’s as subspaces of Cδ, with δ = maxkj=1 dj
and es ≡ |s〉 for 1 ≤ s ≤ δ. So we can identify |vλ〉 and

∣∣zλ〉.
Let λn, 0 ≤ n ≤ N be distinct complex numbers as in §2.4. Then
{|vλn〉 : 0 ≤ n ≤ N} is a linearly independent subset of T . So
F = T . This also shows that F is independent of the choice of
complex numbers. Thus

S = F⊥ = T ⊥ = SB.

Theorem D. [Bha06] The set of product vectors in S⊥ = T is

{c
∣∣zλ〉 : c ∈ C, λ ∈ C ∪ {∞}};

where |z∞〉 =
⊗k

r=1 edr−1.
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2.6. Johnston’s construction [Joh13]. Johnston concentrated on con-
structing a completely entangled subspace SJ of Cd1⊗Cd2 of dimension
(d1 − 1)(d2 − 1) for bipartite systems such that every density matrix
with range contained in it is NPT. In the notation of Subsections 2.4
and 2.5,

SJ = 〈{wx,y = |x〉 ⊗ |y + 1〉 − |x+ 1〉 ⊗ |y〉
: 0 ≤ x ≤ d1 − 2, 0 ≤ y ≤ d2 − 2}〉 .(8)

We end this subsection with our theorem which establishes an inter-
esting and useful link between different constructions of completely
entangled subspaces.

Theorem 2.1. For the bipartite case, the completely entangled spaces
S, SB and SJ can be identified with each other.

Proof. In view of Remark 2.3 and the discussion in this section, we only
need to note that for 0 ≤ x ≤ d1−2 and 0 ≤ y ≤ d2−2, wx,y ∈ S(x+y+1).
Thus SJ ⊆ SB. But dimSB = (d1 − 1)(d2 − 1) = dimSJ . Hence
SB = SJ . �

2.7. Parthasarathy’s orthonormal basis for S for bipartite case
of equal dimensions [Par04]. We need the following explicit con-
struction of the orthonormal basis B of S given in [Par04] for the bi-
partite case H = H1 ⊗H2, with d1 = d2 = ν, say.

(a) Antisymmetric vectors:

|ax,y〉 =
1√
2

(|xy〉 − |yx〉), 0 ≤ x < y ≤ ν − 1.

(b) For 2 ≤ n ≤ ν − 1 and n even, vectors of the forms :

|bn0 〉 =
1√

n(n+ 1)

 n
2
−1∑

m=0

(|m,n−m〉+ |n−m,m〉)− n
∣∣∣n
2
,
n

2

〉 ,

and

∣∣bnp〉 =
1√
n

n
2
−1∑

m=0

exp

(
4πımp

n

)
(|m,n−m〉+ |n−m,m〉),

1 ≤ p ≤ n

2
− 1.
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(c) For 2 ≤ n ≤ ν − 1 and n odd, vectors of the form:

∣∣bnp〉 =
1√
n+ 1

n−1
2∑

m=0

exp

(
4πımp

n+ 1

)
(|m,n−m〉+ |n−m,m〉),

1 ≤ p ≤ n− 1

2
.

(d) For ν ≤ n ≤ 2ν − 4 and n even, vectors of the form:

|bn0 〉 =
1√

(2ν − 2− n)(2ν − 1− n) 2ν−2−n
2
−1∑

m=0

(|n− ν +m+ 1, ν −m− 1〉

+|ν −m− 1, n− ν +m+ 1〉)− (2ν − 2− n)
∣∣∣n
2
,
n

2

〉)
,

and

∣∣bnp〉 =
1√

2ν − 2− n

2ν−2−n
2
−1∑

m=0

exp

(
4πımp

2ν − 2− n

)
(|n− ν +m+ 1, ν −m− 1〉
+|ν −m− 1, n− ν +m+ 1〉),

for 1 ≤ p ≤ 2ν−2−n
2
− 1.

(e) For ν ≤ n ≤ 2ν − 4 and n odd, vectors of the form:

∣∣bnp〉 =
1√

2ν − 1− n

2ν−1−n
2
−1∑

m=0

exp

(
4πımp

2ν − 1− n

)
(|n− ν +m+ 1, ν −m− 1〉
+|ν −m− 1, n− ν +m+ 1〉) ,

for 1 ≤ p ≤ 2ν−1−n
2
− 1.

Remark 2.4.

(i) An interesting aspect of B is that for 1 ≤ n ≤ 2ν−3, Bn = B∩S(n)

is an orthonormal basis for S(n).
(ii) B1 = {|a0,1〉} and B2ν−3 = {|aν−2,ν−1〉}.

(iii) For 1 ≤ g ≤ ν − 2, |fg〉 = |g〉 ⊗ |g〉 occurs as a summand of
exactly one vector in B. Further, |fν−1〉 = |ν − 1〉 ⊗ |ν − 1〉 does
not occur as a summand of vectors in B.
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(iv) Let F : H1 ⊗ H2 → H2 ⊗ H1 be the linear operator, called FLIP
or SWAP, satisfying F(|ξ〉 ⊗ |η〉) = |η〉 ⊗ |ξ〉 for |ξ〉 ∈ H1 and
|η〉 ∈ H2. Then F(|ax,y〉) = − |ax,y〉, whereas F(

∣∣bnp〉) =
∣∣bnp〉;

|ax,y〉 and
∣∣bnp〉 are as above.

2.8. Bhat’s orthonormal basis for S. Bhat [Bha06] indicated how
to construct an orthonormal basis for S. He has also given expressions
for dimensions of H(n) viz., |In| for 1 ≤ n ≤ N . In fact, In = the

coefficient of xn in the polynomial p(x) =
∏k

r=1(1 + x+ · · ·+ xdr−1) =
number of partitions of n into (i1, · · · , ik) with 0 ≤ ir ≤ dr − 1 for
1 ≤ r ≤ k. For instance, for k = 2, d1 ≤ d2,

|In| =

 n+ 1 for 0 ≤ n ≤ d1 − 1
d1 for d1 ≤ n ≤ d2 − 1
d1 + d2 − (n+ 1) for d2 ≤ n ≤ d1 + d2 − 2.

If di = 2 for all i, then |In| =
(
k
n

)
, 0 ≤ n ≤ k.

2.9. Two useful techniques. We now display techniques to be used
in constructing an orthonormal basis for the general bipartite and mul-
tipartite case suitable for our purpose.

Theorem 2.2. Let Y be a d-dimensional Hilbert space with 2 ≤ d <∞
and {|ys〉 : 0 ≤ s ≤ d − 1} an orthonormal basis for Y . Let Z be the

subspace {
∑d−1

s=0 αs |ys〉 :
∑d−1

s=0 αs = 0}.
(i) If d = 2 then Z = C(|y0〉 − |y1〉).

(ii) Let d ≥ 3. Then there exists an orthonormal basis {|zs〉 : 0 ≤ s ≤
d− 2} for Z such that |y0〉 occurs as a summand in |z0〉 and |z1〉;
further, for d > 3, |y0〉 does not occur as a summand in |zs〉 for
2 ≤ s ≤ d− 2.

(iii) Let d ≥ 3. Let 1 ≤ r ≤ d− 2. Let

Z1
r =

{
r∑
s=0

αs |ys〉 :
r∑
s=0

αs = 0

}
= Z ∩ 〈{|ys〉 : 0 ≤ s ≤ r}〉,

and

Z2
r =

{
d−1∑
s=r+1

αs |ys〉 :
d−1∑
s=r+1

αs = 0

}
.

Let C1r = {|zs〉 : 0 ≤ s ≤ r − 1} be an orthonormal basis for Z1
r

such that |y0〉 occurs as a summand in |z0〉 and in no other |zs〉
for s ≤ r − 1. Then there exists an orthonormal basis {|zs〉 : 0 ≤
s ≤ d− 2} for Z such that |y0〉 occurs as a summand in |z0〉 and
|zr〉 and in no other |zs〉 for 0 ≤ s ≤ d− 2.
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Proof. (i) is immediate.

(ii) Let |z0〉 = 1√
2
(|y0〉− |y1〉), |η〉 = (|y0〉+ |y1〉) and |v〉 =

∑d−1
s=2 |ys〉.

Set

|z1〉 =
(d− 2) |η〉 − 2 |v〉√

2d(d− 2)
.

Then |y0〉 occurs as a summand in |z0〉 and |z1〉.
We now consider the case d > 3 and follow the notation in (iii).

We choose any orthonormal basis for Z2
1 . For instance, we may

choose the Fourier basis

|zp〉 =
1√
d− 2

d−1∑
s=2

exp

[
2πı(s− 2)(p− 1)

d− 2

]
|ys〉 , 2 ≤ p ≤ d− 2.

(iii) Let |η〉 =
∑r

s=0 |ys〉 , |v〉 =
∑d−1

s=r+1 |ys〉. Consider any |ξ〉 =∑d−1
s=0 αs |ys〉. For 0 ≤ s′ 6= s′′ ≤ r, |ys′〉 − |ys′′〉 ∈ Z1

r . So |ξ〉 ⊥ Z1
r

only if αs′ = αs′′ for s′ 6= s′′ with 0 ≤ s′ 6= s′′ ≤ r. Thus any such
vector has the form

(9) |ξ〉 = α |η〉+
d−1∑
s=r+1

αs |ys〉 with (r + 1)α +
d−1∑
s=r+1

αs = 0.

Also any |ξ〉 of the form as in (9) is orthogonal to Z1
r . Set

|zr〉 =
(d− 1− r) |η〉 − (r + 1) |ν〉√

d(r + 1)(d− r − 1)
.

Then |y0〉 occurs as a summand in |zr〉.
We now consider the case r ≤ d − 3, which forces d ≥ 4 for

sure. Now |ξ〉 as in (9), satisfies 〈ξ|zr〉 = 0 if and only if α = 0

if and only if
∑d−1

s=r+1 αs = 0 if and only if |ξ〉 has the form |ξ〉 =∑d−1
s=r+1 αs |ys〉,

∑d−1
s=r+1 αs = 0 if and only if |ξ〉 ∈ Z2

r .
As in the proof of (ii), we choose any orthonormal basis for Z2

r .
for instance, we may choose the Fourier basis,

|zp〉 =
1√

d− 1− r

d−1∑
s=r+1

exp

[
2π(s− r − 1)(p− r)

d− 1− r

]
|ys〉 ,

for r + 1 ≤ p ≤ d− 2.

Then |y0〉 does not occur as a summand in |zp〉, r+1 ≤ p ≤ d−2.
�
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2.10. Orthonormal basis for S (general case). We shall now con-
struct a suitable orthonormal basis for S in our multipartite system
H =

⊗k
j=1Hj. Let 1 ≤ j 6= j′ ≤ k. Set ν = min{dj, dj′} and

ν ′ = max{dj, dj′}. We concentrate on the case (k−2)+(ν ′−ν) > 0, as
the remaining case k = 2, ν = ν ′ comes under §2.7 above. It is enough
to construct suitable orthonormal basis for S(n) for 1 ≤ n ≤ N − 1,
because we can just put them together to get an orthonormal basis for
S. Let 1 ≤ n ≤ N−1. We take X = H(n), Z = S(n) in the above theo-
rem. We note that H(n) has dimension d = |In|. For 0 ≤ x, x′ ≤ ν − 1,
we take i(x,x

′) ∈ I given by

i
(x,x′)
t =

 0 t 6= j or j′

x t = j
x′ t = j′.

At times we shall replace i(x,x
′) by (̃x, x′). For |ξ〉 ∈ Cν ⊗ Cν , we take

˜|ξ〉 to be the vector in H which is obtained by considering |ξ〉 as a
member of Hj ⊗Hj′ and then filling in the remaining places by |0〉 (if

any). Then B̃n = { ˜|ξ〉 : |ξ〉 ∈ Bn} may be thought of as an orthonormal
basis for its linear span which is a part of S(n).

Let

I1n =


{

i ∈ In, 0 ≤ ij, ij′ ≤ ν − 1,
and it = 0 for t 6= j, j′

}
, for 1 ≤ n ≤ 2ν − 3

∅ otherwise,

I2n = In \ I1n.

We note that |I1n| is either 0 or ≥ 2. For n = 2g with 1 ≤ g ≤ ν−1, we

take i0 = (̃g, g). For n = 2g − 1, 1 ≤ g ≤ ν − 1 we take i0 = (g − 1, g).
Next, for 1 ≤ n ≤ 2ν − 3, we arrange members of I1n \ {i0} in any

sequence, say i1, · · · , i|I1n|−1 insisting, for n = 2g − 1, i1 = (g, g − 1).
Then, we arrange members of I2n, if any, in any manner we like. This
will complete the enumeration of In as 0, 1, · · · , |In|−1. For n = 2ν−2,
we enumerate In \ {i0} as i1, · · · , i|In|−1. For 2ν − 1 ≤ n ≤ N − 1, we
enumerate In in any manner we like as i0, i1, · · · , i|In|−1. Finally, we
set |ys〉 = |is〉 , 0 ≤ s ≤ d− 1 = |In| − 1 and, in case 1 ≤ n ≤ 2ν − 3,
r = |I1n| − 1.

To distinguish constructions for different n’s, we may use extra fix-
ture n; for instance ni0, ni1, · · · , |ηn〉 , |vn〉 etc. in place of i0, i1, · · · , |η〉 , |v〉.

This discussion combined with Theorem 2.2 above immediately gives
us the following theorem.
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Theorem 2.3. Let H =
⊗k

t=1Ht. Let 1 ≤ j 6= j′ ≤ k, ν =
min{dj, dj′} ≤ ν ′ = max{dj, dj′} and (k − 2) + (ν ′ − ν) > 0. There
exists an orthonormal basis C for S such that

(i) ˜|0〉 ⊗ |0〉 does not occur as a summand in any vector in C.

(ii) For 1 ≤ g ≤ ν−2, ˜|g〉 ⊗ |g〉 occurs as a summand in two members
of C.

(iii) ( ˜|ν − 1〉 ⊗ |ν − 1〉) occurs as a summand in two members of C
except for the bipartite case with 2 = ν < ν ′ or ν ′ = ν + 1, when
it occurs only once.

(iv) For 2 ≤ g ≤ ν − 1, ˜(|g − 1〉 ⊗ |g〉) and ˜(|g〉 ⊗ |g − 1〉) occur as a
summand in (the same) two members of C.

(v) In particular, ˜(|0〉 ⊗ |1〉), ˜(|1〉 ⊗ |0〉) and ˜(|1〉 ⊗ |1〉), occur as sum-
mands as follows.

(a) Vectors ˜|0〉 ⊗ |1〉 and ˜|1〉 ⊗ |0〉 occur as a summand in |̃a0,1〉 =
1√
2
( ˜|0〉 ⊗ |1〉 − ˜|1〉 ⊗ |0〉), and in case k ≥ 3, also in∣∣c10〉 =

1√
2|I1|(|I1| − 2)

(
(|I1| − 2)( ˜|0〉 ⊗ |1〉+ ˜|1〉 ⊗ |0〉)− 2 |v1〉

)
=

1√
2k(k − 2)

(
(k − 2)( ˜|0〉 ⊗ |1〉+ ˜|1〉 ⊗ |0〉)− 2 |v1〉

)
.

(b) For ν = 2, ˜(|1〉 ⊗ |1〉) occurs as a summand as follows.

• For k = 2, ν ′ ≥ 3, in 1√
2

(
˜|1〉 ⊗ |1〉 − ˜|0〉 ⊗ |2〉

)
or in

1√
2

(
˜|1〉 ⊗ |1〉 − ˜|2〉 ⊗ |0〉

)
according as d2 = ν ′ or d1 =

ν ′. In fact, it is the same as |a2i0,2i1〉 = 1√
2
(|2i0〉−|2i1〉).

• For k ≥ 3, in |a2i0,2i1〉 = 1√
2
(|2i0〉 − |2i1〉) and in |c20〉 =

(|I2|−2)(|2i0〉+|2i1〉)−2|v2〉√
2(|I2|−2)|I2|

(c) For ν ≥ 3, ˜|1〉 ⊗ |1〉 occurs as a summand in ˜|b20〉, and if, in

addition, k ≥ 3, also in |c20〉 =
|I22 ||η2〉−|I12 ||v2〉√
|I12 ||I22 ||I2|

.

3. Entanglement properties of the projection operators

We begin this section with some preparatory remarks, which will be
used to arrive at our main results.

3.1. A useful involution on I × I. Let H =
⊗k

t=1Ht. Fix j, with
1 ≤ j ≤ k.
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For (p,q) ∈ I × I, let σj(p,q) = (p′,q′), where

p′t =

{
pt for t 6= j
qj for t = j

and q′t =

{
qt for t 6= j
pj for t = j

Then

(10) |p〉〈q|PTj = |p′〉〈q′|.

We note that σj(q,p) = (q′,p′). Further, the map σj◦σj is the identity
map on I × I, i.e., the map σj is an involution on I × I.

3.2. Action of PTj. Any operator ρ ∈ L(H1 ⊗ · · · ⊗ Hk) given as in
(2) can be written in the compact form as,

(11) ρ =
∑
p,q∈I

ρ(p,q)|p〉〈q|,

then

ρPTj =
∑

(p,q)∈I×I

ρ(p,q)|p′〉〈q′|

=
∑

(p,q)∈I×I

ρσj(p,q)|p〉〈q|.

Fix j′ 6= j with 1 ≤ j′ ≤ k. Let p0 ∈ I0, q0 ∈ I2; p1 and q1 ∈ I1,
be defined as

p0t = 0 for all t , q0t =

{
1 for t = j, j′

0 otherwise
,

p1t =

{
1 for t = j
0 otherwise

, q1t =

{
1 for t = j′

0 otherwise
.

Then σj(p
0,q0) = (p1,q1).

Let λ 6= 0 be a real number. Set |ξ〉 = λ |p0〉 + |q0〉. Then for any
p, q ∈ I,

〈ξ|p〉〈q|ξ〉 = (λδp0p + δq0p)(λδp0q + δq0q)

=


λ2 for (p,q) = (p0,p0),
λ for (p,q) ∈ {(p0,q0), (q0,p0)}
1 for (p,q) = (q0,q0)
0 otherwise.
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With a state ρ as in (11),

〈ξ|ρPTj |ξ〉 =
∑

(p,q)∈I×I

ρσj(p,q)〈ξ|p〉〈q|ξ〉

= λ2ρσj(p0,p0) + λρσj(p0,q0)

+λρσj(q0,p0) + ρσj(q0,q0)

= λ2ρ(p0,p0) + λ(ρ(p1,q1)

+ρ(q1,p1)) + ρ(q0,q0).

Theorem 3.1. Let H =
⊗k

r=1Hr. Let PS be the projection on the
completely entangled subspace S. For each j, PS is not positive under
partial transpose at level j.

In particular, PS is NPT.

Proof. For a unit vector |ζ〉 ∈ H, let Pζ be the projection on |ζ〉, i.e.
Pζ = |ζ〉〈ζ|. Let 1 ≤ j ≤ k. Take any j′ 6= j with 1 ≤ j′ ≤ k. Let C be
an orthonormal basis for S in two separate cases as follows.

(a) For k = 2, d1 = d2 = ν, take C = B as in §2.7.
(b) For k = 2 but d1 6= d2, or k ≥ 3 we follow the procedure set up

in §2.10 for Theorem 2.3.
Then

PS =
∑
|ζ〉∈C

Pζ =
∑
p,q∈I

ρ(p,q)|p〉〈q|,

for some suitable ρ(p,q)’s. In the notation set up in §3.2,

〈ξ|ρPTj |ξ〉 =

λ2ρ(p0,p0) + λ(ρ(p1,q1) + ρ(q1,p1)) + ρ(q0,q0).(12)

To complete the proof it is enough to show that 〈ξ|ρPTj |ξ〉 < 0.
We arrange the elements of C in any manner {|ζs〉 : 0 ≤ s ≤

M − 1}, but insisting on the following points.
(c)

|ζ0〉 =


|a0,1〉 in case (a)

|̃a0,1〉 in case (b).

(d)

For ν = 2, |ζ1〉 = |a2i0,2i1〉 =
1√
2

(
∣∣2i0〉− ∣∣2i1〉),

whereas for ν ≥ 3, |ζ1〉 = |̃b20〉.
(e)

For k ≥ 3, |ζ2〉 =
∣∣c10〉 .
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(f)
For k ≥ 3, |ζ3〉 =

∣∣c20〉 .
We write Ps = P|ζs〉, 0 ≤ s ≤M−1. Then PS =

∑M−1
s=0 Ps. So ρp,q 6= 0

only if |p〉 and |q〉 occur as a summand in some |ζs〉.
In view of Theorem 2.3(iv) and (12) above we can just confine our

attention to the vectors listed under (c), (d), (e) and (f) above.
We first note that none of them contributes towards ρ(p0,p0). Also

ρ(q0,q0) ≥ 0. Next, we find that contribution to ρ(p1,q1) is the same as
that to ρ(q1,p1). Thus, if the final contribution to ρ(p1,q1) is < 0, then
for a suitable λ > 0, 〈ξ|ρPTj |ξ〉 < 0. We now proceed to show that it
is so.
P0 contributes −1

2
to ρp1,q1). For k ≥ 3, P2 contributes 1

2
k−2
k

to

ρp1,q1). So the total contribution to ρ(p1,q1) is − 1
k
. Hence the proof. �

Corollary 3.1. F does not contain any unextendable orthonormal
product basis.

Proof. If F contains any unextendable product basis then by Theo-
rem (A) PS will be PPT which is not true by Theorem 3.1. Hence the
result follows. �

We now show that large classes of states with range in the completely
entangled subspace S are NPT.

Theorem 3.2. Let 1 ≤ j ≤ k. Take any j′ 6= j with 1 ≤ j′ ≤ k. Any
positive operator

∑M−1
s=0 psPs, where ps ≥ 0 for all s, p0 + (k−2)p2 > 0

and Ps’s are as in the proof of Theorem 3.1 above, is not positive under
partial transpose at level j.

Proof. (i) All cases except possibly the case when k ≥ 3 and (k−2)p2 =
kp0.

We refer to the proof of Theorem 3.1 above. The only change needed
is that the term, say w with λ is now given as follows.

(a) For k = 2, w = −p0 (in place of −1),
(b) In case k ≥ 3, w = −p0 + p2

k−2
k
6= 0.

So the final number in the right hand side of (12) can be made negative
by suitable choice of λ which has to be suitably big and > 0 if w < 0,
and has to be < 0 and suitably big in absolute value if w > 0.

(ii) Case k ≥ 3 but (k−2)p2 = kp0. Since p0+(k−2)p2 > 0, we have
p2 > 0. Because k ≥ 3, there is j′′ with j 6= j′′ 6= j′ and 1 ≤ j′′ ≤ k.
Let r0 ∈ I2 and r1 ∈ I1 be given by

r0t =

{
1 if t = j, j′′

0 otherwise,
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r1t =

{
1 for t = j′′

0 otherwise.

We replace ξ by ξ′ given by λ |p0〉 + |r0〉 with λ real and make com-
putations similar to those in item 3.2 and proof of part (i) above. We
note that q1 has to be replaced by r1, and then w by w′ = − 2

k
p2. And,

therefore, for λ suitably bigger than 0, 〈ξ′| ρPTj |ξ′〉 < 0. This completes
the proof. �

Remark 3.1.

(i) Because of the freedom of orthonormal bases at various stages of
the construction of C the import of Theorem 3.2 is much more.
In fact, we may apply Theorem 2.2 to construct a basis D for S
with more such freedom by clubbing in S(n)’s, 3 ≤ n ≤ N − 1 and
insisting on including |ζ0〉 , |ζ1〉, and in case k ≥ 3, |ζ2〉 and |ζ3〉
as well.

(ii) Let 1 ≤ r ≤ k. Let γr be the involution on the set Dr = {p : 0 ≤
p ≤ dr − 1} to itself that takes p 7→ dr − 1− p for 0 ≤ p ≤ dr − 1.
This induces a unitary linear operator Rr on Hr to itself which
takes ep to eγr(p) for p ∈ Dr. We note that R2

r = IHr and therefore,

Rr is self-adjoint. Next, let γ =
∏k

r=1 γr on I =
∏k

r=1Dr to itself.
Then γ is an involution on I to itself. Further, for 0 ≤ n ≤ N ,
γ takes In to IN−n. Let R be the operator

⊗k
r=1Rr on H to

itself. Then, for 0 ≤ n ≤ N , R takes H(n) onto H(N−n), un to
uN−n, T (n) onto T (N−n), S(n) onto S(N−n). Therefore, R takes S
onto itself. Further, R is unitary and self-adjoint. For p, q ∈
I, R(|p〉 〈q|)R = |γ(p)〉 〈γ(q)|. Also, for 1 ≤ j 6= j′ ≤ k, we may
now consider R†ρR = RρR with ρ’s as indicated in Theorem 3.2
and part (i) above to add to the class of positive operators with
range in S whose partial transpose at level j is not positive.

(iii) For 1 ≤ j ≤ k and 1 ≤ j′ ≤ k with j 6= j′ let Nj,j′ be the set
of NPTj states obtained in Theorem 3.2 together with those by
methods indicated in (i) and (ii) above. Put

N =
⋃

1≤j≤k
1≤j′≤k
j 6=j′

Nj,j′ .

Then each ρ in N has range in the subspace S and has a non-
positive partial transpose at some level.

(iv) Johnston [Joh13] asked the following question.
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What is the maximum dimension µ of a subspace with
the property that any state with range in the subspace
has at least one partial transpose which is non-positive.

Let us call a subspace E of H satisfying this criteria an NPT space.
(v) Let E be a subspace of H. If {ρ : ρ is a state with range in E}

is contained in N , then E ⊂ S and E is NPT. In particular, If
N = {ρ : ρ is a state with range in S}, then S is NPT. If that
be so, then the answer to Johnston’s question is

µ = M = d1d2 · · · dk − (d1 + d2 + · · ·+ dk) + k − 1.

This question still remains open, but the progress made in this
paper above does show that N is substantially large.

4. Conclusion

Let S be a concrete completely entangled subspace of maximal di-
mension, in H =

⊗k
j=1Hj with 2 ≤ dj = dimHj < ∞ for 1 ≤ j ≤ k,

constructed by Parthasarathy [Par04]. Let PS be the projection on this
space. We realized that the particular orthonormal basis B for S for the
bipartite case of equal dimensions obtained by Parthasarathy [Par04]
helps us to prove that PS is not positive under partial transpose. For
any fixed j and j′ with 1 ≤ j 6= j′ ≤ k, we developed techniques to
construct a suitable orthonormal basis C for S for the multipartite case
utilizing B in the process. This enabled us to prove that PS is not
positive under partial transpose at level j. We next extended this to
certain positive operators ρ’s with range contained in S. This general-
izes a substantial part of the corresponding result of Johnston [Joh13]
for the bipartite case. Even after varying j and j′ and clubbing all ρ’s,
the question whether there are any states with support in S that are
PPTj for each j, 1 ≤ j ≤ k, remains open. However, in this paper we
have made substantial progress in the direction of obtaining an answer.
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