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Abstract. Ordinally weighted unitarily invariant norms of matrices, or operators,
are basically symmetric norms of their singular values weighted by an ordered set
of weights. A trimmed version of these norms is obtained by considering only a
few of the largest singular values. In this short note polars of these norms are
characterized as in Mudholkar and Freimer (1985, Proc. Amer. Math. Soc., 95
331-337). A simple expression for the weighted version of the Ky Fan k−norm is
also obtained.

1. Introduction

Let H be a Hilbert space of finite dimension n and U(H) be a group of unitary
operators in the space B(H) of bounded linear operators on H. A norm ‖.‖ defined
on B(H) is said to be unitarily invariant (UI) if for every A ∈ B(H) and unitary
operators U, V ∈ U(H), ‖A‖ = ‖UAV ‖. If s1 ≥ s2 ≥ ...sn ≥ 0 denote the singular
values of a given A ∈ B(H), then the UI norms are the symmetric gauge functions
(SGF) of (s1, ..., sn); see von Neumann (1937). In this note we consider a class of
UI norms, termed weighted norms (see Bhatia (1997, Chap. IV)) in terms of SGF’s
which include the well known norms such as Ky-Fan (1951) k-norms and Schatten
(1950) p-norms as well as trimmed k-norms studied in Mudholkar and Friemer (1985).

After introducing some preliminaries introduced in §2, these weighted norms are
defined in §3 and §4 addresses computation of their polars. The polar of trimmed
norm is given by Mudholkar and Friemer (1985) but no general result is available for
the weighted case.

2. Preliminaries

In the seminal paper “Some matrix inequalities and metrization of matric spaces”,
von Neumann (1937) used SGF’s for defining norms on spaces of finite dimensional
matrices.
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Definition 2.1 (von Neumann (1937)). For x = (x1, x2, ..., xn) ∈ Rn, , φ(x) is said
to be an SGF, if it satisfies,

(i) φ(x) ≥ 0, with equality iff x = 0;
(ii) φ(cx) = |c|φ(x) for any scalar c;
(iii) φ(x1 + x2) ≤ φ(x1) + φ(x2);
(iv) for any combinations of sign changes, εi = ±1 and for any permutation

(j1, j2, ..., jn) of (1, 2, ..., n), φ(x1, ..., xn) = φ(ε1xj1 , ..., εnxjn).

In other words, φ(x) is a norm which is symmetric, i.e. invariant under permutations
and arbitrary sign changes of the coordinates.

Theorem 2.1 (von Neumann (1937)). Let Mn be space of n × n matrices. For any
symmetric gauge function φ of n real variables, the function ‖.‖, defined on Mn by

(2.1) ‖A‖ = φ(s1, ..., sn), A ∈Mn,

is an unitarily invariant norm, where s1, ..., sn are the singular values of A,. Con-
versely, every unitarily invariant norm on B(H) is obtained in this way; let φ(s1, s2, ..., sn) =
‖A‖ where A is a diagonal matrix with diagonal entries s1, s2, ..., sn.

von Neumann (1937) illustrated his results using vector p−norms,

‖x‖p = (
n∑
i=1

|xi|p)1/p.

Schatten (1950,1960 ) extended von Neumann’s results to spaces of completely con-
tinuous operators on Hilbert spaces of arbitrary dimensions, and also used p-norms
as illustrations. These operator norms are known as Schatten p-norms. Furthermore,
he also clarified the necessity and sufficiency role of the SGF’s by showing that all
unitarily invariant operator norms are only in terms of SGF’s of singular values as in
von Neumann. Ky-Fan (1951), on the other hand, used his discussion of matrix and
operator norms and illustrated, what are now known as Ky-Fan norms. These will
be discussed later while discussing the trimmed norms.

Polars

Let Φn denote the class all SGF’s on Rn as defined above. Now consider A ∈ B(H)
and let s1 ≥ ... ≥ sn ≥ 0 be its singular vales. As indicated earlier, for any φ ∈ Φn,
‖A‖φ defined as

‖A‖φ = φ(s1, ..., sn),

is a unitarily invariant norm of the operator A. Its polar is defined by

‖A‖φ0 = sup
B 6=0

|trAB|
‖B‖φ

;

(see Schatten (1950)).
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Polars of vector norms may be described in terms of the classical Hölder’s inequality.
Thus for vectors x = (x1...xn) and y = (y1...yn) and a vector norm φ, there exists
a vector norm φ0, known as the polar of φ, such that the inner product of x and y
satisfies a sharp inequality,

∑
xiyi ≤ φ(x)φ0(y).

In other words, the polar φ0 satisfies

φ0(y) = max
x 6=0

(x′y)/φ(x).

Alternatively, φ0(y) is the maximum of x′y over the set {x|φ(x) ≤ 1}. It is easy to
see that φ is the polar of φ0. In the literature, the polar of φ is also referred to as
conjugate, dual or associate of norm φ.

In conventional real analysis the above inequality with p-norm ‖.‖p as φ and q-norm
as φ0, 1/p+ 1/q = 1, is described as the Hölder’s inequality. In the related discussion,
it is also observed limp→∞ ‖x‖p = maxi{|xi|} = x(1), and

∑n
i=1 x(i) and x(1) are mutual

polars, where x(1) ≥ ... ≥ x(n) ≥ 0, denote the ordered values of |xi|, i = 1, 2, ..., n.

3. Trimmed and Ordinally Weighted Norms

In this section we discuss some basics of the trimmed and weighted unitarily invari-
ant norms. Let x(1) ≥ ... ≥ x(n) ≥ 0, denote the ordered values of |xi|, i = 1, 2, ..., n.
Then Ky-Fan (1951) k-norm, k ≤ n, of x is given by

(3.1) φK(x) =
k∑
i=1

x(i).

Generalizing the above to the p-norm, we get the p-norm extension of Ky-Fan k-norm

(3.2) φKp(x) =

(
k∑
i=1

xp(i)

)1/p

that gives the Schatten p-norm for k = n; see Horn and Johnson (1990), Problem 5,
pp. 211.

We will refer to the above norm that is based on trimming the smallest n−k values
of the coordinates of x as trimmed p-norm. Mudholkar and Friemer (1985) considered
following as a generalization:

(3.3) φT (x) = φ(x(1), ..., x(k)),

for k ≤ n, where φ ∈ Φk is a SGF of k coordinates. We will call φT as a trimmed
SGF, in the sense that it trims away the smallest n − k coordinates of x(1), ..., x(n).
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This indeed gives Ky-Fan k-norm and Schattten p-norm as special cases. It can be
further generalized to ordinally weighted norms obtained by considering the SGF

(3.4) φTw(x) = φ(w1x(1), ..., wkx(k)),

for k ≤ n where 1 = w1 ≥ w2 ≥ ... ≥ wn ≥ 0.

Without loss of generality, we take k = n by defining wk+1 = .... = wn in case
k is strictly less than n, and denote the corresponding SGF by φw(x). It is proved
below that φw(x) is indeed a norm for x ∈ Rn, and hence φw(s) defines an unitarily
invariant norm for A ∈ B(H). Such a SGF will be said to generate an ordinally
weighted unitarily invariant norm. The value of w1 could be taken to be any positive
value, however, without loss of generality it will be taken to be 1.

Lemma 3.1 (see Exercise IV.1.19, Bhatia (1997)). For x ∈ Rn, φw(x) defined in
(3.4) satisfies the following properties:

(i) φw(x) ≥ 0, with equality iff x = 0;
(ii) φw((cx) = |c|φ(x) for any scalar c;
(iii) φw((x1 + x2) ≤ φ(x1) + Φ(x2);
(iv) for any combinations of sign changes, εi = ±1 and for any permutation

(j1, j2, ..., jn) of (1, 2, ..., n), φ(x1, ..., xn) = φ(ε1xj1 , ..., εnxjn).

Proof: Below we verify the properties of the SGF:
(i):

φw(x) = 0 =⇒ wix(i) = 0,∀i
=⇒ w1x(1) = 0

=⇒ x(1) = 0 since w1 > 0.

=⇒ x(i) = 0 ∀i.
(ii):

φw(cx) = φ(cw1x(1), ...cwnx(n))

= |c|φ(w1x(1), ...wnx(n))

= |c|φw(x(1), ..., x(n))

(iii): To prove the triangle inequality of φw let us recall the concept of weak majoriza-
tion and Mirsky’s (1960) theorem (see Bhatia (1997), pp. 45).

Definition 3.1. We say that a vector x ∈ Rn is weakly majorized by y ∈ Rn, and
write x ≺w y if

k∑
j=1

x(j) ≤
k∑
j=1

y(j), k = 1, 2, ..., n,

where x(i), i = 1, 2, ..., n denote n ordered values of x1, ..., xn.
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Theorem 3.1. Let x,y ∈ R+
n . Then

x ≺w y

is necessary and sufficient condition for the relation

φ(x) ≤ φ(y)

to hold for every symmetric gauge function φ.

It follows from the Corollary II.4.3, Bhatia (1997) (see Eq. (II.36)) that for x,y ∈
Rn

(3.5) (x1y1, ..., xnyn) ≺w (x(1)y(1), ..., x(n)y(n))

and hence for any permutation σ = (j1, j2, ..., jn) of (1, 2, ..., n)

(3.6) (w1xj1 , ...wnxjn) ≺w (w1x(1), ...wnx(n)).

Therefore using the properties of a symmetric gauge function, it follows from (3.6)
and Theorem (3.1) that for

(3.7) φw(x + y) = φ(w.(x + y)σ)

where
w.x = (w1x1, ..., wnxn),

we have

φw(x + y) ≤ φ(w.xσ) + φ(w.yσ)

≤ φ(w1x(1), ...wnx(n)) + φ(w1y(1), ...wny(n))

= φw(x) + φw(y).

(iv):
Since |(ε.x)| = |x| and for any permutation matrix J , |Jx|(i)) = |x|(i), it follows that

φw(J(ε.x)) = φw(x).

This completes the verification that φw(x) defines a SGF.

As a special case of the SGF (3.4), the norm given by

(3.8) φk,pw (x) =

(
k∑
i=1

wix
p
(i)

)1/p

with w1 = ... = wk = 1, wk+1 = .... = wn = 0 gives Ky-Fan k, p norm.

The choice wk+1 = .... = wn = 0 gives the ordinally weighted version of Mudholkar-
Friemer trimmed norm given in Eq. (3.3).

The next section is devoted to a discussion of the polars of ordinally weighted SGF’s
given by (3.4).
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4. Polars of Ordinally Weighted Symmetric Gauge Functions

Mudholkar and Friemer (1985) prove the following important theorem that is useful
in computing polar of a trimmed SGF (3.3).

Theorem 4.1 (Mudholkar and Friemer (1985), Theorem 3.3). Let φT ∈ Φn be the
SGF derived from φ ∈ Φk, k ≤ n according to (3.3). Then the polar φ0

T ∈ Φn of φT is
given by

φ0
T (y) = φ0(y(1), ..., y(m), ȳ, ...ȳ)

where φ0 ∈ Φk is the polar of φ, y(1) ≥ y(2) ≥ ..., y(n) ≥ 0 are the ordered values of the
magnitudes |yi| of the coordinates of y ∈ Rn,m is obtained such that

y(m+1) ≤
n∑

j=m+1

y(j)/(k −m) < y(m)

and ȳ =
∑n

j=m+1 y(j)/(k −m).

The uniqueness of the integer m is guaranteed according to Lemma 3.1 of Mud-
holkar and Friemer (1985). It readily provides the polar of the ordinally weighted
trimmed norm (3.4).

Corollary 4.1. Let φTw ∈ Φn be the SGF derived from φ ∈ Φk, k ≤ n according to
(3.4). Then the polar φ0

Tw ∈ Φn of φTw is given by

φ0
Tw(y) = φ0(w1y(1), ..., wmy(m), ȳw, ...ȳw)

where φ0 ∈ Φk is the polar of φ, y(1) ≥ y(2) ≥ ..., y(n) ≥ 0 are the ordered values of the
magnitudes |yi| of the coordinates of y ∈ Rn,m is obtained such that

wm+1y(m+1) ≤
n∑

j=m+1

wjy(j)/(k −m) < wmy(m)

and ȳw =
∑n

j=m+1wjy(j)/(k −m).

4.1. Polar of weighted Ky-Fan k, p Norm. Ordinally weighted k − p norms (for
p ≥ 1) can be defined as a generalization of (3.2). For a vector x ∈ Rn, define ‖x‖w,kp
as

‖x‖w,kp =

(
k∑
i=1

wix
p
(i)

)1/p

,

for k ≤ n, and 1 = w1 ≥ w2 ≥ ... ≥ wk > 0.

The computation of the polars of these norms is simplified by recognizing that
‖x‖w,kp = φKp(y) as the usual Ky-Fan k, p (see (3.2)) norm in variable y where
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yi = wi
1/px(i), i = 1, 2, ..., n. Then we use the results from Mudholkar and Freimer

(1985) for the dual φ0(y) of φ(y) = (
∑k

i=1 y
p
(i))

1/p, as given by

φ0(y) =

(
r∑
i=1

yq(i) + (k − r)ȳq)

)1/q

,

where r is an integer such that

y(r+1) ≤
n∑

j=r+1

y(j)/(k − r) < y(r)

and

ȳ =
n∑

j=r+1

y(j)/(k − r).

Note that from the above, we find the dual of Ky-Fan k-norm (for p = 1) as

(4.1) φ0
K(y) = max(y(1),

1

k

n∑
j=1

y(j)),

and that for the Ky Fan k, p norm (for p ≥ 2) is given by

(4.2) φ0
Kp(y) = (

r∑
i=1

yq(j) + (k − r)ȳq)1/q.

An explicit form of the expression for the polar of the ordinally weighted version
of the Ky-Fan n-norm is given by

‖x‖0w,k1 = max(x+i /w
+
i ),

where x+(i) = x(1) + ...+ x(i). This may be obtained using the following lemma.

Lemma 4.1. For x,y ∈ Rn, we have the following sharp inequality:

x′y ≤ ‖x‖w,n1 max(y+(i)/w
+
i )

where y+(i) = y(1) + ...+ y(i).

Proof: First note the following alternative way of representing the sum
∑n

i=1 aibi as

n∑
i=1

aibi =
n∑
i=1

a+i b
−
i ,

where

a+i = a1 + ...+ ai; i = 1, ..., n

b−i = bi − bi+1; bn+1 = 0.
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This implies

‖x‖w,k1 =
k∑
i=1

w+
i x
−
(i),

where it is explicitly assumed that wk+1 = ... = wn = 0. Then by the standard
rearrangement inequality

n∑
i=1

xiyi ≤
n∑
i=1

x(i)y(i)

and since necessarily w1 > 0, w+
i > 0,∀i = 1, 2, ..., n we have

n∑
i=1

xiyi ≤
n∑
i=1

y+(i)x
−
(i)

≤
n∑
i=1

(w+
i x
−
(i))(y

+
(i)/w

+
i )

≤ ‖x‖w,n1 max(y+i /w
+
i ).

The sharpness of the inequality follows by choosing

(4.3) yi = wi max(x+i )

as both sides of the inequality equal to
∑n

i=1 xiwi max(x+i ).

4.2. Particular Cases.

(1). For p = 1, and w1 = ...wk = 1 and wj = 0, j > k, we get the Ky Fan k− norm.
In this case w+

i = i, i = 1, ..., k and w+
i = k for i > k. Thus,

max(x+(i)/w
+
i ) = max(

1

i

i∑
j=1

x(i), i = 1, 2, ..., k;
1

k

n∑
j=1

x(j)).

Since

x+i /w
+
i − x+i+1/w

+
i+1 =

1

i(i+ 1)
{(x(1) + ...+ x(i) − ix(i+1)}

=
1

i(i+ 1)

i∑
j=1

(x(j) − x(i+1))

≥ 0, for i = 1, 2, ..., k.

we have

max
i

(
1

i

i∑
j=1

x(i), i = 1, 2, ..., k) = x(1),

and we get

max
i

(x+i /w
+
i ) = max

(
x(1),

1

k

n∑
j=1

x(j)

)
.
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The same expression is obtained using the formula of Mudholkar and Friemer
(1985).

(2). Consider k = 2 and p = 2 then wj = 0, j ≥ 3. In this case from Eq. (2.26) of
Friemer and Mudholkar (1984), we get

‖x‖0w,22 =

{
(x2(1) + w2x

2
(2))

1/2 if x(1) ≥
√
w2x(2)

(x(1) +
√
w2x(2))/

√
2 if x(1) <

√
w2x(2).
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