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POSITIVE LINEAR MAPS AND SPREADS OF
MATRICES

RAJENDRA BHATIA AND RAJESH SHARMA

There is an interesting theorem in linear algebra which says that the
eigenvalues of a normal matrix are more spread out than its diagonal
entries; i.e., if A = [aij] is an n × n normal matrix with eigenvalues
λ1(A), . . . , λn(A), then

max
i,j
|aii − ajj| ≤ max

i,j
|λi(A)− λj(A)| . (1)

It is customary to call the quantity on the right-hand side of (1) the
spread of A, and denote it by spd(A). Then the inequality (1) can be
stated as

spd(diag(A)) ≤ spd(A). (2)

One proof of this goes as follows. Let 〈x, y〉 be the standard inner

product on Cn defined as 〈x, y〉 =
n∑
i=1

xi yi, and let ‖x‖ = 〈x, x〉1/2 be

the associated norm. The set

W (A) = {〈x,Ax〉 : ‖x‖ = 1} , (3)

is called the numerical range of the matrix A. If A is normal, then using
the spectral theorem, one can see that W (A) is the convex polygon
spanned by the eigenvalues of A. So spd(A) is equal to the diameter
diam(W (A)). The diagonal entry aii = 〈ei, Aei〉 evidently is in W (A).
So, we have the inequality (1).

The Toeplitz-Hausdorff Theorem is the statement that for every ma-
trix A, the numerical range W (A) is a convex set. It contains all the
eigenvalues of A (in (3) choose x to be an eigenvector of A). So, we
always have diamW (A) ≥ spd(A). Chapter 1 of [4] contains a com-
prehensive discussion of the numerical range, and all these facts can
be found there.

In the special case when A is Hermitian, we can arrange its eigen-
values in decreasing order as λ↓1(A) ≥ · · · ≥ λ↓n. Then W (A) is the

interval
[
λ↓n(A), λ↓1(A)

]
, and the inequality (1) says

max
i,j
|aii − ajj| ≤ λ↓1(A)− λ↓n(A). (4)

1



2 RAJENDRA BHATIA AND RAJESH SHARMA

The inequality (2) is not always true for arbitrary matrices. For

example, the 2× 2 matrix

[
1 1/4
−1 0

]
has eigenvalue 1/2 with mul-

tiplicity 2. In this case spd(A) = 0, but spd(diag(A)) = 1.
It is not always easy to find the eigenvalues of a matrix, and the

importance of relations like (1) lies in the information they give about
eigenvalues in terms of matrix entries. Many authors have found dif-
ferent lower bounds for spd(A) in which the left-hand side of (1) is
replaced by a larger quantity or by some other function of entries of
A. The aim of this note is to propose a method by which many of the
known results, and some new ones, can be obtained.

Let M(n) be the space of all n × n complex matrices. A linear
map Φ from M(n) to M(k) is said to be positive if Φ(A) is positive
semidefinite whenever A is. It is said to be unital if Φ(I) = I. In the
special case when k = 1, such a Φ is called a positive, unital, linear
functional, and it is customary to represent it by the lower case letter
ϕ. We refer the reader to [1] for properties of such maps.

The space M(n) is a Hilbert space with the inner product 〈A,B〉 =
trA∗B. As a consequence, every linear functional on M(n) has the
form ϕ(A) = trAX for some matrix X. This functional is positive if
and only ifX is positive semidefinite, and unital if and only if trX = 1.
(Positive semidefinite matrices with trace 1 are called density matri-
ces in the physics literature.) Let α1, . . . , αn be the (necessarily real
and nonnegative) eigenvalues of X and let u1, . . . , un be a correspond-
ing orthonormal set of eigenvectors. If T is any n × n matrix, and

u1, . . . , un is an orthonormal basis of Cn, then tr T =
n∑
j=1

〈uj, Tuj〉.

Hence

ϕ(A) = trAX =
n∑
j=1

〈uj, AXuj〉 =
n∑
j=1

αj〈uj, Auj〉.

Since
∑
αj = 1, this shows that ϕ(A) is a convex combination of

the complex numbers 〈uj, Auj〉, each of which is in W (A). So, by the
Toeplitz-Hausdorff Theorem ϕ(A) is also in W (A). So, there exists a
unit vector y (depending on A) such that ϕ(A) = 〈y, Ay〉. Thus the
numerical range W (A) is also the collection of all complex numbers
ϕ(A) as ϕ varies over positive unital linear functionals. So, if ϕ1 and
ϕ2 are any two such functionals, then

|ϕ1(A)− ϕ2(A)| ≤ diamW (A). (5)

The following theorem, which is of independent interest, is an exten-
sion of this observation.
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We use the notation ‖A‖ for the operator norm of A defined as
A = sup {‖Ax‖ : ‖x‖ = 1} . If s1(A) ≥ · · · ≥ sn(A) are the decreas-
ingly ordered singular values of A, then ‖A‖ = s1(A). If A is normal,
then this means that ‖A‖ = max

j
|λj(A)| . If A is Hermitian, then

‖A‖ = max
‖x‖=1

|〈x,Ax〉| . These facts about the norm ‖ · ‖ are used in the

following discussion. If A and B are two Hermitian matrices, we say
A ≥ B if A−B is positive semidefinite.

Theorem. Let Φ1,Φ2 be any two positive unital linear maps from
M(n) into M(k). Then

(i) For every Hermitian A in M(n)

‖Φ1(A)− Φ2(A)‖ ≤ diamW (A). (6)

(ii) If n = 2, then the inequality (6) holds also for all normal
matrices A.

Proof. If A is an n×n Hermitian matrix, then λ↓n(A)I ≤ A ≤ λ↓1(A)I.
The linear maps Φj, j = 1, 2, preserve order and take the identity I in

M(n) to I in M(k). So we have λ↓n(A)I ≤ Φj(A) ≤ λ↓1(A)I, j = 1, 2.
From this we obtain

Φ1(A)− Φ2(A) ≤
(
λ↓1(A)− λ↓n(A)

)
I

and

Φ2(A)− Φ1(A) ≤
(
λ↓1(A)− λ↓n(A)

)
I.

Now if X is a Hermitian matrix and ±X ≤ αI, then |λj(X)| ≤ α for
all j, and hence ‖X‖ ≤ α. So, we have the inequality (6).

Now suppose n = 2. If A is a 2×2 normal matrix, then A = λP+µQ,
where λ, µ are the eigenvalues of A and P,Q are the corresponding
eigenprojections. We have P +Q = I, and hence Φj(P ) + Φj(Q) = I.
Hence

Φ1(A)− Φ2(A) = λΦ1(P ) + µΦ1(Q)− λΦ2(P )− µΦ2(Q)

= λ(I − Φ1(Q)) + µΦ1(Q)− λ(I − Φ2(Q))− µΦ2(Q)

= (λ− µ)(Φ2(Q)− Φ1(Q)).

Hence,

‖Φ1(A)− Φ2(A)‖ ≤ |λ− µ| ‖Φ2(Q)− Φ1(Q)‖. (7)

Since 0 ≤ Q ≤ I, we have 0 ≤ Φj(Q) ≤ I, and hence ‖Φj(Q)‖ ≤
1 for j = 1, 2. If X, Y are positive semidefinite, then ‖X − Y ‖ ≤
max(‖X‖, ‖Y ‖). So, the inequality (7) shows that ‖Φ1(A)−Φ2(A)‖ ≤
|λ− µ|. This proves part (ii) of the Theorem.
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When n = 3 the inequality (6) is not valid for all normal matrices.
For nonnormal matrices it need not hold even when n = 2. Let Φ1 be
the map that takes a 3 × 3 matrix A to its top left 2 × 2 block, and
let Φ2 be the map that takes A to its bottom right 2× 2 block. Then
Φ1,Φ2 are positive unital linear maps from M(3) into M(2). Let

A =

 0 1 0
0 0 −1
1 0 0

 .
Then A is normal, and its eigenvalues are the three cube roots of −1.

So diamW (A) =
√

3, but ‖Φ1(A) − Φ2(A)‖ =

∣∣∣∣∣∣∣∣[ 0 2
0 0

]∣∣∣∣∣∣∣∣ = 2, and

the inequality (6) breaks down. Let Φ1 : M(2) → M(2) be the map

defined as Φ1(A) =

(
1
2

∑
i,j

aij

)
I, and let Φ2(A) = A. If X is a positive

semidefinite matrix of any order n and e the all-ones n-vector, then∑
i,j

xij = 〈e,Xe〉 ≥ 0. So Φ1 defined above is a positive unital linear

map. Choose A =

[
0 1
0 0

]
. A little calculation shows that W (A) is

the disk of radius 1/2 centred at the origin. So, diamW (A) = 1. On

the other hand the matrix Φ1(A) − Φ2(A) =

[
1/2 −1
0 1/2

]
, and its

norm is bigger than 1. (The norm ‖X‖ can not be smaller than the
Euclidean norm of any column of X.)

Interesting lower bounds for spd(A) of normal and Hermitian ma-
trices can be obtained from (5) and (6). We illustrate this with a few
examples.

Let ϕ1, ϕ2 be linear functionals on M(n) defined for i 6= j as

ϕ1(A) =
1

2

(
aii + ajj + aij e

iθ + aji e
−iθ)

ϕ2(A) =
1

2

(
aii + ajj − aij eiθ − aji e−iθ

)
.

Both ϕ1 and ϕ2 are positive and unital. (Positivity is a consequence
of the fact that if A is positive semidefinite, then |aij| ≤

√
aiiajj ≤

1
2
(aii + ajj).) So, from (5) we see that for every normal matrix A

spd(A) ≥
∣∣aij eiθ + aji e

−iθ∣∣ .
This is true for every θ. The maximum value of the right-hand side
over θ is |aij|+ |aji|. Thus for every normal matrix A we have

spd(A) ≥ max
i 6=j

(|aij|+ |aji|) . (8)
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This was first proved by L. Mirsky. See Theorem 3 (iii) in [7]. When
A is Hermitian, this says

spd(A) ≥ 2 max
i 6=j
|aij|. (9)

Another result of Mirsky, Theorem 2 in [7], subsumes both the in-
equalities (4) and (9). It says that for every Hermitian matrix A, we
have

spd(A)2 ≥ max
i 6=j

(
(aii − ajj)2 + 4 |aij|2

)
. (10)

This can be obtained from (6) as follows. Let

Φ1(A) =

[
aii aij
aij ajj

]
, Φ2(A) =

[
ajj −aij
−aij aii

]
.

Then Φ1 and Φ2 are positive, unital, linear maps, and

Φ1(A)− Φ2(A) =

[
aii − ajj 2 aij

2 aij ajj − aii

]
.

This is a Hermitian matrix with trace 0. Its eigenvalues are ±α, where
α = (aii − ajj)2 + 4 |aij|2. So ‖Φ1(A) − Φ2(A)‖ = α. The inequality
(10) then follows from (6).

Next let ϕ1(A) = 1
n

∑
i,j

aij, and ϕ2(A) = 1
n

(
trA− 1

n−1
∑
i 6=j

aij

)
.

Both are unital linear functionals. We have already observed ϕ1 is
positive. We claim ϕ2 is also positive. If A is any Hermitian matrix,
then ∑

i 6=j

aij = 2 Re
∑
i 6=j

aij ≤ 2
∑
i 6=j

|aij|.

If further A is positive semidefinite, then we have |aij| ≤ 1
2
(aii + ajj).

Combining these two inequalities, one sees that
∑
i 6=j

aij ≤ (n− 1) trA.

So the linear functional ϕ2 is positive. The inequality (5) now shows
that for every normal matrix A we have

spd(A) ≥ 1

n− 1

∣∣∣∣∣∑
i 6=j

aij

∣∣∣∣∣ . (11)

This inequality is stated as Theorem 2.1 in [5] and as Theorem 5 in
[6], and is proved there by other arguments.

Many more inequalities, some of them stronger and more intricate
than the ones we have discussed, can be obtained choosing other posi-
tive maps. Enhancing this technique, we have the inequality of Bhatia
and Davis [2]. This says that if Φ is a positive unital linear map, then
for every Hermitian matrix A

Φ(A2)− Φ(A)2 ≤ 1

4
spd(A)2. (12)
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Again choosing different Φ a variety of inequalities can be obtained.
This is demonstrated in [3].
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