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1 Introduction

This is continuation of our earlier work in [3] and [4]. Its goal is to show how positive

linear maps can be used to obtain matrix inequalities. Our focus in this paper is on lower

bounds for the spread of a matrix, a topic much studied since the work of L. Mirsky [6]

in 1956.

Let M(n) be the space of n× n complex matrices. Associated with any element A of

M(n) are the following quantities of interest to us:

(i) The spread of A, denoted spd(A), is defined as

spd (A) = max
1≤i,j≤n

|λi (A)− λj (A)| ,

where λ1 (A) , ..., λn (A) are the eigenvalues of A.

(ii) r(A) is the radius of the smallest disk in the plane that includes all eigenvalues

of A.

(iii) The numerical range of A is the set

W (A) = {〈x, Ax〉 : ‖x‖ = 1} .

This is a convex subset of the plane. Its diameter is denoted as diam W (A).

(iv) The distance of A to scalar matrices

∆(A) = inf
z∈C
‖A− zI‖ .

Here ‖A‖ stands for the operator norm of A.

There are some relationships between these quantities:

If all eigenvalues of A are real, then spd(A) = 2r(A). In particular, this is so if A is

Hermitian. In the general case, spd(A) ≥
√

3r(A).

For every A we have ∆ (A) ≥ r(A), and there is equality here if A is normal. Likewise

diam W (A) ≥ spd(A) for every A, and there is equality here if A is normal. (See, [3],

[4]).

In particular, when A is Hermitian, we have

∆ (A) = r (A) =
1

2
spd (A) =

1

2
diam W (A).

A linear map Φ : M(n) → M(k) is called positive if Φ(A) is positive semidefinite

(psd) whenever A has that property, and unital if Φ (I) = I. When k = 1, such a map is

called a positive, unital, linear functional and is denoted by the lower case letter ϕ.
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In [2] Bhatia and Davis showed that if Φ is any positive unital linear map, and A is

any Hermitian matrix, then

Φ(A2)− Φ(A)2 ≤ 1

4
spd (A)2 . (1.1)

In [3] we extended this by showing that for every matrix A we have the inequality

Φ(A∗A)− Φ(A)∗Φ(A) ≤ ∆ (A)2 . (1.2)

The quantities on the left-hand sides of (1.1) and (1.2) are analogues of ”variance” in

classical probability, and the motivation for Bhatia and Davis was to find an upper

bound for this. This can be turned around and we can use these inequalities to obtain

lower bounds for spd(A) and ∆ (A). In [3] we showed how judicious choices of Φ lead to

interesting bounds, some old and some new.

In our more recent work [4] we have augmented this technique with another use of

positive unital linear maps. We showed that if Φ1,Φ2 are positive unital linear maps

from M(n) into M(k), then for every Hermitian A in M(n) we have

‖Φ1 (A)− Φ2 (A)‖ ≤ diam W (A). (1.3)

This inequality does not hold in general, except that when n = 2, it is valid also for

every normal matrix A. However, we do have the following: if ϕ1, ϕ2 are positive unital

linear functional on M(n), then for every matrix A in M(n)

|ϕ1 (A)− ϕ2 (A)| ≤ diam W (A). (1.4)

As we have remarked, for normal matrices diam W (A) = spd(A). So using (1.3) and

(1.4) we can obtain lower bounds for spreads of normal matrices. The efficacy of this

method was illustrated in [4]. In this paper we carry this further.

2 Lower bounds for the spread

Among the earliest results on this problem is one of Mirsky’s theorems [6] that says that

if A = [aij] is a Hermitian matrix, then

spd (A)2 ≥ max
i 6=j

(
(aii − ajj)2 + 4 |aij|2

)
. (2.1)

We remark here that for every scalar c, the matrices A and A + cI have the same

spread. So, a ”right” bound for spd(A) should involve not the magnitudes of the diagonal
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elements but only their differences, whereas the off-diagonal elements may be represented

by their magnitudes. In [4] we have shown that the inequality (2.1) can be derived from

(1.3) upon choosing

Φ1 (A) =

[
aii aij

aji ajj

]
and Φ2 (A) =

[
ajj −aij
−aji aii

]
, i 6= j.

A stronger inequality than (2.1) was obtained by Barnes and Hoffman [1]. This says that

for every normal matrix A,

4 r(A)2 ≥ max
i,j

{
|aii − ajj|2 + 2

∑
k 6=i

|aki|2 + 2
∑
k 6=j

|akj|2
}

. (2.2)

In [3] we have obtained a version of this for all matrices A, in which the left-hand side

of (2.2) is replaced by 4 ∆ (A)2. This can be obtained from (1.2) upon choosing

ϕ(A) =
1

2
(aii + ajj) .

In [5] Jiang and Zhan have obtained several lower bounds for the spread of Hermitian

matrices, among which is a stronger inequality than (2.2). We now show how these

bounds, and improvements thereof, can be obtained by our technique.

To save space, let us introduce the quantity

hij(A) = |aii − ajj|2 + 2
∑
k 6=i

|aki|2 + 2
∑
k 6=j

|akj|2 . (2.3)

For Hermitian matrices, the inequality (2.2) says that

spd (A)2 ≥ max
i,j

hij(A). (2.4)

Let i 6= j, and consider the linear map Φ from M (n) into M (2) defined as

Φ(A) =

[
aii+ajj

2
aij

aji
aii+ajj

2

]
.

Then Φ is positive and unital. Let A be any Hermitian matrix. A calculation shows that

Φ(A2)− Φ(A)2 =


hij(A)

4
− |aij|2

∑
k 6=i,j

aikajk∑
k 6=i,j

aikajk
hij(A)

4
− |aij|2

 .
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This is a positive semidefinite matrix of the form

[
b c

c b

]
. The norm of such a matrix

is b+ |c| . Thus

∣∣∣∣Φ(A2)− Φ(A)2
∣∣∣∣ =

hij (A)

4
− |aij|2 +

∣∣∣∣∣∑
k 6=i,j

aikajk

∣∣∣∣∣ .
So, from (1.1) we obtain

spd (A)2 ≥ hij (A)− 4 |aij|2 + 4

∣∣∣∣∣∑
k 6=i,j

aikajk

∣∣∣∣∣ .
If aij = 0, we have an improvement of the inequality (2.4), which says

spd (A)2 ≥ hij (A) + 4

∣∣∣∣∣∑
k 6=i,j

aikajk

∣∣∣∣∣ . (2.5)

If aij 6= 0, we proceed in another way. Let α be any complex number with |α| ≤ 2, and

define

ϕ (A) =
aii + ajj

2
+ i

αaji − αaij
4

, i 6= j.

Then ϕ is a linear functional on M (n) , and unital. If A is Hermitian, then

ϕ (A) =
aii + ajj + Im (αaij)

2
, i 6= j.

It follows that ϕ is positive. A calculation shows that for every Hermitian A

Φ(A2)− Φ(A)2 =
1

4

{
hij (A)− (Im (αaij))

2 + 2

∣∣∣∣∣Im
(
α
∑
k 6=i,j

aikakj

)∣∣∣∣∣
}
.

If we choose α =
2aij
|aij | , then Im (αaij) = 0, and the equality above combined with (1.1)

gives

spd (A)2 ≥ hij (A) + 4

∣∣∣∣∣Im aij
∑
k 6=i,j

aikakj

∣∣∣∣∣
|aij|

. (2.6)

Again, this is an improvement of the inequality (2.4), valid in the case aij 6= 0.

Together, (2.5) and (2.6) may be written as

spd (A)2 ≥ max
i 6=j

(hij(A) + eij(A)) , (2.7)
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where eij(A) is the positive quantity represented by the last term in (2.5) in case aij = 0,

and the last term in (2.6) in case aij 6= 0. This is Theorem 3 of Jiang and Zhan [5].

Theorem 4 in [5] is proved for real symmetric matrices. We now show how to extend

this in two different directions. We derive an inequality valid for all Hermitian matrices

(not necessarily real) and another for all real matrices (not necessarily symmetric).

Theorem 1. Let A be a Hermitian matrix, and let

α1 =

∣∣∣∣∣ ∑k 6=i,j

aikakj

∣∣∣∣∣
2 |aij|2

,

and

gij (A) =



4

∣∣∣∣∣ ∑k 6=i,j

aikakj

∣∣∣∣∣ if aij = 0

4α2
1 |aij|

2 if α1 ≤ 1

4 (2α1 − 1) |aij|2 if α1 ≥ 1.

Then

spd (A)2 ≥ max
i 6=j

(hij(A) + gij(A)). (2.8)

Proof. Let −1 ≤ β ≤ 1, and define

Φ (A) =

[
aii+ajj

2
βaij

βaji
aii+ajj

2

]
, i 6= j .

Then Φ is a positive unital linear map. A simple calculation shows that for β ≥ 0,

∣∣∣∣Φ(A2)− Φ(A)2
∣∣∣∣ =

hij
4

+ β

∣∣∣∣∣∑
k 6=i,j

aikakj

∣∣∣∣∣− β2 |aij|2 = f (β) (say). (2.9)

It follows from (1.1) and (2.9) that

spd (A)2 ≥ 4f (β) . (2.10)

For α1 ≤ 1, f (β) has its maximum at β = α1 and for α1 > 1 or aij = 0, f (β) has its

maximum at β = 1. So, (2.10) gives (2.8). �
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Note that if α1 ≥ 1, then

|aij|2 +

∣∣∣∣∣2 |aij|2 −
∣∣∣∣∣∑
k 6=i,j

aikakj

∣∣∣∣∣
∣∣∣∣∣ = (2α1 − 1) |aij|2 ≤

∣∣∣∣∣ ∑k 6=i,j

aikakj

∣∣∣∣∣
2

(2 |aij|)2
.

Also, if α1 ≤ 1, then

|aij|2 +

∣∣∣∣∣2 |aij|2 −
∣∣∣∣∣∑
k 6=i,j

aikakj

∣∣∣∣∣
∣∣∣∣∣ ≥

∣∣∣∣∣ ∑k 6=i,j

aikakj

∣∣∣∣∣
2

(2 |aij|)2
= α2

1 |aij|
2 .

So an equivalent expression for gij, as obtained in Theorem 4 in [5] for real symmetric

matrix is

gij =


4

∣∣∣∣∣ ∑k 6=i,j

aikakj

∣∣∣∣∣ if aij = 0

4 min

|aij|2 +

∣∣∣∣∣2 |aij|2 −
∣∣∣∣∣ ∑k 6=i,j

aikakj

∣∣∣∣∣
∣∣∣∣∣ ,

∣∣∣∣∣ ∑k 6=i,j
aikakj

∣∣∣∣∣
2

(2|aij |)2

 otherwise.

Theorem 2. Let A be any matrix, and let

α2 =

2

∣∣∣∣∣Re

(
2
∑
k 6=i,j

akiakj + (aii − ajj) (aij − aji)

)∣∣∣∣∣
|aij + aji|2

,

and

ηij (A) =



2

∣∣∣∣∣Re

(
2
∑
k 6=i,j

akiakj + (aii − ajj) (aij − aji)

)∣∣∣∣∣ if aij + aji = 0

1
4
α2
2 |aij + aji|2 if α2 ≤ 2

(α2 − 1) |aij + aji|2 if α2 ≥ 2.

Then

4 ∆ (A)2 ≥ max
i 6=j

(
hij (A) + ηij (A)

)
. (2.11)
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Proof. Let

ϕ (A) =
aii + ajj

2
+ β

aij +aji
4

, i 6= j .

Then ϕ is a positive unital linear functional whenever −2 ≤ β ≤ 2. So, we have

ϕ (A∗A)− ϕ (A)∗ ϕ (A) =
hij
4
− β2

16
|aij + aji|2

+
β

4

∣∣∣∣∣Re

(
2
∑
k 6=i,j

akiakj + (aii − ajj) (aij − aji)

)∣∣∣∣∣ (2.12)

= f (β) (say).

From (1.2) and (2.12),

∆ (A)2 ≥ f (β) . (2.13)

For α2 ≤ 2, f (β) has its maximum at β = α2; and if α2 ≥ 2 or aij +aji = 0, f (β) has

its maximum at β = 2. So, the inequality (2.11) follows from (2.13). �

Our next theorem generalises Theorem 5 of [5] from Hermitian to arbitrary matrices.

Theorem 3. Let A be any matrix. If∣∣∣∣∣∑
k 6=i

|aki|2 −
∑
k 6=j

|akj|2
∣∣∣∣∣ ≤ |aii − ajj|2 , (2.14)

then

4 ∆ (A)2 ≥ max
i,j

hij +
1

|aii − ajj|2

(∑
k 6=i

|aki|2 −
∑
k 6=j

|akj|2
)2
 . (2.15)

If the reverse of inequality (2.14) holds , then

∆ (A)2 ≥ max
i

∑
k 6=i

|aki|2 . (2.16)

Proof. Let 0 ≤ p ≤ 1 and put

ϕ (A) = paii + (1− p) ajj .

Then ϕ is a positive unital linear functional. We have

ϕ (A∗A)− ϕ (A)∗ ϕ (A) = p (1− p) |aii − ajj|2

+p
∑
k 6=i

|aki|2 + (1− p)
∑
k 6=j

|akj|2 (2.17)

= f (p) (say).
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From (1.2) and (2.17),

∆ (A)2 ≥ f (p) . (2.18)

If (2.14) holds, then the function f (p) has its maximum at

p =
1

2
+

∑
k 6=i

|aki|2 −
∑
k 6=j

|akj|2

2 |aii − ajj|2
.

In the opposite case, f (p) has its maximum at p = 1. The assertions of the theorem now

follow from (2.18). �

If A is Hermitian and (2.14) holds then

(aii − ajj)2 + 2
∣∣(aii − ajj)2 − fij∣∣ ≥ (fij)

2

(aii − ajj)2
,

where fij =

∣∣∣∣∣∑k 6=i

|aki|2 −
∑
k 6=j

|akj|2
∣∣∣∣∣ . In opposite case,

(aii − ajj)2 + 2
∣∣(aii − ajj)2 − fij∣∣ = 2fij − (aii − ajj)2 ≤

(fij)
2

(aii − ajj)2
.

From this we can see that if A is Hermitian then the above theorem gives Theorem 5 in

[5] when aii 6= ajj. If aii = ajj then Theorem 5 in [5] says that Spd(A)2 ≥ 2fij while our

theorem gives better bound (2.16).

Jiang and Zhan [5] prove four theorems (Theorems 3-6 in their paper). We have

shown how their Theorems 3-5 can be proved and strengthened using our methods. A

stronger and more general version of their Theorem 6 was obtained in our earlier paper

[3]; see Theorem 3.4 there.

We now turn to another well-known bound. Choosing ϕ (A) = trA
n

, we obtain from

(1.2)

∆ (A)2 ≥ 1

n
trA∗A− 1

n2
|trA|2 . (2.19)

For Hermitian A, this specializes to

1

4
spd (A)2 ≥ trA2

n
−
(

trA

n

)2

. (2.20)

The next theorem is a strengthening of this in the spirit of the discussion above.
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Theorem 4. Let A be an n× n Hermitian matrix. Let

α3 =

∣∣∣∣ n∑
k=1

aikakj − 2aij
trA
n

∣∣∣∣
2 |aij|2

,

and

wij (A) =



2
n

∣∣∣∣ n∑
k=1

aikakj

∣∣∣∣ if aij = 0

α2
3 |aij|

2 , if α3 ≤ 2
n

4
n2 (nα3 − 1) |aij|2 , if α3 ≥ 2

n
.

Then
1

4
spd (A)2 ≥ trA2

n
−
(

trA

n

)2

+ max
i 6=j

wij . (2.21)

Proof. Let

Φ (A) =

[
trA
n

βaij

βaji
trA
n

]
, i 6= j .

Then Φ is a positive unital linear map whenever − 2
n
≤ β ≤ 2

n
. For β ≥ 0, we have

∣∣∣∣Φ(A2)− Φ(A)2
∣∣∣∣ =

trA2

n
−
(

trA

n

)2

− β2 |aij|2 + β

∣∣∣∣∣
n∑

k=1

aikakj − 2aij
trA

n

∣∣∣∣∣ = f (β) (say).

(2.22)

It follows from (1.1) and (2.22) that

spd (A)2 ≥ 4f (β) . (2.23)

For α3 ≤ 2
n
, f (β) has its maximum at β = α3, and for α3 >

2
n

or aij = 0, f (β) has its

maximum at β = 2
n
. So, (2.23) implies (2.21). �

Another inequality, independent of (2.19), follows on choosing

ϕ (A) =
trA

n
± aij + aji

n
, i 6= j,

in (1.2). This says

∆ (A)2 ≥ max
i 6=j

{
tr (A∗A)

n
± 2

n
Re

(
n∑

k=1

aikakj

)
−
∣∣∣∣trAn ± aij + aji

n

∣∣∣∣2
}
. (2.24)

10



Complementary to (1.2) we have the inequality

Φ (AA∗)− Φ (A)∗Φ (A) ≤ ∆ (A)2 .

See [3]. Using this instead of (1.2) we can obtain different versions of some of the

subsequent inequalities.

Our next theorem gives a variant of (1.2) in the special case when A is normal and

ϕ is a linear functional.

Theorem 5. Let ϕ be a positive unital linear functional. Let A be any normal matrix.

Then

ϕ (A∗A)− |ϕ (A)|2 +
∣∣ϕ (A2

)
− ϕ (A)2

∣∣ ≤ spd(A)2

2
. (2.25)

Proof. If A is normal, then spd(A) ≥ spd(A+A∗

2
). Also, if z is any complex number

with |z| = 1, then spd(A) = spd(zA). Hence

spd(A) ≥ spd

(
zA+ zA∗

2

)
. (2.26)

A little calculation shows that for B = zA+zA∗

2
, we have

ϕ
(
B2
)
− ϕ (B)2 =

1

2
Re
{(
z2
(
ϕ
(
A2
)
− ϕ (A)2

))
+ ϕ (A∗A)− |ϕ (A)|2

}
. (2.27)

For any complex number a there is a complex number z with |z| = 1 such that Re (z2a) =

|a| . Therefore we can choose a complex number z with |z| = 1 such that

Re
(
z2
(
ϕ
(
A2
)
− ϕ (A)2

))
=
∣∣ϕ (A2

)
− ϕ (A)2

∣∣ . (2.28)

From (2.27) and (2.28), we have

2
(
ϕ
(
B2
)
− ϕ (B)2

)
= ϕ (A∗A)− |ϕ (A)|2 +

∣∣ϕ (A2
)
− ϕ (A)2

∣∣ . (2.29)

The inequality (2.25) now follows from the inequality (1.1). �

Choosing ϕ (A) = ajj, we obtain from (2.25)

spd(A)2 ≥ 2 max
j


∣∣∣∣∣

n∑
k 6=j

ajkakj

∣∣∣∣∣+
n∑

k 6=j

|ajk|2

 .

11



This is Theorem 9(i) of Merikoski and Kumar [7]. Theorem 9(ii) in [7] also follows from

(2.25) on choosing ϕ (A) = 1
n

n∑
i,j

aij. Likewise, the choice ϕ (A) =
aii+ajj

2
in (2.25) gives

Theorem 14 of [7].

Corollary 6. Let A be a normal matrix. Then

spd(A)2

2
≥ trA∗A

n
−
∣∣∣∣trAn

∣∣∣∣2 +

∣∣∣∣∣trA2

n
−
(

trA

n

)2
∣∣∣∣∣ . (2.30)

Proof. The inequality (2.30) is the particular case of (2.25) with ϕ (A) = trA
n
. �
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