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Abstract

Nonparametric estimation of densities defined over non-negative observations using
asymmetric kernels is of special interest as it has potential to remove the spill-over effect
at the boundary. One important problem in this context is the selection of the smoothing
parameter. The purpose of the this note is to review some recent work on the application
of Bayes criterion for this purpose and investigate its application in the context of length
biased data.

1 Introduction

In many applications the recorded observation may be assumed to have the probability density
function g(x), that is of the form

g(x) = µ−1
w w(x)f(x), x ∈ R

+, (1.1)



where f(x) is the original density, w(x) is a non-negative known function called the weighting
function,

µw = 1/Eg(1/w(X)) (1.2)

with X ∼ g(.). Patil and Rao [17] cite several examples including those generated by PPS
(probability proportional to size) sampling scheme (that is common in sample surveys), dam-
age models and sub-sampling [see also Rao [18], Patil and Rao [16] and Rao [19]]. Here,
we concentrate on the case when w(x) = x, a situation known as giving length-biased data
and where typically the observations are non-negative. Thus we consider a random sample
{X1, . . . , Xn} be n nonnegative independent and identically distributed (i.i.d.) random vari-
ables (r.v.) having a continuous probability density function (pdf) g(x), x ∈ R

+ = [0,∞)
given by

g(x) = µ−1xf(x), x ∈ R
+ (1.3)

where µ = (Eg(X
−1))−1 is the harmonic mean of X with the pdf g(.), and estimation of

f(x), x ∈ R
+ itself is of central importance. Here it is tacitly assumed that (0 <) < µ < ∞.

Note that µ ≤ Eg(X) = µ−1
∫∞

0 x2f(x)dx, or equivalently, µ2 ≤ Ef (Y
2) where Y has the

pdf f. Thus, assuming that Y has a finite 2nd moment insures that µ < ∞ (even finite first
moment of Y does so).

Bhattacharyya et al. [4] studied the kernel density estimator for f(x) obtained by using
the corresponding estimator for g(x) and the relation (1.3), replacing the unknown value µ by
its harmonic mean estimator as proposed by Cox [11]. Cox [11] also gave a direct estimator
of F (x) that has been used in proposing an alternative density estimator by Jones [13]. In
some aspects, Jones estimator performs much better than Bhattacharyya et al. estimator
[ see also Wu and Mao [22]]. However, in general the kernels used are symmetric around
zero the resulting density estimators may put a positive mass out side the support of f(.)
i.e. R

+ = [0,∞). This may also produce a large bias in the estimators for x near zero.
This problem has long been recognized in density estimation in the context of i.i.d. data
[see Silverman [21]], however, it becomes more pertinent for the length-biased data, as the
observations are necessarily non-negative.

In order to overcome these problems while dealing with non-negative data, several methods
estimating underlying density for non-negative random variables, specially using asymmetric
kernels have been proposed in literature. Bagai and Prakasa Rao [3] proposed replacing
the symmetric kernel k by a pdf k∗ with non-negative support. This certainly avoids the
problem of positive mass in the negative region; however, only the first r order statistics
are used for estimating f(x), where X(r) < x ≤ X(r+1), X(i) denoting the ith order statistic
that is an undesirable feature. Chaubey and Sen [7] proposed a density estimator as the
derivative of a smooth version of the edf by adapting the so called Hille’s smoothing lemma,
which, in contrast to the proposal of Bagai and Prakasa Rao [3], uses the whole data. This
has been adapted to the length-biased set-up by Chaubey, Sen and Li [9]. While trying
to develop smooth density estimators based on asymmetric kernels, Chen [10] proposed the
use of gamma density, whereas Scaillet [20] proposed using inverse Gaussian and reciprocal
inverse Gaussian densities. Another class of asymmetric kernel estimators in the i.i.d. context
has been proposed recently by Chaubey, et al. [6] that is motivated by generalization of the
estimator in Chaubey and Sen [7]. In a more recent paper Chaubey and Li [5] adapted the
above smoothing estimator to the length-biased density estimation and proposed two new
asymmetric kernel estimators, one based on the usual empirical distribution function and the
other one based on the Cox’s estimator.
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Kulasekera and Padgett [14] motivate these estimators, although in the context of censored
data, by the general form of the nonparametric density estimator given by

f̂(x) =

∫
k(x;u, h)dF̂n(u)du (1.4)

and find the following inverse Gaussian (IG) choice of the kernel (with mean u and dispersion
parameter 1/h) useful:

kKP (x;u, h) =
1√

2πhx3
e−( 1

2h
)
(x−u)2

u2x . (1.5)

Kulasekera and Padgett [14] note that the estimator f̂ based in the above kernel is a true
density while that using the reciprocal IG is not.

In these methods, selection of smoothing parameter may be numerically challenging. In
this paper we explore the idea of using Bayesian method of smoothing parameter selection,
inspired by the paper of Kulasekera and Padgett [14]. In this approach, we contrast some
alternative choices of asymmetric kernels.

Along with some preliminary notions, the proposed smooth estimators of f(.) are given
in Section 2. Section 3 is devoted to determination of the smoothing parameter using a
Bayesian perspective along with various alternative choices of asymmetric kernels and Section
4 addresses data based determination of the hyper parameters α and β. Section 5 contains
a numerical study comparing various choices of the smoothing parameters where as the final
section presents conclusions and discussion of the new methodology while illustrating it on a
real data set.

2 Preliminary Notions and Smooth Density Estimators

There are basically two strategies to be used to obtain the smooth estimator of f(x). One is
based on a smooth version Cox’s estimator Fn(x) that is given below:

Fn(x) =

∑n
i=1

1
Xi

I{Xi ≤ x}
∑n

i=1
1
Xi

. (2.1)

The other one is to first estimate g(x), that is obtained as the derivative of the smooth version
of the empirical distribution function

Gn(x) =
1

n

n∑

i=1

I{Xi ≤ x}, (2.2)

and then making some adjustments to obtain the estimator of underlying density f(x).
Chaubey and Li [5] and Jones [13] found that the density estimators based on smoothing
of Fn(x) have better performance. Thus the density estimators we consider in the sequel are
based on Fn. These are of the form

f̂h(x) =
n∑

i=1

sik(x;Xi, h) (2.3)

where

si =
1/Xi∑
i(1/Xi)

, (2.4)
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k is a kernel function and h is a smoothing parameter. This expression is motivated by the
general form of the nonparametric density estimators given by (1.4).

In the sequel, we will explore an alternative form of k(x;u, h) following Chaubey and
Li [5], that is required to be a density with respect to the argument u. This is based on the
following smooth estimator of the distribution function F (x) :

F̃n(x) =

∫ ∞

0
Fn(t)dQhn

(t/x) (2.5)

= 1−
∑n

i=1
1
Xi

Qhn
(Xi

x )
∑n

i=1
1
Xi

, (2.6)

where Qh(.) is a distribution function with mean 1 and variance h2. Thus a smooth estimator
of f obtained by differentiating F̃n(x) is given by

f̃n(x) =
1
x2

∑n
i=1 qhn

(Xi

x )
∑n

i=1
1
Xi

(2.7)

where qhn
(t) = d

dtQhn
(t). This estimator is of the same form as in (2.3) with k(x;u, h) given

by

k(x;u, h) =
u

x2
qh(u/x). (2.8)

As noted in [6], (2.7) may not be defined at x = 0, except in cases where limx→0 f̃n(x) exists.
Modifications have been discussed in Chaubey and Li [5] [see also Chaubey, Sen and Sen [8]].
However, this will not be pursued further in this paper and we may think of the methods
discussed here for estimating f(x) for x > 0 only. The following two alternative choices of
k(x;u, h) will be investigated here. The first one is obtained by choosing qh(.) to be the
inverse Gaussian distribution with parameters µ = 1 and λ = 1/h, i,e.

qh(u) =

√
1

2πhu3
exp

{
− 1

2hu
(u− 1)2

}

This provides the following choice of k(x;u, h) :

kCL(x;u, h) =
u

x2
qh

(u
x

)
=

1√
2πhux

exp{− 1

2hux
(x− u)2} (2.9)

which represents a density of IG with respect to argument x as well as with respect to
argument u; for fixed x kCL(x;u, h) is the density of IG(µ, λ) with µ = x, λ = x/h and it
represents the density of reciprocal IG with µ = 1/u and λ = 1/hu for fixed u. Thus u is the
mode of kCL for fixed x, as opposed to the mean in case of kKP .

The second choice is obtained from the density of the so-called Co-Gaussian (CoG) distri-
bution that is related to the IG family of distributions (see Awadalla [2], §2.2). The probability
density function of CoG-distribution with mode µ and dispersion h is given by

g(x;µ, h) =

√
2

πh
exp

{
− 1

2h

(
x− µ2

x

)2
}
.
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Thus we consider qh(u) generated from the CoG density with mode 1, i.e. we take

qh(u) =

√
2

πh
exp

{
− 1

2h

(
u− 1

u

)2
}
. (2.10)

This gives, in the spirit of (2.8) another kernel given by

kCG(x;u, h) =
u

x2
qh(u/x) =

√
2

πh

u

x2
exp

{
− 1

2hx2

(
u− x2

u

)2
}
. (2.11)

Remark 2.1. The mean of CoG distribution with mode µ and dispersion h is given by

µ′
1 =

√
2

πh
µ2e(µ

2/h)K1(µ
2/h),

where Kν(z) represents the modified Bessel function of the second kind of order ν (see
Awadalla [2], Eq. (2.2.4)). Also, for large values of z, we have approximately (see Abramowitz
and Stegun [1])

K1(z) ≈ (
π

2z
)1/2e−z.

Thus, for small values of h, the mean and mode of CoG coincide, and hence kCG follows the
property required in (2.8).

The following theorem is about strong consistency of f̂h using the CL kernel, though we
believe that it will hold under other kernels considered here.

Theorem 2.1 If f(x) is Lipschitz continuous on [0,∞) and
∫∞

0
1
xf(x)dx < ∞, then as

n → ∞, h → 0 and hn(log n)−(1+θ) → ∞(θ > 0),

|f̂h(x)− f(x)| → 0 a.s.

for any x > 0.

Proof: Note that

∣∣∣f̂h(x)− f(x)
∣∣∣ =

∣∣∣∣f̂h(x)−
∫ ∞

0
k(x;u, h)dF (x) +

∫ ∞

0
k(x;u, h)dF (x)− f(x)

∣∣∣∣

≤
∣∣∣∣f̂h(x)−

∫ ∞

0
k(x;u, h)dF (x)

∣∣∣∣

+

∣∣∣∣
∫ ∞

0
k(x;u, h)dF (u)− f(x)

∣∣∣∣ . (2.12)

The strong consistency of density estimator f̂h(x) can be established if the two terms above
tend to zero under the conditions of the theorem. First of all, we consider the first term.
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Using integration by parts, the first term above can be written as

∣∣∣∣f̂h(x)−
∫ ∞

0
k(x;u, h)dF (u)

∣∣∣∣ =

∣∣∣∣
∫ ∞

0
k(x;u, h)dFn(u)−

∫ ∞

0
k(x;u, h)dF (u)

∣∣∣∣

=
∣∣∣k(x;u, h)[Fn(u)− F (u)]

∣∣∣∣∣

∞

0

−
∫ ∞

0
[Fn(u)− F (u)]duk(x;u, h)

∣∣∣

=

∣∣∣∣
∫ ∞

0
[Fn(u)− F (u)]duk(x;u, h)

∣∣∣∣

≤ sup
t≥0

|Fn(t)− F (t)

∣∣∣∣
∫ ∞

0
|duk(x;u, h)

∣∣∣∣ . (2.13)

We can show that

sup
t≥0

|Fn(t)− F (t)| = o

(
1√

n(log n)−(1+θ)

)
(2.14)

(see [9]).
On the other hand, note that k(x;u, h) = u

x2 qh(u/x) where qh(x) is a IG density with
µ = 1 and λ = 1/h. After some tedious algebra, we have

∫ ∞

0
|duk(x;u, h)| =

1

x

∫ ∞

0

∣∣∣∣
(
t2 − 1

2ht

)
− 1

2

∣∣∣∣ qh(t)dt

= O

(
1

xh

∫ ∞

0
|t− 1| qh(t)dt

)

= O

(
1√
h

)
(2.15)

By (2.14) and (2.15), we can have that the first term in (2.12)

∣∣∣∣
∫ ∞

0
[Fn(u)− F (u)]duk(x;u, h)

∣∣∣∣→ 0 a.s.

under the conditions of the Theorem 2.1.
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Now we consider the second term in (2.12).
∣∣∣∣
∫ ∞

0
k(x;u, h)dF (u)− f(x)

∣∣∣∣ =

∣∣∣∣
∫ ∞

0

u

x2
qh(u/x)f(u)du− f(x)

∣∣∣∣

=

∣∣∣∣
∫ ∞

0
tqn(t)f(xt)−

∫ ∞

0
f(x)tqh(t)dt

∣∣∣∣

=

∣∣∣∣
∫ ∞

0
[f(xt)− f(x)]tqh(t)dt

∣∣∣∣

≤
∫ ∞

0
|f(xt)− f(x)| tqh(t)dt

≤ xL

∫ ∞

0
|t− 1| tqh(t)dt

≤ xL

√∫ ∞

0
(t− 1)2qh(t)

√∫ ∞

0
t2qh(t)dt

= O(
√
h), (2.16)

which tends to zero as h → 0 and the proof is complete.
Remark 2.2. A similar theorem is offered in Kulasekera and Padgett [14], however, there
the only condition on h assumed is that it goes to zero. We believe that the condition
hn(log n)−(1+θ) → ∞ imposed here is also needed in their theorem. The basic reason for this
is that the absolute value under the integral sign is not properly accounted for in Kulasekera
and Padgett [14].

In the next section we discuss the Bayesian method for selecting the smoothing parameter
h and computational aspects.

3 Bayesian Estimation of h

Consider

fh(x) =

∫
k(x; t, h)dF (t)

and let ξ(h) represent a prior on h then the posterior of h at the point x is given by

ξ(h|x) = fh(x)ξ(h)∫
fh(x)ξ(h)dh

.

In the spirit of empirical Bayes methodology, using the estimate f̂h(x) in place of fh(x), the
posterior of h based on the data X may be estimated by

ξ̂(h|x,X ) =
f̂h(x)ξ(h)∫
f̂h(x)ξ(h)dh

.

Then under the squared error loss, the Bayes estimator of h is given by

h̃ =

∫
hf̂h(x)ξ(h)dh∫
f̂h(x)ξ(h)dh

=

∑
si
∫
hk(x;Xi, h)ξ(h)dh∑

si
∫
k(x;Xi, h)ξ(h)dh

.

7



We follow Kulasekera and Padgett [14] to obtain the explicit expressions for the Bayes
estimator of h under the two choices of kernels mentioned earlier. We will employ the inverted
gamma prior with parameters α and β, with the density

ξ(h) =
1

βαΓ(α)hα+1
e−1/βh

KP kernel: In this case, the (estimated) posterior density is given by

ξ̂(h|x,X1, ..., Xn) =

∑n
i=1(si/h

α∗+1)e−1/β∗

i h

Γ(α∗)
∑n

i=1 si(β
∗
i )

α∗
(3.1)

where α∗ = α+ 1/2 for α > 1/2 and

β∗
i =

[
1

β
+

(x−Xi)
2

2xX2
i

]−1

Then the Bayes estimator of h is given by

h̃(x) =

∑
siβ

∗
i
(α∗−1)

(α∗ − 1)
∑

siβ∗
i
α∗

. (3.2)

If we were to use an improper prior

ξ(h) ∝ 1

h2
, (3.3)

then the proper posterior density can be obtained to be

ξ̂(h|x,X1, ..., Xn) =
2√
π

∑n
i=1 sih

−2/5e−1/β∗∗

i h

∑n
i=1 si(β

∗∗
i )3/2

and the resulting estimator of h is given by

h̃(x) = 2

∑
siβ

∗
i
1/2

∑
siβ∗

i
3/2

(3.4)

where

β∗∗
i =

[
(x−Xi)

2

2xX2
i

]−1

.

CL kernel: In this case, the (estimated) posterior density using the gamma prior is given
by

ξ̂(h|x,X1, ..., Xn) =

∑n
i=1(si/X

1/2
i hα

∗+1)e−1/β̃ih

Γ(α∗)
∑n

i=1 si(β̃i)
α∗/X

1/2
i

, (3.5)

where

β̃i =

[
1

β
+

(x−Xi)
2

2xXi

]−1

.

This results in the following estimator of h :
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h̃(x) =

∑
(si/X

(1/2)
i )β̃

(α∗−1)
i

(α∗ − 1)
∑

(si/X
(1/2)
i )β̃α∗

i

. (3.6)

For the improper prior as given in Eq. 3.3, the estimate of h is given by

h̃(x) = 2

∑
(si/X

1/2
i )β̃

∗1/2
i∑

(si/X
1/2
i )β̃

∗3/2
i

(3.7)

where

β̃∗
i =

[
(x−Xi)

2

2xXi

]−1

.

Co-Gaussian Kernel: Using the co-Gaussian kernel kCG(x;u, h), the Bayesian estimator
of h under the gamma prior is given by

h̃(x) =

∑
siXiβ̃i∗

(α∗−1)

(α∗ − 1)
∑

siXiβ̃α∗

i

. (3.8)

where

β̃∗
i =

[
1

β
+

(Xi − x2/Xi)
2

2x2

]−1

.

And that with improper prior is given by

h̃(x) = 2

∑
siXiβ̂i∗

∗1/2

∑
siXiβ̃i∗

∗3/2
(3.9)

where

β̃∗
i =

[
(Xi − x2/Xi)

2

2x2

]−1

.

Remark 3.1. Another choice of the asymmetric kernel related to the co-Gaussian kernel, in
the spirit of KP kernel is to choose the co-Gaussian density in x with mode u and dispersion
h as given by

kCG∗(x;u, h) =

√
2

πh
e−(1/2h)(x−u2/x)2 . (3.10)

This gives the estimator of h under the gamma prior as

h̃(x) =

∑
siβ̃i∗

(α∗−1)

(α∗ − 1)
∑

siβ̃α∗

i

. (3.11)

where

β̃∗
i =

[
1

β
+

(x−X2
i /x)

2

2

]−1

.

And that with improper prior is given by

h̃(x) = 2

∑
siβ̂i∗

∗1/2

∑
siβ̃i∗

∗3/2
(3.12)
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Figure 1: Smooth Estimators of the Length-biased χ2(4) density, n = 500.
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where

β̃∗
i =

[
(x−X2

i /x)
2

2

]−1

.

Figure 1 gives a qualitative idea of the nature of the two estimators using KP and CL
kernels; the CG kernel is used in simulations but CG* kernel has been not considered any
further after some preliminary investigation. It seems that the CL kernel has an edge over
the other kernels considered here. The parameters α and β are obtained directly by mini-
mizing the inetgrated squared error as described in the next section. Note that Kulasekara
and Padgett [14] choose a value of β > 3 and then choose α so that the average values of h
calculated at a range of values equals 1/(α− 1)β.

Remark 3.2. As mentioned in Remark 2.2, the mean and the mode of kCG∗ coincide for
small h. In practice, however, h may not be small enough for this approximation to hold.

Remark 3.3. Other choice of k(x;u, h), for example an inverse-gamma kernel may also be
used. We have not investigated these, however, we expect similar performance using such
kernels as with the choice of kernels considered here.

Remark 3.4. The condition in Theorem 2.1, will be satisfied for the choice of α → ∞.

4 Optimal selection of parameters α and β

Here we describe the process of selecting h by developing a data-driven selection for parameters
α and β. One of popular criteria that gives a measure of accuracy between any density
estimator f̂(x) and the true density f(x) is

ISE(f̂ , f) =

∫ ∞

0
[f̂(x)− f(x)]2dx

=

∫ ∞

0
f̂2(x)dx− 2

∫ ∞

0
f̂(x)f(x)dx

+

∫ ∞

0
f2(x)dx, (4.1)

which is referred as integrated squared error(ISE). An optimal choice of bandwidth could be
obtained by making the value of (4.1) as small as possible. However, since the true density f(x)
is unknown, (4.1) is not a practical objective function for optimization. So some modifications
must be made. Ignoring the last (constant) term in (4.1) and replacing the second term with
the leave-one-out estimator, an objective function for practical optimization arises as an
approximation of (4.1), which is called as unbiased crossed-validation (UCV) criterion.

In the length-biased scheme, the objective function is given by

UCV =

∫ ∞

0
f̂2(x)dx− 2

n∑

i=1

f̂−i(Xi)/Zi, (4.2)
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where f̂−i(x) represents the density estimator built on data set excluding Xi and Zi =
∑

j 6=i

Xi

Xj
[see Wu and Mao (1996) and Chaubey et al. (2012)].

alpha

2.5 3.0 3.5 4.0 4.5 5.0

beta

3
4

5
6

7
8

−0.665

−0.660

−0.655

Figure 2: Plot of UCV function.

Note that the Bayesian method gives local bandwidth choice as h depends on x. After the
local bandwidth h is plugged into (4.2), the UCV becomes a function of parameters α and
β. In this case, the optimum choices of α and β will be obtained by minimizing the UCV
function (4.2), which would definitively lead to the optimal selection of Bayesian bandwidth
under criterion (4.1). The plot in Figure 2 is an example of a figure of UCV function with
independent variables α and β. The surface of UCV function is concave down, which means
that the minimum value of UCV function exists.

5 Numerical studies

We compare KP estimator with CL and CG estimator based on a simulation study that
considers a class of Weibull densities:

f(x) = θxθ−1 exp{−xθ}I{x ≥ 0}
with θ = 0.5, 1, 1.5 and the followings are their figures.

We use the UCV method as mentioned earlier to choose the global parameters α and β
in the KP, CL and CG priors. Then we compare their performance based on ratios RKP,CL

and RKP,CG, where

RKP,CL =
EMSE(f̂KP (x))

EMSE(f̂CL(x))

and

RKP,CG =
EMSE(f̂KP (x))

EMSE(f̂CG(x))
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Figure 3: Plot of various underlying pdf’s

for a range of the values of x;, here the estimated MSE(EMSE) for the density estimator f̂(x)
is defined as

EMSE(f̂(x)) =
N∑

i=1

[f̂(x)− f(x)]2/N,

f being the true density function f(x) and N being the number of simulations. Here we use
500 repetitions to estimate MSE. The ratios RKP,CL and RKP,CG are plotted over a range of
x−values for different values of θ in Figure 4.

13



0.5 1.0 1.5 2.0

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

x

R
at

io

n=50
n=200

(a) RKP,CL for θ = 0.5, Solid line: n = 50,Dotted
line: n = 200.
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(b) RKP,CL for θ = 1.0, Solid line: n = 50, Dot-
ted line: n = 200.
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(c) RKP,CL for θ = 1.5, Solid line: n = 50, Dotted
line: n = 200.
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(d) RKP,CG for θ = .5, Solid line: n = 50, Dotted
line: n = 200.
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(e) RKP,CG for θ = 1.0, Solid line: n = 50,Dotted
line: n = 200.
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(f) RKP,CG for θ = 1.5, Solid line: n = 50, Dotted
line: n = 200.

Figure 4: Plots of the Ratios RKP,CL and RKP,CG for various values of θ.

6 Conclusions and Discussion

For smaller values of x as well as in tails, CL kernel outperforms the KP kernel; KP kernel may
have a slight advantage over the CL kernel in middle range, but this advantage disappears
for larger values of n. The co-Gaussian kernel may be a bit better than KP kernel only for
larger sample sizes and large values of x. The co-Gaussian kernel was later abandoned from
further investigation realizing that the resulting kCG(x;u, h) may neither be a density in x
nor in u. However, when the mean of the generating kernel qh(u) is close to one [that would
be true for small values of h,], qh(u) is a density with approximate mean 1 and the CG kernel
will behave as a density in u with mean x.

The co-Gaussian kernel CG* that is given by (3.10) have not been investigated here, as
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Figure 5: Plots of density estimators and histogram for 46 shrubs.

a preliminary investigation showed that it does not seem to be any better qualitatively than
using the KP kernel.

We also apply the density estimators consider here to real length biased data constituting
widths of 46 shrubs given in Muttlak and McDonald [15]. These estimators are plotted in
Figure 5. Their behavior in extreme tails is similar, however KP and CG estimators do not
perform well at the edge.
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