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Abstract

Coefficient of variation (CV) plays an important role in statistical practice and since an

IG distribution may provide a good model for positive and positively skewed data, its distri-

butional properties are of interest to practitioners. The variance stabilizing and symmetrizing

transformations are often used for approximating the distribution in practice. In this paper

we study the symmetrizing transformation of the square of the sample CV along the lines of

Chaubey and Mudholkar (1983) that requires numerical techniques. The variance stabiliz-

ing transformation, on the other hand, is explicitly available, however its performance as an

approximation to the distribution is extremely poor. An analysis of the symmetrizing trans-

formation guided the authors to investigate the power transformation family which yielded an

excellent approximation to the distribution function of the sample CV for sample sizes as small

as 10 in the practical range of population CV. The resulting approximation is compared with

others and its usefulness is illustrated in hypothesis testing example.
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1 Introduction

The coefficient of variation (CV) of a random variable (or that of the the corresponding population)

is defined to be the ratio of the standard deviation to the mean of the corresponding population.

It has been used in wide ranging applications in many areas of applied research including agro-

biological, industrial, social and economic research (Johnson et al. 1994, Chapter 15). In these

applications, the random variable of interest is assumed to follow a Gaussian distribution that is

symmetric and has support on the whole real line [see Johnson et al. 1994; Laubscher 1960; Singh

1993; Chaubey et al. 2014]. However, in many of these applications the random variable may be

more appropriately modeled by a distribution which is positively skewed and is supported on the

positive half. To model such situations, inverse Gaussian (IG) distribution is often more justified

compared to lognormal, gamma and Weibull distributions (see Chhikara and Folks 1977, 1989;

Kumagai et al. 1996, Tagaki et al. 1997, ). More recently, Mudholkar and Natarajan (2002)

discussed comparisons of shape of the IG distribution with Gaussian distribution.

Since the distribution of the sample CV, in general is not easy to handle, various approxima-

tions, mostly centered around the Gaussian distribution have been discussed in the literature; see

Banik and Kibria (2011) for a comprehensive review and comparison of various approximations.

Recently Chaubey et al. (2013) have investigated approximately normalizing transformation of

CV associated with a Gaussian population and contrasted its performance with the variance stabi-

lizing transformation that is often employed in this context. The Likelihood ratio test for CV of

an IG population has been investigated by Hsieh (1990) and more recently Chaubey et al. (2014)

have demonstrated that this test is ”best invariant” under the group of scale transformations.

The purpose of this paper is to investigate properties of variance stabilizing and skewness

reducing transformations for CV in the context of the IG population. The organization of the paper

is as follows. In Section 2, we list some basic properties of the IG distribution along with that of

the corresponding sample CV. Note that Chaubey et al. (2013) consider the inverse of the sample

CV in the context of the Gaussian distribution, as the sample mean in the denominator may present

computational problems. This is not a problem in the IG case as the reciprocal of an IG random

variable is well defined (see Folks and Chhikara 1978). Section 3 presents the general formulae

for the variance stabilizing transformation (VST) and that for the symmetrizing transformation

(ST) that is conjectured to provide a better approximation as compared to that given by the VST.

An analysis of these transformations is carried also carried out in this with the aim of examining

a) stability of variance of the symmetrizing transformation, b) symmetry of the distribution of
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variance stabilizing transformation, c) probability distribution of the sample CV based on these

transformations. Section 4 presents an analysis of the symmetrizing transformation for small and

large values of CV that motivates the examination of the power transformation family that has

been carried out in Section 5. Section 6 presents a numerical investigation comparing various

approximation for computing the distribution of the CV. The final section, Section 7 presents a

numerical example illustrating the usefulness of the symmetrizing transformation in the context of

hypothesis testing.

2 Inverse Gaussian Distribution and Estimation of CV

The probability density function (pdf) of the inverse Gaussian random variable X is given by

f (x|µ,λ ) =
{

λ

2πx3

}1/2

exp

{
− λ

2µ2x
(x−µ)2

}
; x > 0, µ > 0, λ > 0, (2.1)

to be denoted by IG(µ,λ ), where µ is the mean of the distribution and λ is the dispersion pa-

rameter. This distribution was studied in detail by Tweedie (1957a, 1957b) and was brought to

limelight later by a seminal paper by Folks and Chhikara (1978). For a broad review and appli-

cations of the IG family and other related results, the reader may refer to the texts by Chhikara

and Folks (1989) and Seshadri (1993, 1998). The variance of this density is given by µ3/λ ,

hence the corresponding population CV is given by γ =
√

µ/λ . For our purpose we will consider

the parameter φ = γ2 = µ/λ . Consider a random sample X1,X2, ...,Xn from IG(µ,λ ), then we

have two standard results concerning the distributions of the sample mean X̄ = n−1 ∑n
i=1 Xi and

U = (n−1)−1 ∑n
i=1

(
1
Xi
− 1

X̄

)
, namely

(i) X̄ ∼ IG(µ,nλ ) and (ii) (n−1)λ U ∼ χ2
n−1. (2.2)

Further, the random variables X̄ and U are independent, thus we get an unbiased estimate of φ

given by

φ̂ = µ̂
1̂

λ
= X̄ U (2.3)

Using the distributional properties of X̄ and U we can write

φ̂
D
=

ZY

ν
(2.4)
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where Z ∼ IG(φ ,n), Y ∼ χ2
ν , Z

ind∼ Y and ν = n− 1. And thus using the moments of IG from

Chhikara and Folks (1989) and those of the χ2
ν random variable, the independence of X̄ and U

provides the following four raw moments of φ̂ that will be useful for later use:

E(φ̂) = φ , (2.5)

E(φ̂ 2) = φ 2

(
1+

φ

n

)(
1+

2

ν

)
, (2.6)

E(φ̂ 3) = φ 3

(
1+

3φ

n
+

(
3φ

n

)2
)(

1+
2

ν

)(
1+

4

ν

)
, (2.7)

and E(φ̂ 4) = φ 4

(
1+

6φ

n
+

(
15φ

n

)2

+

(
15φ

n

)3
)(

1+
2

ν

)(
1+

4

ν

)(
1+

6

ν

)
. (2.8)

The central moments of φ̂ may therefore be deduced as

E(φ̂ −φ)2 = µ2(φ) = φ 2

[
2

ν
+

(
1+

2

ν

)
φ

n

]
, (2.9)

E(φ̂ −φ)3 = µ3(φ) = φ 3

[
8

ν2
+

12

ν

(
1+

2

ν

)
φ

n
+3

(
1+

6

ν
+

8

ν2

)
(
φ

n
)2

]
, (2.10)

and E(φ̂ −φ)4 = µ4(φ) = φ 4

[
12

ν2

(
1+

4

ν

)
+

12

ν

(
1+

14

ν
+

24

ν2

)(
φ

n

)

+3

(
1+

36

ν
+

188

ν2
+

240

ν3

)(
φ

n

)2

+15

(
1+

12

ν
+

44

ν2
+

48

ν3

)(
φ

n

)3
]
.(2.11)

3 Symmetrizing and Variance Stabilizing Transformations

The variance stabilizing transformation as first proposed by Bartlett (1947) is now widely available

in standard texts (see e.g Rao 1973). The general formulation for a symmetrizing transformation

following the same approach as of Bartlett (1947) has been put forward in Chaubey and Mudholkar

(1981, 1983). Note that there have been attempts in proposing the symmetrizing transformations

in a particular class. For example Hinkley (1975) considered symmetrizing transformation in the

family of power transformations that has been further elaborated in Hinkley (1977) and Taylor

(1985) (see also Hall 1992, and Yeo and Johnson 2000). The power transformations are easier to

handle and the general symmetrizing transformation may be fretted upon due to numerical com-
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plexity. Here we follow Chaubey et al. (2013) that demonstrated the application of the general

symmetrizing transformation on the inverse of the sample CV for a Gaussian population.

Let Tn denote a statistic based on a random sample of size n, constructed to estimate a parameter

φ . Here we can take Tn = X̄U , the unbiased estimator of the squared sample CV. Further, assume

that
√

n(Tn −φ) tends to follow N(0,σ2(φ)) as n → ∞. Denote the jth central moment of Tn by

µ j(φ) = E(Tn −µ(φ)) j, j = 1,2, ... (3.1)

where

µ(φ) = E(Tn).

We denote by ξ1(φ) = µ(φ)− φ as the bias of Tn and by µ2(φ) = σ2(φ)+ µ2(φ) as the MSE.

Then for a smooth function g(Tn), we approximately have for large n, the variance (µ2g of g(Tn)

as (see Chaubey and Mudholkar 1983),

µ2(g(Tn)) = (g′(φ))2(1+ξ1(φ)R)
2

[
µ2(φ)+R1µ3(φ)+

1

4
R2

1(µ4(φ)−µ2
2(φ))

]
(3.2)

where

R =
g′′(φ)
g′(φ)

and R1 =
R

1+ξ1(φ)R
. (3.3)

And the third central moment µ3g of Tn (up to order O(1/n2) is given by

µ3(g(Tn)) = (g′(φ))3(1+ξ1(φ)R)
3

[
µ3(φ)+

3

2
R1(µ4(φ)−µ2

2 (φ))

]
, (3.4)

where we have omitted terms containing central moments of order higher than 4 (this assumes that

the third and fourth central moments are of order O(1/n2) and the higher order moments are of

lower order). In the present case ξ1 = 0, hence R1 ≡ R.

The variance stabilizing transformation (V ST ), may now be obtained using (3.2), ignoring the

last two terms which are of O(n−2), as

g′(φ) =C σ(φ)
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where C is a constant. Hence

g(φ) =C

∫
1

σ(φ)
dφ . (3.5)

The approximate symmetrizing transformation (ST ), is obtained by equating the third moment

of g(Xn) given in (3.4) to be zero, as

gs(φ) =
∫

e−a(φ)dφ (3.6)

where

a(φ) =
2

3

∫ {
f1(φ)

f2(φ)

}
dφ (3.7)

with f1(.) and f2(.) being defined as

f1(φ) = µ3(φ), (3.8)

f2(φ) = µ4(φ)−µ2
2 (φ). (3.9)

In general the integrals may not be available in explicit forms. We will see that the VST is ex-

plicitly available, however, the ST is not. Chaubey et al. (2013) provided R-codes for solving the

integral numerically that will be adopted here also for computations. However, we will develop

explicit solutions for large φ and small φ and provide an approximate solution by considering an

appropriate mixture of the two extreme cases. These are detailed in the next subsections.

3.1 Variance stabilizing transformation for φ̂ .

The variance stabilizing transformation (V ST ), denoted by say gv(φ̂) is obtained, from (3.4) by

substituting

σ2(φ) = nVar(φ̂) = n(aφ 2 +bφ 3), (3.10)

where

a =
2

ν
, b = (1+

2

ν
)/n.
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Thus the (approximate) VST is given by

gv(φ) =
∫

1√
nVar(φ̂)

dφ

=
1√
n

∫
1

φ
√

a+bφ
dφ (3.11)

The integral may be obtained explicitly by substitution φ = (a/b) tan2 θ (see also Gradshteyn and

Ryzhik 2007, formula 2.266; there is an additional constant of integration in our formula). This

gives ∫
dφ

φ
√

a+bφ
=

2√
a

∫
cosecθdθ

=
2√
a

ln

(
sinθ

1+ cosθ

)

=
2√
a

ln

( √
bφ

√
a+
√

a+bφ

)
. (3.12)

It is obvious that the above function is a decreasing function of φ , we consider the following (that

differs by a multiplicative constant) as the

gv(φ) = ln

√
(2n/ν)+

√
(2n/ν)+(1+2/ν)φ√
(1+2/ν)φ

. (3.13)

that can be written as

gv(φ) = sinh−1

(
B√
(φ)

)
= ln

[
B√
(φ)

+

√
1+

B2

φ

]
, (3.14)

where

B =

√
2n

n+1

Remark: It may be noted that the above transformation is very similar to the one in the case of

Gaussian distribution (see Singh 1993) given by

g

(
1√
φ

)
= sinh−1

(
BG√

φ

)
= ln


 BG√

φ
+

√

1+
B2

G

φ


 ,
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where BG = (1+ 3
4ν )
√

n
2ν .

3.2 Symmetrizing transformation of φ̂

In order to obtain symmetrizing transformation of φ̂ , we use the expression in (3.6) where f1(φ)

and f2(φ) are computed using the values of µ3(φ) and µ4(φ) from equations (2.10) and (2.11)

respectively. It is observed that the value of the ratio f1(φ)/ f2(φ) diverges for the values of φ near

zero hence the algorithm ∫
s(x)dx = S(x) =

∫ x

0
s(u)du+S(0).

as used by Chaubey et al. (2014) for the Gaussian case, is not convenient. Thus we use the formula

∫ x

1
s(u)dx = S(x)−S(1) for x ≥ 1

−
∫ 1

x
s(u)dx = S(x)−S(1) for x < 1

which differs from S(x) by an additive constant.

The R-codes (Ihaka and Gentleman (1996)] that generate the value of c0gs(φ)+c1 for a given

sample size and a given value of the parameter φ for some unknown constants c0 and c1 is given

in Appendix A as the function fsym.IG. The codes are written in such way that the computations

become are transparent.

Figure 1 is used to demonstrate the nature of the transformation for various sample sizes. We

note that this function is an increasing function of φ .

Note that the logarithm involved in the variance stabilizing transformation acts on a value that

is necessarily less than 1, hence the values of the transformation are negative; however such is not

the case with the symmetrizing transformation, hence the two transformations will be qualitatively

quite different. However, since the negative value of gv will have the same variance as gv we could

effectively consider −gv as the variance stabilizing transformation. This is plotted in Figure 2 in

order to assess the qualitative nature of VST in contrast to the ST.
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Figure 1: Symmetrizing transformation for CV for varying values of sample size
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Figure 2: Variance stabilizing transformation for CV for varying values of sample size

10



3.3 Variance stabilizing and symmetrizing behavior of transformations

In this section, we investigate the following questions.

1. How far the variance stabilizing transformation (3.5) symmetrizes the distribution?

2. How far the symmetrizing transformation given in equation (3.6) stabilizes the variance?

To assess the degree of symmetry of V ST (question 1) and untransformed statistic, we evaluate

their skewness β1 using equations (3.2) and (3.4), that is given by

β1 =
µ3(φ)+

3
2
R(µ4(φ)−µ2

2(φ))

[µ2(φ)+Rµ3(φ)+
1
4
R2(µ4(φ)−µ2

2(φ))]3/2
, (3.15)

where

R =− Bφ

1+Bφ 2
(3.16)

for V ST , and it equals zero for untransformed case.

On the other hand to see how far the variance stability holds for the symmetrizing transforma-

tion (question 2) given in (3.6) explore the region on n and φ where the variance of g(φ̂) is nearly

constant using equation (3.2).

Figure 6 gives a plot of the skewness of the V ST and Figure 7 presents that of the untransformed

statistic. These plots show that the V ST reduces the skewness as compared to the untransformed

one but the skewness is still significant even for sample sizes as large as 200. Figure 4 displays

these values for various sample sizes and CV in the range of [0, .3]. It clearly demonstrates that the

ST has poor variance stabilizing property.
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Figure 3: Skewness of the V ST for varying values of sample size
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4 Nature of the symmetrizing transformation for large and small

values of φ .

Small values of φ : For small values of φ we have approximately (for large values of n)

µ2(φ)
2 ≈ 4φ 4

ν2
,

µ3(φ) ≈ 8φ 3

ν2
,

and µ4(φ) ≈ 12φ 4

ν2
.

Hence f1(φ) = 8φ 3/ν3 and f2(φ) = µ4(φ)−µ2
2 (φ) = 8φ 4/ν3 that gives approximately

a(φ)≈ 2

3

∫
1

φ
dφ =

2

3
lnφ , (4.1)

and the corresponding expression for gs(φ) therefore is given by

gs(φ) =
∫

e−
2
3 lnφ dφ =

1

3
φ 1/3. (4.2)

This transformation heuristically makes sense as for small values of φ , Z is close µ and therefore φ̂

behaves like a χ2 random variable for which the Wilson-Hilferty (1931) cube-root transformation

is recognized as an excellent normalizing transformation. Now we consider the large values of φ .

Large values of φ : In this case retaining terms up to order 1/n2 and assuming n ≈ ν , we can write

f1(φ) ≈ φ 3[
8

ν2
+

12

ν2
φ +

3

ν2
φ 2]

=
φ 3

ν2
[8+12φ +3φ 2].
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and

f2(φ) ≈ φ 4[
8

ν2
+

8

ν2
φ +

2

ν2
φ 2]

=
φ 4

ν2
[8+8φ +2φ 2].

Thus we approximately have

f1(φ)

f2(φ)
=

3φ 2 +12φ +8

φ(8+8φ +8φ 2

=
3φ 2 +12φ +8

2φ(φ +2)2

=
1

φ
+

1

2(φ +2)
+

1

(φ +2)2

and then

a(φ) =
2

3

∫
f1(φ)

f2(φ)
dφ

=
2

3
[lnφ +

1

2
ln(φ +2)− 1

φ +2

Using the approximation ln(1− 2
φ+2

)≈− 2
φ+2

the above can be simplified as

a(φ) =
1

3
[lnφ 2(φ +2)

φ

φ +2
= lnφ . (4.3)

and therefore for large values of φ we have

gs(φ) =
∫

e− lnφ dφ = lnφ (4.4)

and we find that the log-transformation is approximate symmetrizing transformation for large val-

ues of φ .

The above analysis shows that we might like to search for normalizing transformations in the

family of power transformations φ 7→ φ λ where λ = 0 signifies logarithmic transformation. We

can adopt the technique of Jensen and Solomon (1972) that was developed for seeking the best

normalizing transformation for a quadratic form. This is explored in the next section.
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5 Normalizing Transformation for CV in Power Transforma-

tion Family

The technique in Jensen and Solomon (1972) has been adopted to non-negative random variables

by Mudholkar and Trivedi (1981) that we outline here. Let κr, r = 1,2, .. denote the rth cumulant

of a non-negative random variable T and assume that ψr = κr/κ1, r = 2,3, ... are bounded as

κ1 → ∞. Then, using a Taylor series expansion, we can write the expectation of (T/κ1)
h as

µ ′
1h = 1+

h(h−1)ψ2

2κ1
+

h(h−1)(h−2)

24κ2
1

[4ψ3 +3(h−3)ψ2
2 ]+O(k−3

1 ). (5.1)

The above expression may be used to obtain the rth moment µ ′
rh = E[(T/κ1)

h]r by a simple sub-

stitution of h by rh. This provides the following series expansions for the central moments µr(h)

of (T/κ1)
h, r = 2,3,4 in terms of the powers of κ−1

1 :

µ2h =
h2ψ2

κ1
+

h2(h−1)

2κ2
1

[2ψ3 +(3h−5)ψ2
2 ]+O(κ−3

1 ), (5.2)

µ3h =
h3

κ2
1

[ψ3 +(3h−1)ψ2
2 ]+O(κ−3

1 ), (5.3)

µ4h =
3h4ψ2

2

κ2
1

+O(κ−3
1 ). (5.4)

(5.5)

If T is asymptotically distributed as κ1 → ∞ then as Mudholkar and Trivedi (1981) argue, so is

T h by Mann-Wald (1943) theorem. In order to accelerate the convergence to normality, we may

choose h so that the leading term in µ3(h) is zero. The resulting value of h denoted by h0 that

approximately symmetrizes (T/κ1)
h is thus given by

h0 = 1− κ1κ3

3κ2
2

. (5.6)

In order to use the above formulation for the CV, we take T = νφ̂/φ . The cumulants of T needed

for our purpose may be obtained from the central moments of φ̂ given in (2.9)-(2.10) that are given
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below:

κ1 = ν , (5.7)

κ2 = ν [2+(ν +2)
φ

n
], (5.8)

κ3 = ν [8+12(ν +2)
φ

n
+3(ν2 +6ν +8)(

φ

n
)2]. (5.9)

The asymptotic normality of T follows from that of φ̂ and obviously ψr,r = 2,3, ... are bounded

as n → ∞. And hence we can approximate the distribution of (φ̂/φ)h0 by the normal distribution

with mean µ ′
1h0

and variance σ2(h0) = µ2h0
as given in (5.1) and (5.2), replacing h by h0.

We plot the values of the powers h0 for various sample sizes as a function of φ in Figure 3. It is

interesting to note that for small values of φ the optimum power is close to 1/3 and for large values

of φ this is closer to zero. Owing to the analysis of the general symmetrizing transformation for

small and large φ in the previous section, this implies that the power transformation family may be

adequate in contrast to the general transformation gs that can be only computed numerically.

6 A Comparison of the Approximations using the Transformed

Statistics

The approximation afforded by the power transformation family provides an excellent approxima-

tion for computing the distribution of the CV as seen from the previous section. It is thus a natural

question to ask if the numerical effort is worth in using the general transformation discussed in §3.2

over the simplicity of the explicit formulae using the power family of transformations. In order to

investigate this issue we compare the two approximations, namely,

(i)

(φ̂/φ)h0 ∼ N(µ ′
1h0

,σ2(h0)

with

(ii)

gs(φ̂)∼ N(µg(φ),σ
2
g (φ))
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where

µg(φ) = gs(φ)+
1

2
g′′s (φ)µ2(φ), (6.1)

σ2
g (φ) = (g′s(φ))

2

[
µ2(φ)+Rµ3(φ)+

1

4
R2

1(µ4(φ)−µ2
2 (φ))

]
(6.2)

where

R ≡ R(φ) =−2

3

µ3(φ)

µ4(φ)−µ2
2 (φ)

dφ

and

g′s(φ) =
∫

eR(φ)dφ .

Note that in the above approximation, we require gs, g′s and g′′s that are numerically computed

starting with gs and g′s and then computing g′′s using the formula

g′′s = g′s(φ)R(φ).

Additionally we compare these in turn with approximating φ̂ and φ̂v with appropriate Gaus-

sian distributions. These imply

(iii)

φ̂ ∼ N(φ ,µ2(φ))

and

(iv)

gv(φ̂)∼ N(µgv
(φ),σ2(gv))

where

µgv
(φ) = sinh−1(B/

√
φ)+

1

2
g
′′
v(φ)µ2(φ) (6.3)

and

σ2(gv) = g′v(φ)
2

[
µ2(φ)+Rvµ3(φ)+

1

4
R2

v(µ4(φ)−µ2
2(φ))

]
, (6.4)

20



where

Rv =
B(2B2 +3φ)

2φ(B2 +φ)
,

g′v(φ) = − B

2φ
√

B2 +φ
,

g′′v (φ) =
B(2B2 +3φ)

4φ 2(B2 +φ)3/2
.

Figures 7 and 8 plot the distribution functions of φ̂ along with various approximations, where

the exact values are computed using an integral formula outlined in Chaubey et al. (2014). These

figures display the qualitative nature of the approximations and convey that the basic nature of

the approximations are the same for the values of the parameters investigated. Hence we plot the

errors as boxplots in the second column that clearly demonstrates that the normal approximations

rendered by the untransformed statistic and the VST show the same performance whereas the sym-

metrizing transformation gives a significant improvement. However the power transformation even

gives a better performance. One is tempted to ask ‘why the general symmetrizing transformation

derived numerically is poorer than the power transformation?’ This may be due to accuracy lost

during iterative computations of the integrals and approximation of the derivatives involved. Due to

the simple nature of the power transformation and its accuracy in approximating the probabilities,

we refrain from investigating the general symmetrizing transformation any further.

7 A Numerical Example

The following data from Chhikara and Folks (1977) presented below were found to fit the IG model

well. These data show active repair times (in hours) of an airborne communication transceiver that

are used for carrying out testing of hypothesis for coefficient of variation.

Such a test is carried out using the exact distribution in Chaubey et al. (2014). Let us test

H0 : φ ≤ 2 against H1 : φ > 2. Here n = 46, X̄ = 3.6065,∑i((1/Xi)− (1/X̄)) = 27.73. Hence,
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Table 1: Active repair times (in hours) of an airborne communication.

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8

1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0 2.0 2.2

2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4

7.0 7.5 8.8 9.0 10.3 22.0 24.5

φ̂ = 3.6065×27.73/45 = 2.2224. We may use the test statistic based on the symmetrizing power

transformation

Z =
(φ̂/φ0)

h0 −µ ′
1h0

σ(h0)
;

here φ0 = 2,h0 = 0.0707,µ ′
1h0

= .99715,σ2(h0) = 0.0004347339, and the observed value of Z is

Zobs. = .4955. As shown in Chaubey et al. (2014), the best invariant test under scale transforma-

tions rejects H0 for larger values of φ̂ , the test based on the Z statistic will reject the null hypothesis

for Z > Zobs and the corresponding P−value = 1− .68988 = .31012.

The exact P-value given in Chaubey et al. (2014) is .31087 that may be noted to be very close

to the approximate value obtained by the symmetrizing transformation. This value is quite large

for a 1% level of significance and therefore a squared CV of less than equal to 2 is accepted. This

is not a surprising result for this data as the unbiased estimate of φ is φ̂ is just slightly larger than

2.
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Appendix A: R-Codes for the Symmetrizing Function

###Computing the symmetrization transformation as a function of phi

###Symmetrizing function

##Input:

##phi: Value of (mu/lambda)
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##ss: Sample size n

##Output: g_s(phi)

###Computing the symmetrization transformation as a function of phi

################

### Symmetrizing unction

fsym.IG<-function(phi,ss){

if (phi>1) {xl<-1;xu<-phi}

else {xl<-phi;xu<-1}

fval<- integrate(f1f2Int.IG,xl,xu,subdivisions=1000,ss=ss)$value

if (phi<1) fval<--fval

fval}

######################

hfun.IG<-function(phi,ss=ss){

if (phi>0) {

nu<-ss-1;d<-phi/ss

c21<-(2/nu);c22<-(1+c21)

c31<-8/nu^2;c32<-12*c22/nu;c33<-3*(1+(6/nu)+(8/nu^2))

c41<-12*(1+(4/nu))/nu^2;c42<-12*(1+(14/nu)+(24/nu^2))/nu

c43<-3*(1+(36/nu)+(188/nu^2)+(240/nu^3))

c44<-15*(1+(12/nu)+(44/nu^2)+(48/nu^3))

mu2<-phi^2*(c21+c22*d)

mu3<-phi^3*(c31+c32*d+c33*d^2)

mu4<-phi^4*(c41+c42*d+c43*d^2+c44*d^3)

result<-mu3/(mu4-mu2^2)}

else result<-Inf

result}

##Vector version of hfun.IG

hfunInt.IG<-function(x,ss)sapply(x,hfun.IG,ss=ss)

f1f2.IG<-function(phi,ss){

if (phi==0) result<-Inf

else {
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if (phi>1){xl<-1;xu<-phi}

else {xl<-phi;xu<-1}

fval<- integrate(hfunInt.IG,xl,xu,subdivisions=1000,ss=ss)$value

if (phi<1) fval<--fval

result<- exp(-(2/3)*fval)}

result}

#Vectorised version of f1f2.IG

f1f2Int.IG<-function(x,ss)sapply(x,f1f2.IG,ss=ss)
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[25] Takagi, K., S. Kumagai, I. Matsunaga and Kusaka, Y. (1997). Application of inverse gaussian

distribution to occupational exposure data. Ann. Occup. Hyg. 41, 505-514.

[26] Taylor, J. M. G. (1985). Power trasnformations to symmetry. Biomatrika 72, 145–152.

[27] Tweedie, M. C. K.(1957a). Statistical Properties of Inverse Gaussian Distributions. I. The

Annals of Mathematical Statistics 28, 362-377

[28] Tweedie, M.C.K. (1957b). Statistical properties of inverse Gaussian distributions-II. The

Annals of Mathematical Statistics 28, 696-705.

[29] Yeo, I. and Johnson, R. A. (2000). A new family of power transformations to improve nor-

mality or symmetry. Biometirka 87, 954–959.

28


