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proposed by Suen, Das and Dey (2001), which led to several new families of orthog-

onal arrays of strength three and four. Using this method, we construct some more
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1 Introduction and Preliminaries

Asymmetric orthogonal arrays introduced by Rao (1973) have received considerable

attention in recent years. Such arrays are useful in experimental designs as universally

optimal fractions of asymmetric factorials. Asymmetric orthogonal arrays have also

been found very useful in industrial experimentation for quality improvement. Con-

struction of asymmetric orthogonal arrays of strength two has been an area of intense

research and one may refer to Hedayat, Sloane and Stufken (1999) for an excellent

description of these. Relatively less is known on the construction of asymmetric or-

thogonal arrays of strength larger than two. Apart from the methods of construction
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of asymmetric orthogonal arrays of strength larger than two described in Dey and

Mukerjee (1999) and Hedayat et al. (1999), further work on the construction of arrays

of strength three or higher have been carried out e.g., by Suen et al. (2001), Suen

and Dey (2003), Nguyen (2008) and Jiang and Yin (2013). In particular, Suen et

al. (2001) proposed a general method to construct asymmetric orthogonal arrays of

arbitrary strength. This method was then applied by them to obtain several families

of asymmetric orthogonal arrays of strength three and four. Suen and Dey (2003)

combined tools from finite projective geometry with the method of Suen et al. (2001)

to construct some new families of asymmetric orthogonal arrays of strength three and

four. In this paper, we apply the method of Suen et al. (2001) to obtain some more

asymmetric orthogonal arrays of strength three. We also give an alternative method

of construction of a family of asymmetric orthogonal arrays of strength four, which

appears to be more direct than that of Suen and Dey (2003).

Recall that an orthogonal array OA(N, n, s1 × · · · × sn, g) of strength g, is an

N × n matrix with symbols in the ith column from a finite set of si(≥ 2) symbols,

1 ≤ i ≤ n, such that in every N × g submatrix, all possible combinations of symbols

appear equally often as a row. Orthogonal arrays with s1 = s2 = · · · = sn = s (say)

are called symmetric and are denoted by OA(N, n, s, g); otherwise, the array is called

asymmetric (or, with mixed levels).

Henceforth, the columns of an OA(N, n, s1 × · · · × sn, g) will be called factors,

following the terminology in factorial experiments, and these factors will be denoted

by F1, . . . , Fn. Throughout this paper, we take the integer s ≥ 2 to be a prime or a

prime power, i.e., s = pq, where p is a prime and q ≥ 1 is an integer. The Galois

field of order s will be denoted by GF (s), 0 and 1 being the identity elements of the

field corresponding to the operations ‘addition’ and ‘multiplication’, respectively. Also,

throughout a prime will denote transposition. We shall need the following results, the

first of which is well known and the second one is due to Suen et al. (2001).

Lemma 1. Let α and β be two elements of GF (s) such that α2 = β2. Then (i) α = β

if s is even, (ii) either α = β or α = −β, if s is odd.
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Lemma 2. For a positive integer h, let D be a (2h + 1) × sh matrix with columns of

the form (α2
1, . . . , α

2
h, α1, . . . , αh, 1)′, where (α1, . . . , αh)’s are all possible h−tuples with

entries from GF (s). Then any three distinct columns of D are linearly independent.

If α0, α1, . . . , αs−1 are the elements of GF (s), then it follows from Lemma 1 that

the set S = {α2
0, α

2
1, . . . , α

2
s−1} contains all the elements of GF (s) if s is even. If s is

odd, then one element of S is 0 and there are (s − 1)/2 distinct non-zero elements of

GF (s), each appearing twice in S.

For the factor Fi (1 ≤ i ≤ n), define the m× 1 columns, pi1, . . . ,piui
with elements

from GF (s). Then, for the n factors we have in all
∑n

i=1 ui columns. Also, let B be

an sm×m matrix whose rows are all possible m-tuples over GF (s). Suen et al. (2001)

proved the following result.

Theorem 1. Consider an m×
∑n

i=1 ui matrix C = [A1
...A2

... · · · ...An], Ai = [pi1, ...,piui
],

1 ≤ i ≤ n, such that for every choice of g matrices Ai1 , ..., Aig from A1, ..., An,

the m ×
∑g

j=1 uij matrix [Ai1 , ..., Aig ] has full column rank over GF (s). Then an

OA(sm, n, (su1)× (su2)× ...× (sun), g) can be constructed.

A little elaboration of the result in Theorem 1 seems to be in order to make the

construction transparent. For a fixed choice of g indices {i1, . . . , ig} ∈ {1, . . . , n}, let

C1 = [Ai1 , . . . , Aig ] and r =
∑g

j=1 uij . By the rank condition of Theorem 1, it follows

that in the product BC1, each possible 1 × r vector with entries from GF (s) appears

sm−r times. Now, for each j, 1 ≤ j ≤ g, replace the suij distinct combinations under

Aij by suij distinct symbols using a 1–1 correspondence. In the resultant sm×g matrix,

(i) the ijth column has suij symbols (1 ≤ j ≤ g) and (ii) each of the
∏g

j=1 s
uij com-

binations of the symbols occurs equally often as a row. Hence, the desired orthogonal

array with parameters as in Theorem 1 can be constructed.

2 Construction of orthogonal arrays of strength three

In this section, we construct two families of orthogonal arrays of strength three.
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Theorem 2. Let k ≥ 2 be an integer and t denote the largest integer not exceeding

k/2.

(i) If s is an odd prime or an odd prime power, then an orthogonal array OA(s2k+1, sk+

(k − 1)(s− 1)t + 2, (s2)× ssk+(k−1)(s−1)t+1, 3) can be constructed.

(ii) If s is a prime power of two, then an orthogonal array OA(s2k+1, sk + (k − 1)st +

2, (s2)× ssk+(k−1)st+1, 3) can be constructed.

Proof. (i) Let s be an odd prime or an odd prime power. Let F1 have s2 symbols and

the rest of the factors have s symbols each. The matrices Ai, 1 ≤ i ≤ n, corresponding

to the different factors are chosen as below, where n = sk + (k − 1)(s− 1)t + 2.

A1 is chosen as A1 =
[
I2 02,2k−2 e

]′
, where Iu is the identity matrix of or-

der u, 0u,v is a u × v null matrix, e = (0, 1)′. The matrix A2 is chosen as A2 =

[0, x,01,2k−2, 1]′, x ∈ GF (s), x 6= 0, 1.

Suppose γ1, . . . , γt are non-zero elements of GF (s). For 3 ≤ i ≤ (s− 1)t + 2, if k is

even, then Ai is chosen to be of the form Ai = [γ21 , , . . . , γ
2
t , γt, . . . , γ1, 0, 1,01,k−1]

′. For

(s− 1)t + 3 ≤ i ≤ 2(s− 1)t + 2, let Ai be of the form

Ai = [γ21 , . . . , γ
2
t , γt, . . . , γ1, 0, 0, 1,01,k−2]

′,

i.e., 1 appears in the (k + 3)th position. The other Ai matrices for this case are

obtained by putting 1 in the (k + 4)th, (k + 5)th, . . ., 2kth position, to get a to-

tal of (k − 1)(s − 1)t columns of such a form. If k is odd, Ai is of the form Ai =

[0, γ21 , . . . , γ
2
t , γt, . . . , γ1, 0, 1,01,k−1]

′, . . . ,[0, γ21 , . . . , γ
2
t , γt, . . . , γ1, 0,01,k−2, 1, 0]′. Finally,

the last sk columns have the form [α2
k, . . . , α

2
1, 1, αk, . . . , α1]

′, where αi ∈ GF (s).

(ii) Let s be an even prime power. In this case, the matrix A2 is chosen as A2 =

[01,2k, 1]′. γ1, . . . , γt can be any element of GF (s) and thus, each γi has s different

choices. If k is even, the total number of columns of the types

[γ2t , . . . , γ
2
1 , γt, . . . , γ1, 0, 1,01,k−1]′, . . . , [γ2t , . . . , γ

2
1 , γt, . . . , γ1, 0,01,k−2, 1, 0]′

is (k − 1)st. If k is odd, the total number of columns of the types

[0, γ2t , . . . , γ
2
1 , γt, . . . , γ1, 0, 1,01,k−1]′, . . . , [0, γ2t , . . . , γ

2
1 , γt, . . . , γ1, 0,01,k−2, 1, 0]′
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is (k − 1)st. The other columns of the matrices Ai are chosen as in case (i) above.

One can then verify that the rank condition of Theorem 1 is met with the above

choices of the matrices Ai. We give below the proof for some of the non-trivial cases.

To save space, we consider only the case when s is an odd prime or an odd prime

power; the case when s is a power of two can be handled in a similar fashion.

For convenience, denote the columns A1 by 1, A2 by 2, those of Ai, i ∈ {3, ..., (k −
1)(s−1)t + 2} by a, and those of Ai, i ∈ {(k−1)(s−1)t + 3, ..., sk + (k−1)(s−1)t + 2}
by b, if k is even. If k is odd, denote those of Ai, i ∈ {3, ..., (k − 1)st + 2} by a,

and those of Ai, i ∈ {(k − 1)st + 3, ..., sk + (k − 1)st + 2} by b. The proofs below

are for the case when k is even. There are many different position of 1 in the form

of [0, γ21 , . . . , γ
2
t , γt, . . . , γ1, 0, 1,01,k−1]

′, . . . ,[0, γ21 , . . . , γ
2
t , γt, . . . , γ1, 0,01,k−2, 1, 0]′. For

convenience, we can select any three of them to prove the result. Without loss of

generality, we choose the last three of them.

(1aa)1: Here, we have

[Ai, Aj, Ak] =


1 . . . 0 . . . 0 0 . . . 0 0
0 . . . 0 . . . 0 0 . . . 0 1
β2
t . . . βt . . . β1 0 . . . 1 0
γ2t . . . γt . . . γ1 0 . . . 1 0


′

.

Since there exists at least one βi 6= γi, for i = 1, ..., t, the determinant of the submatrix
1 0 0 0
0 0 0 1
β2
t βi 1 0
γ2t γi 1 0


′

is βi − γi 6= 0.

(1aa)2: Here, we have

[Ai, Aj, Ak] =


1 . . . 0 . . . 0 0 . . . 0 0 0
0 . . . 0 . . . 0 0 . . . 0 0 1
β2
t . . . βt . . . β1 0 . . . 0 1 0
γ2t . . . γt . . . γ1 0 . . . 1 0 0


′

.

The determinant of the submatrix
1 0 0 0
0 0 0 1
β2
t 0 1 0
γ2t 1 0 0


′
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is 1.

(2aa)1: Here

[Ai, Aj, Ak] =

 0 x . . . 0 . . . 0 0 . . . 0 1
β2
t β2

t−1 . . . βt . . . β1 0 . . . 1 0
γ2t γ2t−1 . . . γt . . . γ1 0 . . . 1 0

′ .
Since there exists at least one βi 6= γi, for i = 1, ..., t, the determinant of the submatrix 0 0 1

βi 1 0
γi 1 0

′

is βi − γi 6= 0.

(2aa)2: Here

[Ai, Aj, Ak] =

 0 x . . . 0 . . . 0 0 . . . 0 0 1
β2
t β2

t−1 . . . βt . . . β1 0 . . . 0 1 0
γ2t γ2t−1 . . . γt . . . γ1 0 . . . 1 0 0

′ .
The determinant of the submatrix  0 0 1

0 1 0
1 0 0

′

equals 1.

(12a): Here

[Ai, Aj, Ak] =


1 0 . . . 0 . . . 0 . . . 0 0
0 0 . . . 0 . . . 0 . . . 0 1
0 x . . . 0 . . . 0 . . . 0 1
γ2t γ2t−1 . . . γt . . . γ1 . . . 1 0


′

.

The determinant of the submatrix
1 0 0 0
0 0 0 1
0 x 0 1
γ2t γ2t−1 γi 0


′

is xγi 6= 0.

(12b): Here

[Ai, Aj, Ak] =


1 0 . . . 0 . . . 0
0 0 . . . 0 . . . 1
0 x . . . 0 . . . 1
α2
k α2

k−1 . . . 1 . . . α1


′

.
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The determinant of the submatrix
1 0 0 0
0 0 0 1
0 x 0 1
α2
k α2

k−1 1 0


′

is x 6= 0.

(1ab): Here

[Ai, Aj, Ak] =


1 . . . 0 . . . 0 0
0 . . . 0 . . . 0 1
γ2t . . . 0 . . . 1 0
α2
k . . . 1 . . . α2 α1


′

.

The determinant of the submatrix
1 0 0 0
0 0 0 1
γ2t 0 1 0
α2
k 1 α2 α1


′

is 1.

(2ab): Here

[Ai, Aj, Ak] =

 0 x . . . 0 . . . 0 1
γ2t γ2t−1 . . . 0 . . . 1 0
α2
k α2

k−1 . . . 1 . . . α2 α1

′ .
The determinant of the submatrix  0 0 1

0 1 0
1 α2 α1

′

is 1.

(aab)1: Here

[Ai, Aj, Ak] =

 β2
t . . . 0 . . . 1 0
γ2t . . . 0 . . . 1 0
α2
k . . . 1 . . . α2 α1

′ .
Since there exists at least one βi 6= γi, for i = 1, ..., t, the determinant of the submatrix βi 0 1

γi 0 1
α2
j 1 α2

′

is γi − βi 6= 0.
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(aab)2: Here

[Ai, Aj, Ak] =

 β2
t . . . 0 . . . 0 1 0
γ2t . . . 0 . . . 1 0 0
α2
k . . . 1 . . . α3 α2 α1

′ .
the determinant of the submatrix  0 0 1

0 1 0
1 α3 α2

′

is 1.

(abb): Here

[Ai, Aj, Ak] =

 γ2t . . . 0 . . . 1 0
α2
k . . . 1 . . . α2 α1

β2
k . . . 1 . . . β2 β1

′ .
If αi 6= βi for i 6= 2, the determinant of the submatrix 0 0 1

1 αi α2

1 βi β2

′

is βi − αi 6= 0. If αi = βi for i 6= 2, then β2 6= γ2, the determinant of the submatrix γ1 0 1
α2
1 1 α2

β2
1 1 β2

′

is γ1(β2 − α2) 6= 0.

(bbb): Here

[Ai, Aj, Ak] =

 α2
k . . . 1 . . . α1

β2
k . . . 1 . . . β1
γ2k . . . 1 . . . γ1

′ .
by Lemma 2, the rank of the matrix is three.

(1ab): Here

[Ai, Aj, Ak] =


1 . . . 0 . . . 0 0
0 . . . 0 . . . 0 1
γ2t . . . 0 . . . 1 0
α2
k . . . 1 . . . α2 α1


′

.

The determinant of the submatrix
1 0 0 0
0 0 0 1
γ2t 0 1 0
α2
k 1 α2 α1


′

8



is 1.

(aaa)1: Here

[Ai, Aj, Ak] =

 α2
t . . . α2

1 αt . . . α1 0 . . . 0 1 0
β2
t . . . β2

1 βt . . . β1 0 . . . 0 1 0
γ2t . . . γ21 γt . . . γ1 0 . . . 0 1 0

′ .
by Lemma 2, the rank of matrix is three.

(aaa)2: Here

[Ai, Aj, Ak] =

 α2
t . . . α2

1 αt . . . α1 0 . . . 0 1 0
β2
t . . . β2

1 βt . . . β1 0 . . . 1 0 0
γ2t . . . γ21 γt . . . γ1 0 . . . 1 0 0

′ .
Since βi 6= γi for at least one i, the determinant of the submatrix αi 0 1

βi 1 0
γi 1 0

′

is nonzero. �

Remark. As before, let s be a prime or a prime power and let i, k be integers such

that 1 ≤ i ≤ k. Suen and Dey (2003) constructed the following families of orthogonal

arrays:

(i) OA(s2k+i, sk + 1, (sk)2 × (si)s
k−1, 3), if s is odd and,

(ii) OA(s2k+i, sk + 2, (sk)2 × (si)s
k
, 3), if s is even.

Setting i = 1, one gets the arrays

(a) OA(s2k+1, sk + 1, (sk)2 × ssk−1, 3), if s is odd and,

(b) OA(s2k+1, sk + 2, (sk)2 × ssk , 3), if s is even.

First, replace one of the sk−symbol columns by k columns having s symbols each

and then replace symbols in the other sk−symbol column by all possible combinations

arising out of one s2−symbol column and k − 2 columns each having s symbols. By

this process, one obtains the following arrays corresponding to the arrays in (a) and

(b) respectively:

(c) OA(s2k+1, sk + 2k − 2, (s2)× ssk+2k−3, 3), if s is odd, and,
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(d) OA(s2k+1, sk + 2k − 1, (s2)× ssk+2k−2, 3), if s is even.

It is easy to verify that the arrays given by Theorem 2 have more s−symbol columns

than in the arrays (c) and (d) above. Thus, the arrays in Theorem 2 appear to be

superior to the ones in (c) and (d) in terms of having more s−symbol columns.

In closing this paper, we make an observation about a family of asymmetric orthog-

onal arrays of strength four. Suen and Dey (2003) constructed a family of orthogonal

arrays OA(s5, s + 3, (s2) × ss+2, 4), where s is a power of two. We give below an al-

ternative method of obtaining the same family, which appears to be more direct than

that of Suen and Dey (2003).

Let F1 have s2 symbols and the rest of the factors have s symbols each. The matrices

Ai, 1 ≤ i ≤ s+ 3 are chosen as follows.

A1 =

[
1 0 0 0 0
0 1 0 0 0

]′
, A2 = [1 0 0 0 1]′, A3 = [1 0 0 1 0]′,

and for 4 ≤ j ≤ s+3, Aj = [0, α3
j , 1, αj, α

2
j ]
′, where α4, . . . , αs+3 are distinct elements of

GF (s). It can be verified that with these choices of the Ai matrices, the rank condition

of Theorem 1 is met. We omit the details.
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