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FROM PARTICLE COUNTING TO GAUSSIAN TOMOGRAPHY

K. R. PARTHASARATHY AND RITABRATA SENGUPTA

Abstract. The momentum and position observables in an n-mode boson Fock space Γ(Cn)
have the whole real line R as their spectrum. But the total number operator N has a discrete
spectrum Z+ = {0, 1, 2, · · · }. An n-mode Gaussian state in Γ(Cn) is completely determined
by the mean values of momentum and position observables and their covariance matrix which
together constitute a family of n(2n + 3) real parameters. Starting with N and its unitary
conjugates by the Weyl displacement operators and operators from a representation of the
symplectic group Sp(2n) in Γ(Cn) we construct n(2n + 3) observables with spectrum Z+ but
whose expectation values in a Gaussian state determine all its mean and covariance parameters.
Thus measurements of discrete-valued observables enable the tomography of the underlying
Gaussian state and it can be done by using 5 one mode and 4 two mode Gaussian symplectic
gates in single and pair mode wires of Γ(Cn) = Γ(C)⊗n. Thus the tomography protocol admits
a simple description in a language similar to circuits in quantum computation theory. Such
a Gaussian tomography applied to outputs of a Gaussian channel with coherent input states
permit a tomography of the channel parameters. However, in our procedure the number of
counting measurements exceeds the number of channel parameters slightly. Presently, it is not
clear whether a more efficient method exists for reducing this tomographic complexity.

As a byproduct of our approach an elementary derivation of the probability generating
function of N in a Gaussian state is given. In many cases the distribution turns out to be
infinitely divisible and its underlying Lévy measure can be obtained. However, we are unable
to derive the exact distribution in all cases. Whether this property of infinite divisibility holds
in general is left as an open problem.

Keywords. Gaussian state, Gaussian channel, Momentum and position observables, Weyl
operators, Symplectic group, Tomography.

Mathematics Subject Classification (2010): 81S25, 60B15, 81P45, 81P50, 62G05, 81R30.

1. Introduction

It is in the nature of quantum theory that properties of the state of quantum systems can be
inferred from measurements of observables of physical significance taking values in a discrete set
or a continuum. From an experimental point of view it is natural to seek as much information
as possible from the discrete measurements. A typical measurement of the discrete type is
counting the number of particles of a particular type. Suppose the unknown state of a system
can be described in terms of some parameters which constitute a manifold of dimension k.
Then it is natural to look for k discrete-valued observables from whose expectation values one
can determine the values of these parameters. Of course, such observables should be physically
meaningful and also experimentally measurable. This has been extensively studied in the book
[PŘ04].

RS acknowledges financial support from the National Board for Higher Mathematics, Govt. of India.
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In this article we explore this problem of determining the state when it is known that the state
is Gaussian. Consider the Hilbert space L2(Rn), or equivalently, the boson Fock space Γ(Cn)
over the n-dimensional complex Hilbert space Cn. A Gaussian state of n-modes in L2(Rn) is
completely described by its momentum and position mean values and a 2n × 2n covariance
matrix. Thus, an n-mode Gaussian state is determined by n(2n+ 3) parameters. Here one has

observables a†jaj, the number of particles in the j-th mode for each j = 1, 2, · · · , n and also their
unitary equivalents in different frames which are obtained by Weyl (displacement) operators as
well as unitary operators which implement the symplectic linear transformations in the position
and momentum observables obeying the canonical commutation relations. Using these resources
we shall construct n(2n+ 3) number observables which have the discrete spectrum {0, 1, 2, · · · }
and the property that all the means and covariances of the unknown Gaussian state can be
easily determined from their expectation values. Measurements on these number observables on
an ensemble of such a Gaussian state and the law of large numbers can be used to estimate the
unknown parameters. In the process of such an investigation we shall determine the probability
generating function of the distribution of the total number observable

∑n
j=1 a

†
jaj, its mean and

variance in any fixed Gaussian state.
Following Heinosaari et al [HHW10] a Gaussian channel with n degrees of freedom is deter-

mined by a pair (A, B) where A is a 2n×2n real matrix, B is a 2n×2n real positive semidefinite
matrix satisfying the matrix inequality

B + ı(ATJ2nA− J2n) ≥ 0,

where J2n is defined in equation (2.12). Thus such a channel is determined by 4n2+n(2n+1) real
parameters. Such a channel yields an output Gaussian state for any given input Gaussian state.
By choosing a few appropriate input coherent states and performing a Gaussian tomography
on the output Gaussian states, we show how the matrices A and B of the quasifree channel can
be estimated. We use coherent states as they constitute an important class of mathematical
objects, which are easy to realize experimentally. Further, creation of different coherent states
with different amplitudes and phases can be possible from the same experimental set-up. We
note that, a similar approach of using coherent states for tomography (although in a different
scheme) has also been taken by Lobino et al [LKK+08], and was further developed in [RKSM+11,
WYH+13].

Bosonic particle counting is an important tool in quantum optics, both for theory and for
experiments [SW87b, SW87a]. Gaussian states, channels and their applications have been used
extensively in quantum information theory. These concepts have been studied in detail in the
book of Holevo [Hol12] and in the survey article by Weedbrook et al [WPGP+12]. We also
refer to the books by de Gosson [dG06] and Parthasarathy [Par92] for the connection between
symplectic geometry and quantum stochastic calculus. We refer to the survey article by Lvovsky
and Raymer [LR09] and the references therein, for experimental processes of continuous variable
tomography.

We organise the paper as follows. To increase the readability of the article, in §2, we write
a short introduction to notions like exponential vector, Weyl operator, Gaussian state, Fourier
transform, Gaussian channels and other necessary concepts which will be used in subsequent
sections. In this venture, we mostly follow the approach taken in the papers [ADMS95, Par10,
Par14a]. In §3 we derive the basic formulae for expectation and variance of the total number
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operator which will be used in §4 to estimate an unknown Gaussian state. In §5 we use the
tomographic method derived for Gaussian states in §4 to estimate the unknown parameters of
a Gaussian channel.

2. Notation and preliminaries

In this section we give a short survey on Gaussian state and other necessary concepts. Though
these have been extensively studied in various references, we follow the method and notation
adopted in the book [Par92] and the papers [Par10, Par13, Par14b, Par14a].

2.1. Exponential vector. LetH be a finite dimensional complex Hilbert space. When dimH =
n and H is identified with Cn we express its elements as column vectors z = (z1, z2, · · · , zn)T

with zj being complex scalars and the scalar product between two elements z and z′ as

〈z|z′〉 =
n∑
j=1

z̄jz
′
j.

Define the boson Fock space Γ(H) over H by

(2.1) Γ(H) = C⊕H⊕Hs2 ⊕ · · · ⊕ Hsr ⊕ · · ·
where sr denotes r-fold symmetric tensor product. Elements of the subspace Hsr in Γ(H) are
called r-particle vectors and elements of the form

u0 ⊕ u1 ⊕ · · · ⊕ ur ⊕ · · ·
where all but a finite number of ur’s are null, are called finite particle vectors. Finite parti-
cle vectors constitute a dense linear manifold F in Γ(H). For any u ∈ H we associate the
exponential vector e(u) in Γ(H) defined by

(2.2) e(u) = 1⊕ u⊕ u⊗2√
2!
⊕ · · · ⊕ u⊗r√

r!
⊕ · · · .

Then

(2.3) 〈e(u)|e(v)〉 = exp〈u|v〉 ∀u,v ∈ H.
The linear manifold E generated by all the exponential vectors is called exponential domain.
The two dense linear manifolds E and F are useful domains for constructing several operators
of physical significance.

2.2. Weyl operator. For any u ∈ H we associate the Weyl displacement operator W (u) by
putting

(2.4) W (u)e(v) = e−
1
2
‖u‖2−〈u|v〉e(u + v)

for all v ∈ H, observing that W (u) is scalar product preserving on E and therefore extends
naturally to Γ(H). The Weyl operators obey the multiplication property

(2.5) W (u)W (v) = e−ıIm〈u|v〉W (u + v)

for all u, v ∈ H and yield a strongly continuous, irreducible, factorizable and projective unitary
representation of the additive group H. By ‘factorizable’ we mean the property that under the
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isomorphism between Γ(H1⊕H2) and Γ(H1)⊗Γ(H2) through the identification Ie(u1⊕u2) =
e(u1)⊗ e(u2) one has

IW (u1 ⊕ u2)I−1 = W (u1)⊗W (u2).

If u→ W̃ (u) is another strongly continuous map from H into the unitary group of a Hilbert
space K such that equation (2.5) holds with W replaced by W̃ and W̃ (·) is irreducible, then
there exists a unitary isomorphism V : Γ(H)→ K such that

VW (u)V −1 = W̃ (u) ∀u ∈ H.

Thus the Weyl operators constitute a unique multiplicative family up to unitary equivalence
but with the presence of the factor exp−ıIm〈u|v〉 in equation (2.5). We call u → W (u) the
Weyl representation ofH and we shall exploit its properties to define a natural quantum Fourier
transform for states in Γ(H). For now, we shall introduce some basic observations arising from
the Weyl operators.

For any fixed u ∈ H, the map t 7→ W (tu) yields a strongly continuous one parameter unitary
group as t varies in R. By Stone’s theorem [Par92] there exists a self adjoint operator p(u) such
that

(2.6) W (tu) = e−ıtp(u), t ∈ R.

Define the operators

q(u) = −p(ıu),

a(u) =
1

2
(q(u) + ıp(u)),

a†(u) =
1

2
(q(u)− ıp(u)).

All these operators have domains including the exponential domain E and the domain F of
finite particle vectors. Indeed, any finite linear combination of these operators have the same
property and we denote their respective closures by the same symbols. With this convention
one has

W (u) = e−ıp(u) = ea
†(u)−a(u).

When H = Cn = Rn + ıRn and u = x + ıy with x = Reu, y = Imu we also have

W (u) = W (x + ıy) = e−ı(p(x)−q(y)).

Furthermore, one has the following commutation relations.

[p(u), p(v)] = 2ı Im〈u|v〉,
[q(u), q(v)] = 2ı Im〈u|v〉,
[q(u), p(v)] = 2ıRe〈u|v〉,
[a(u), a(v)] = 0,[
a†(u), a†(v)

]
= 0,[

a(u), a†(v)
]

= 〈u|v〉

on the domains E and F for all u, v in H.
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Choose and fix an orthonormal basis {ej}, j = 1, 2, · · · in H, and define

pj =
1√
2
p(ej), qj = − 1√

2
p(ıej),

aj =
1√
2

(qj + ıpj), a†j =
1√
2

(qj − ıpj).

Then one has the canonical commutation relations in the form

[pr, ps] = [qr, qs] = 0, [qr, ps] = ıδrs,

or equivalently,

[ar, as] = [a†r, a
†
s] = 0, [ar, a

†
s] = δrs,

in the domains E and F . The observables p1, p2, · · · are called momentum operators and
q1, q2, · · · are called position operators in the basis {ej, j = 1, 2, · · · }.

2.3. Quantum Fourier transform. For any trace class operator ρ in Γ(H) its quantum
Fourier transform or simply Fourier transform ρ̂ on H is defined by

ρ̂(u) = TrρW (u), u ∈ H.

Then ρ̂ is a bounded continuous function of u satisfying ρ̂(0) = Trρ. If ρ is positive then ρ̂
obeys the Bochner property: for any finite set {cr, r = 1, 2, · · · , k} of scalars and elements
{ur, r = 1, 2, · · · , k} in H one has the inequality∑

r,s

c̄rcs exp(ıIm〈ur|us〉)ρ̂(us − ur) ≥ 0.

Conversely, if ϕ is a continuous function with ϕ(0) = 1 and ϕ satisfies the Bochner property
above then there exists a unique state ρ such that ρ̂ = ϕ. When H = Cn one has the Fourier
inversion formula:

ρ =
1

πn

∫
ρ̂(u)W (u) du

where du denotes integration with respect to the 2n dimensional Lebesgue measure in R2n with
du = dx dy, u = x + ıy, x = Re(u), y = Im(u).

With the help of Fourier transform we shall now construct a natural Hilbert space isomor-
phism between the Hilbert space of Hilbert-Schmidt operators in Γ(H) and the Hilbert space
L2(R2n).

Proposition 2.1. Let H = Cn. Then

1

πn

∫
exp

[
−‖w‖2 + 〈u|w〉+ 〈w|v〉

]
dw = exp〈u|v〉.

Proof. Immediate from standard formulae for Gaussian integrals. �

Proposition 2.2. Denote by L2(H), the Hilbert space of square integrable functions on H with
the scalar product

〈f |g〉 =

∫
f(u)g(u)

du

πn
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and by B2(Γ(H)) the Hilbert space of all Hilbert-Schmidt operators on Γ(H) with the scalar
product

〈ρ1|ρ2〉 = Trρ†1ρ2.

Then there exists a unique Hilbert space isomorphism F : B2(Γ(H))→ L2(H) such that for any
u, v ∈ H,

(2.7) (F(|e(u)〉〈e(v)|)) (w) = Tr|e(u)〉〈e(v)|W (w) ∀w ∈ H.
Proof. The right hand side of equation (2.7) is equal to

〈e(v)|W (w)|e(u)〉
= e−

1
2
‖w‖2〈e(v)|e−〈w|u〉|e(u + w)〉

= exp

[
−1

2
‖w‖2 + 〈v|w〉 − 〈w|u〉+ 〈v|u〉

]
(2.8)

If we put ρj = |e(uj)〉〈e(vj)|, j = 1, 2 then

(2.9) Trρ†1ρ2 = exp [〈u1|u2〉+ 〈v2|v1〉] .
On the other hand the scalar product between Tr|e(uj)〉〈e(vj)|W (w), j = 1, 2 reduces by
Proposition 2.1 and equation (2.8) to the right hand side of (2.9). Now we observe that rank
one operators of the form |e(u)〉〈e(v)|, u, v ∈ H constitute a total set in B2(Γ(H)). Thus F
defined by (2.7) extends uniquely to the whole of B2(Γ(H)). On the other hand functions of w
of the form on the right hand side of (2.8) constitute a total set in L2(H). Thus F extends to
a Hilbert space isomorphism between B2(Γ(H)) and L2(H). �

2.4. Gaussian state.

Definition 2.1. A state ρ in Γ(H) with H = Cn is called an n-mode Gaussian state if its
Fourier transform ρ̂ is given by

(2.10) ρ̂(x + ıy) = exp

[
−ı
√

2(lTx−mTy)−
(

x
y

)T
S

(
x
y

)]
.

for all x, y ∈ Rn where l, m are elements of Rn and S is a real 2n × 2n symmetric matrix
satisfying the matrix inequality

(2.11) 2S + ı J2n ≥ 0

with

(2.12) J2n =

[
0 −In
In 0

]
,

In being the identity matrix of order n.

Remark 2.1. Equations (2.10)–(2.12) have been written keeping in mind the orders of the
canonical momentum and position observables as p1, p2, · · · , pn, q1, q2, · · · , qn. Sometimes it
is more convenient to distinguish the different modes of a Gaussian state by using the order
p1, q1, p2, q2, · · · , pm, qn. This is usually achieved by employing the permutation

σ =

(
1 2 3 4 · · · 2n− 1 2n
1 n+ 1 2 n+ 2 · · · n n+ n

)
.
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Then the right hand sides of (2.10)–(2.12) are obtained by changing (xT ,yT ), (lT ,mT ) and S re-
spectively to (x1, y1, x2, y2, · · · , xn, yn), (l1,m1, l2,m2, · · · , ln,mn), and σSσ−1 with J2n replaced
by

J̃2n =



0 −1
1 0

0 −1
1 0

. . .
0 −1
1 0


,

By abuse of notation we may denote both J2n and J̃2n by the same symbol J2n.

We choose the canonical orthonormal basis ej = (0, 0, · · · , 1, 0, · · · , 0)T with 1 in the j-th
position for j = 1, 2, · · · , then the momentum and position operators satisfy the relations

Tr pjρ = lj, Tr qjρ = mj

and S is the covariance matrix of (p1, p2, · · · , pn,−q1,−q2, · · · ,−qn) in the state ρ satisfying
(2.10-2.12). Whenever 2.10 is satisfied we write

ρ = ρg(l,m;S).

Thus ρ is completely described by n(2n+ 3) parameters.

Proposition 2.3. Let ρg(lj,mj;Sj), j = 1, 2 be two n-mode Gaussian states. Then

(2.13) Tr ρg(l1,m1;S)ρg(l2,m2;T ) =

exp

[
−1

2

[
l1 − l2

−(m1 −m2)

]T
(S + T )−1

[
l1 − l2

−(m1 −m2)

]]
√

det(S + T )
.

Proof. Any state in Γ(Cn) is a positive operator of unit trace and hence a Hilbert-Schmidt
operator. Thus by Proposition 2.2 we have

Tr ρg(l1,m1;S)ρg(l2,m2;T )

=
1

πn

∫
exp

[
ı
√

2((l1 − l2)Tx− (m1 −m2)Ty)−
(

x
y

)T
(S + T )

(
x
y

)]
dx dy.

The rest follows from the standard formula for the characteristic function of a multivariate
normal density function in statistics. �

Proposition 2.4. For any u ∈ Cn with x = Re(u), y = Im(u)

W (u)ρg(l,m;S)W (u)† = ρg(l
′,m′;S)

where

l′ = l +
√

2y, m′ = m +
√

2x.

Proof. Immediate from Corollary 3.3 in [Par10]. �
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We denote by Sp(2n) the symplectic group Sp(2n,R) of all real 2n×2n matrices L satisfying
the relation

LTJ2nL = J2n.

Let Γ(L) be the unitary operator in Γ(Cn) which is unique upto a scalar multiple of modulus
unity and satisfies the relation

Γ(L)W (x + ıy)Γ(L)−1 = W (x′ + ıy′), ∀x, y ∈ Rn,

where

L

(
x
y

)
=

(
x′

y′

)
.

If U is any n × n unitary matrix and U = A + ı B where A = Re(U) and B = Im(U) then
the 2n× 2n matrix

L =

[
A −B
B A

]
is an orthogonal matrix which is also an element of Sp(2n). We denote the corresponding Γ(L)
by Γ(U) and call it the second quantization of U . We can realize Γ(U) as the unique unitary
operator satisfying

Γ(U)e(u) = e(Uu) ∀u ∈ Cn.

With these notations we have

Proposition 2.5. For any L ∈ Sp(2n)

Γ(L)ρg(l,m;S)Γ(L)† = ρg(l
′,m′;S ′)

where (
l′

−m′

)
= (L−1)T

(
l′

−m′

)
S ′ = (L−1)TSL−1.

Proof. This is Corollary 3.5 of [Par10]. �

3. Particle counts and their statistics in a Gaussian state

Let ρg(l,m;S) be an n-mode Gaussian state in Γ(Cn) and whose Fourier transform is given
by equation (2.10). Define the observables

Nj = a†jaj =
1

2
(p2j + q2j − 1), 1 ≤ j ≤ n.

N =
n∑
j=1

Nj.

Both Nj and N are observables with spectrum {0, 1, 2, · · · }. Nj is called the number operator
or observable which counts the number of particles (photons) in the j-th mode. Since the
Nj’s commute with each other they have a joint distribution in the state ρg(l,m;S) with
support in {0, 1, 2, · · · }n. Using Proposition 2.3 we shall derive a formula for the probability
generating function of this joint distribution and arrive at some natural corollaries. To this end
we introduce the Gaussian state
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ρ(0,0;T ) =
n∏
j=1

(1− e−tj)e−
∑n

j=1 tja
†
jaj ;

where

T =


1
2

(
1+e−t1

1−e−t1

)
I2

. . .
1
2

(
1+e−tn

1−e−tn

)
I2


= D

(
1

2

(
1 + e−tj

1− e−tj

)
I2, 1 ≤ j ≤ n

)
; tj > 0 ∀j,

with D indicating the diagonal block matrix with blocks of order 2× 2 and the diagonal entries
being enumerated within ( ). These are the well-known thermal states. It follows immediately
from Proposition 2.3, equation(2.13) that

Trρg(l,m;S)e−
∑n

j=1 tja
†
jaj =

exp

[
−1

2

(
l
−m

)T (
S +D

(
1
2

(
1+e−tj

1−e−tj

)
I2, 1 ≤ j ≤ n

))−1( l
−m

)]
∏n

j=1(1− e−tj)
√

det
[
S +D

(
1
2

(
1+e−tj

1−e−tj

)
I2, 1 ≤ j ≤ n

)] .

Substituting Nj = a†jaj, xj = e−tj we get
(3.1)

Trρg(l,m;S)xN1
1 · · ·xNn

n =

exp

[
−1

2

(
l
−m

)T (
S +D

(
1
2

(
1+xj
1−xj

)
I2, 1 ≤ j ≤ n

))−1( l
−m

)]
∏n

j=1(1− xj)
√

det
[
S +D

(
1
2

(
1+xj
1−xj

)
I2, 1 ≤ j ≤ n

)]
for 0 < xj < 1 ∀j. The right hand side of this equation is nothing but the probability generating
function of the joint distribution of the observables Nj, 1 ≤ j ≤ n.

Theorem 3.1. Let ρg(l,m;S) be an n-mode Gaussian state in Γ(Cn) whose covariance matrix
S has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ2n with respective real eigenvectors b1,b2, · · · ,b2n and

momentum position mean

(
l

m

)
satisfying

(
l
−m

)
=

2n∑
j=1

τjbj.

Suppose

αj =
λj − 1

2

λj + 1
2

, 1 ≤ j ≤ n.
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Then the probability generating function GN(x) of the distribution of the total number operator
N in the state ρg(l,m;S) is given by

GN(x) = Tr ρg(l,m;S)xN

=
2n∏
j=1

√
1− αj

1− αjx
exp

[
−1

2
τ 2j

(1− x)(1− αj)
(1− αjx)

]
, 0 ≤ x < 1.(3.2)

Proof. Putting xj = x for all j in (3.1) and making use of the eigenbasis and eigenvalues of S
we see that (3.1) becomes

GN(x) =
2n∏
j=1

exp
[
−1

2
τ 2j
(
λj + 1

2
1+x
1−x

)−1]√
(1− x)λj + 1

2
(1 + x)

.

The rest is elementary algebra using the definitions of αj in terms of λj for every j. �

Corollary 3.1. The probability distribution of N in the state ρg(l,m;S) satisfies the following:

(i) Pr(N = 0) =
2n∏
j=1

(1− αj) exp

[
−1

2
τ 2j (1− αj)

]
,(3.3)

(ii) 〈N〉 =
1

2

[
Tr

(
S − 1

2

)
+

∥∥∥∥( l
−m

)∥∥∥∥2
]
,(3.4)

(iii) Variance(N) =
1

2
Tr

(
S − 1

2

)(
S +

1

2

)
+

(
l
−m

)T
S

(
l
−m

)
,(3.5)

Proof. Property (i) follows by putting x = 0 in (3.2). Properties (ii) and (iii) are obtained from
(3.2) by taking the logarithm of GN , differentiating twice and taking limx→1

d
dx

(logG(x)) and

limx→1
d2

d2x
(logG(x)). �

Remark 3.1. Equations (3.3)-(3.5) show that the probability of presence of a particle and
the expectation and variance of the total number of particles get enhanced when the Gaussian
state has a nonzero momentum position mean vector. Indeed, the mean and variance of N tend
to infinity as the length of the momentum position mean vector increases to infinity. Equations
(3.3) and (3.5) indicate the possibility of estimating the mean and covariance parameters of
a Gaussian state by measuring the number operator under different displacements. We shall
discuss this approach to the tomography of a Gaussian state in great detail in the next section
§4.

It may be noted that the parameters αj in Theorem 3.1 satisfy the inequality |αj| < 1 for
every j. If l and m are null-vectors and αj ≥ 0 for every j then GN(x) assumes the form

GN(x) =
2n∏
j=1

(
1− αj

1− αjx

) 1
2

and the corresponding distribution of N is a convolution of 2n negative binomial distributions
of index 1

2
, some of which may be degenerate at 0. In particular, it is infinitely divisible. In
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this case

Variance(N)− 〈N〉 =
1

2
Tr

(
S − 1

2

)2

≥ 0

and the distribution exhibits a super Poissonian property. When S = 1
2
I2n the state becomes

the vacuum state and N has the degenerate distribution, degenerate at 0.
Now we shall analyse the distribution of N in a pure Gaussian state. In this case S = 1

2
LTL

for some element L of the group Sp(2n) and its eigenvalues can be expressed as

(3.6)

(
c1
2
,

1

2c1
,
c2
2
,

1

2c2
, · · · , ck

2
,

1

2ck
,
1

2
, · · · , 1

2

)
where cj > 1 for 1 ≤ j ≤ k. Then

α2j−1 =
cj−1
cj+1

> 0 for 1 ≤ j ≤ k,

α2j =
1−cj
1+cj

< 0 for 1 ≤ j ≤ k,

αr = 0 for 2k + 1 ≤ r ≤ 2n.

Write βj = α2j−1, 1 ≤ j ≤ k so that α2j = −βj, 1 ≤ j ≤ k. Then the probability generating
function of the total number operator N in (3.2) assumes the form

(3.7) GN(x) = G1(x)G2(x)G3(x)

where

G1(x) =
k∏
j=1

√
1− β2

j

1− β2
jx

2
(3.8)

G2(x) = exp
1

2

k∑
j=1

[
τ 22j−1

(x− 1)(1− βj)
1− βjx

+ τ 22j
(x− 1)(1 + βj)

1 + βjx

]
(3.9)

G3(x) = exp

[
1

2

2n∑
j=2k+1

τ 2j (x− 1)

]
(3.10)

where 0 < βj < 1 for 1 ≤ j ≤ k.
Writing

γj = τ 22j−1(1− βj),(3.11)

δj = τ 22j(1 + βj), 1 ≤ j ≤ k,(3.12)

one can express G2(x) in (3.9) as

(3.13) G2(x) = exp
1

2

k∑
j=1

βj(γj − δj)(x2 − 1) + [γj(1− βj) + δj(1 + βj)] (x− 1)

1− β2
jx

2

where 0 < βj < 1, γj ≥ 0, δj ≥ 0 for 1 ≤ j ≤ k.
From (3.7) it follows that G1(x) is the probability generating function of a convolution of

probability distributions µj, 1 ≤ j ≤ k where the probability generating function of µj is equal
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to

(1− β2
j )

1
2

∞∑
r=0

1.3.5. · · · (2r + 1)

r!
β2r
j x

2r, 1 ≤ j ≤ k.

In particular µj is an infinitely divisible distribution with support in {0, 2, 4, · · · }. Equation
(3.10) shows that G3(x) is the probability generating function of a Poisson distribution with
mean value 1

2

∑2n
r=2k+1 τ

2
r .

If γj ≥ δj for every j = 1, 2, · · · , k then G2(x) is clearly the probability generating function of
an infinitely divisible distribution with support in {0, 1, 2, · · · }. Its Lévy measure can be easily
read off from (3.13). Under this assumption, i.e. γj ≥ δj for each 1 ≤ j ≤ k it follows that N
has an infinitely divisible distribution in the pure Gaussian state we started with.

However, we do not know the answer to the question whether the distribution of the total
number operator N in every Gaussian state is infinitely divisible and hence of a mixed Poisson
type.

4. From particle counting to the tomography of a Gaussian state

A Gaussian state with n modes can be constructed if its momentum and position means l,
m and its covariance matrix S are known. Our aim is to express these parameters in terms of
the expectation values of conjugates of the total number operator by a few elementary gates
in the Hilbert space Γ(Cn). To this end we shall make use of the Weyl displacement operators
W (u), u ∈ Cn and the Gaussian symmetries Γ(L), L ∈ Sp(2n) described in Section §3. We
start with an elementary but basic result for achieving this tomography of a Gaussian state.
For any observable X denote by 〈X〉 its mean value in the state relevant to the context.

Theorem 4.1. Let ρg(l,m;S) be a Gaussian state and let N be the number operator in the
n-mode Hilbert space Γ(Cn). Then the following hold:

(i) For all x, y ∈ Rn

(4.1)
〈
W (x + ıy)†NW (x + ıy)

〉
− 〈N〉 = ‖x‖2 + ‖y‖2 +

√
2(yT l + xTm)

(ii) For any L ∈ Sp(2n)
(4.2)〈

Γ(L)†NΓ(L)
〉
− 〈N〉 =

1

2

[
TrS

(
L−1L−1

T − I2n
)

+

(
l
−m

)T (
L−1L−1

T − I2n
)(

l
−m

)]
.

Proof. We have from Proposition 2.4 and equation (3.4)〈
W (x + ıy)†NW (x + ıy)

〉
= Tr ρg(l,m;S)W (x + ıy)†NW (x + ıy)

= Tr W (x + ıy)ρg(l,m;S)W (x + ıy)†N

=
1

2

[
Tr

(
S − 1

2

)
+ ‖l +

√
2y‖2 + ‖m +

√
2x‖2

]
.

Now subtracting the value of 〈N〉 given by (3.4) we obtain equation (4.1).
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Similarly , we have from Proposition 2.5 and equation (3.4)

Tr ρg(l,m;S)Γ(L)†NΓ(L) = Tr Γ(L)ρg(l,m;S)Γ(L)†N

=
1

2

[
Tr

(
L−1

T
SL−1 − 1

2

)
+

(
l
−m

)T
L−1

T
L−1

(
l
−m

)]
.

Now, subtracting the value of 〈N〉 given by (3.4) get get (4.2). �

For any unitary operator U in the 1-mode Hilbert space Γ(C) we say that the operator
I ⊗ · · · ⊗ I ⊗ U ⊗ I ⊗ · · · ⊗ I with U in j-th position, acting in the n-mode Hilbert space
Γ(Cn) = Γ(C)⊗ Γ(C)⊗ · · · ⊗ Γ(C)︸ ︷︷ ︸

n times

is the gate U applied on the j-th mode and denote it by

U (j). In Figure 1 we represent U (j) by following the notion of circuit diagrams in quantum
computation.

U
...
...

U (j) =

Figure 1.

Here each wire stands for a Γ(C) and in the j-th wire the unitary operator U is applied.
Similarly, if V is a unitary operator in the 2-mode Hilbert space Γ(C2) = Γ(C) ⊗ Γ(C) we

construct the unitary operator V (i,j) in the 2 modes representing the i-th and the j-th wire.
For example V (1,2) is represented in Figure 2.

V

...

V (1,2) =

Figure 2.

When i < j are not successive we can apply a permutation to make them successive, apply V
and follow by the reverse permutation. One may use Figure 3. For achieving the tomography,
we shall use only one and two mode gates.

To begin with we consider the two 1-mode Weyl displacement operators W (2−
1
2 ı) and W (2−

1
2 )

where ı =
√
−1. Put

Gp = W (2−
1
2 ı)(4.3)

Gq = W (2−
1
2 )(4.4)

If ej = (0, · · · , 0, 1, 0 · · · , 0)T with 1 in the j-th position then applying Gp and Gq in the j-th

mode is equivalent to using the displacement operator W (2−
1
2 ıej) and W (2−

1
2 ej) respectively.
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i

j

HHH

��
�

V

...

...

...

Figure 3.

Then equation (4.1) in Theorem 4.1 reduces to

lj =
〈
G(j)
p

†
NG(j)

p

〉
− 〈N〉 − 1,(4.5)

mj =
〈
G(j)
q

†
NG(j)

q

〉
− 〈N〉 − 1.(4.6)

Furthermore (3.4) implies

(4.7) Tr S = 2〈N〉 − ‖l‖2 − ‖m‖2 + n.

In other words, the measurement of counting observables N, G
(j)
p

†
NG

(j)
p , G

(j)
q

†
NG

(j)
q , 1 ≤ j ≤ n

which constitute a set of cardinality 2n + 1 yields the 2n + 1 parameters lj, mj (1 ≤ j ≤ n)
and Tr S concerning the Gaussian state ρg(l,m;S).

Till now, the only resources we have used are identity (or zero mode) gate and the one mode
gates Gp and Gq. Now we shall pass on to 1-mode Gaussian symmetry gates.

We consider the element L(x, α) ∈ Sp(2) defined by

(4.8) L(x, α) =

[
cosα − sinα
sinα cosα

] [
x 0
0 1

x

] [
cosα sinα
− sinα cosα

]
, x > 1, 0 ≤ α < 2π

and the unitary operator

(4.9) Gsp(x, α) = Γ(τ(L(x, α)))

where τ(L) = (L−1)T in any symplectic group. We now view Gsp(x, α) as a 1-mode gate and
apply it in different modes. We express it by Figure 4 where the box is in the j-th wire.

Gsp(x, α)
...
...

Gj
sp(x, α) =

Figure 4.

Expressing the covariance matrix S of the n-mode Gaussian state as a block matrix

S = [[Si,j]], i, j ∈ {1, 2, · · · , n}
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where each Si,j is a 2×2 matrix we observe that Sjj is the covariance matrix of the j-th marginal
Gaussian state and

(4.10)

[
Sii Sij
STij Sjj

]
, i < j

is the covariance matrix of the i j-marginal Gaussian state of ρg(l,m;S).
Let

(4.11) Sjj =

[
σpp σpq
σqp σqq

]
with σqp = σpq. Thus Sjj has three parameters. Applying the gate G

(j)
sp (x, α) defined by (4.9)

and Figure 4, and using part (ii) of Theorem 4.1 we get

(4.12)

(x2 cos2 α + x−2 sin2 α− 1)σpp + (x2 sin2 α + x−2 cos2 α− 1)σqq + 2(x2 − x−2) sinα cosα

= 2
(〈
G(j)
sp (x, α)†NG(j)

sp (x, α)
〉
− 〈N〉

)
+ [1− (x2 cos2 α + x−2 sin2 α)]l2j

+ [1− (x2 sin2 α + x−2 cos2 α)]m2
j + 2ljmj(x

2 − x−2) sinα cosα

Choosing α = 0, (4.12) becomes

(x2 − 1)σpp + (x−2 − 1)σqq

= 2
(〈
G(j)
sp (x, 0)†NG(j)

sp (x, 0)
〉
− 〈N〉

)
+ (1− x2)l2j + (1− x−2)m2

j .(4.13)

Choosing x =
√

2 and x =
√

3 successively (4.13) yields two linearly independent equations for

determining σpp and σqq in terms of lj, mj, 〈N〉 and
〈
G

(j)
sp (x, 0)†NG

(j)
sp (x, 0)

〉
.

Now we go back to the equation (4.12) and choose x =
√

2, α = π
4
. Then we get

1

4
(σpp + σqq) +

3

2
σpq = 2

(〈
G(j)
sp

(√
2,
π

4

)†
NG(j)

sp

(√
2,
π

4

)〉
− 〈N〉

)
−1

4
(l2j +m2

j) +
3

2
ljmj.(4.14)

Since σpp, σqq and lj, mj have already been determined, (4.14) determines σpq by using values

of 〈N〉 and
〈
G

(j)
sp

(√
2, π

4

)†
NG

(j)
sp

(√
2, π

4

)〉
. Thus Sjj can be completely determined by mea-

surements of N using the gates Gsp(
√

2, 0), Gsp(
√

3, 0) and Gsp(
√

2, π
4
) in different modes after

knowing the vectors l and m. However, after determining Sjj for 1 ≤ j ≤ n − 1, in order to

determine Snn it is enough to use only the two gates Gsp(
√

2, 0) and Gsp(
√

2, π
4
) in the n-th

mode because we already know TrS form (4.7). Thus we need only (3n−1) new measurements
to determine the 3n parameters occurring in the block diagonals Sjj, 1 ≤ j ≤ n.

Now it remains to determine for any i < j the off-diagonal block Sij. To achieve this goal we
shall use a 2-mode gate of the form Γ(L), L ∈ Sp(4). We start with a unitary matrix of order
2 of the form

U =

(
α β
−β̄ ᾱ

)
, |α|2 + |β|2 = 1
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where α = α1 + ı α2, β = β1 + ı β2 with αj, βj being real. If we view U as a real linear
transformation of R4 we get an element of Sp(4) of the form

(4.15) O =


α1 −α2 β1 −β2
α2 α1 β2 β1
−β1 −β2 α1 α2

β2 −β1 −α2 α1


where O is a real orthogonal matrix. Define

(4.16) L(U, x1, x2) = O


x1

x−11

x2
x−12

OT , x1 > 1, x2 > 1.

We write

(4.17) L(U, x1, x2)
TL(U, x1, x2) =

[
A BT

B C

]
and note that A, C are 2× 2 positive definite matrices and B is given by

(4.18) B =

[
−β1α1(x1 − x2) + β2α2(x

−1
1 − x−12 ) −β1α2(x1 − x−12 )− β2α1(x

−1
1 − x2)

β2α1(x1 − x−12 ) + β1α2(x
−1
1 − x2) β2α2(x1 − x2)− β1α1(x

−1
1 − x−12 )

]
.

Using (4.10) and (4.17) we observe that

Tr

[
Sii Sij
Sji Sjj

]
L(U, x1, x2)

TL(U, x1, x2) = Tr

[
Sii Sij
Sji Sjj

] [
A BT

B C

]
= Tr(SiiA+ SjjC) + 2TrSijB(4.19)

where the first sum on the right hand side depends only on Sii and Sjj which have already been
determined in terms of the expectations of N and its conjugates by chosen one mode gates. In
order to determine Sij we use the 2-mode gate

(4.20) Gsp(U, x1, x2) = Γ(τ(L(U, x1, x2)))

in the (i, j)-modes and use part (ii) of Theorem 4.1 to obtain the relation

〈
Gi,j
sp (U, x1, x2)

†NGi,j
sp (U, x1, x2)

〉
− 〈N〉

=
1

2

Tr

[
Sii Sij
Sji Sjj

] [
A− I2 BT

B C − I2

]
+


l1
−m1

l2
−m2


T [
A− I2 BT

B C − I2

]
l1
−m1

l2
−m2


 .

Using (4.19) this reduces to

Tr SijB =
〈
Gi,j
sp (U, x1, x2)

†NGi,j
sp (U, x1, x2)

〉
− 〈N〉

−1

2
Tr [Sii(A− I2) + Sjj(C − I2)]

= f(U, x1, x2) say.(4.21)
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When li, mi, lj, mj, Sii and Sjj are already determined, the term f(U, x1, x2) depends only
on U, x1, x2. Let

Sij =

[
γ11 γ12
γ21 γ22

]
.

We now make four special cases for (U, x1, x2).

(i) U = H = 1√
2

[
1 1
−1 1

]
, x1 = 1, x2 = 2. Put r1 = f(H, 1, 2). Then (4.21) becomes

(4.22)
1

2
γ11 −

1

4
γ22 = r1.

(ii) U = H, x1 = 1, x2 = 3. Put r2 = f(H, 1, 3). Then (4.21) becomes

(4.23) γ11 −
1

3
γ22 = r2.

(iii) U = K = 1√
2

[
ı 1
−1 −ı

]
, x1 = 1, x2 = 2. Put r3 = f(K, 1, 2). Then (4.21) becomes

(4.24) − 1

4
(γ21 + 2γ12) = r3.

(iv) U = K, x1 = 1, x2 = 3. Put r4 = f(K, 1, 3). Then (4.21) becomes

(4.25) − 1

3
(γ21 + 3γ12) = r4.

The four equations (4.22)–(4.25) in the unknowns γ11, γ22, γ12, γ21 are linear and linearly
independent. Thus they determine the matrix Sij for any fixed i, j. For this purpose we have
used exactly four measurements described by the four 2-mode gates for four parameters.

In all we have used exactly (2n + 1) + (3n − 1) + 4n(n−1)
2

= n(2n + 3) measurements to
determine the n(2n+ 3) parameters of the Gaussian state ρg(l,m;S).

5. Tomography of Gaussian channels

An n-mode Gaussian channel K(A,B) is described by a pair of real 2n× 2n matrices (A,B)
where B is positive semidefinite and the following matrix inequality holds:

B + ı(ATJ2nA− J2n) ≥ 0

with J2n as in equation (2.12). Thus K(A,B) is determined by 6n2 + n real parameters. Such
a channel has the property that for any Gaussian input state ρg(l,m;S), the corresponding
output is again Gaussian and has the form ρg(l

′,m′;S ′) where(
l′

−m′

)
= AT

(
l
−m

)
(5.1)

S ′ = ATSA+
1

2
B.(5.2)
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our aim is to determine A and B by performing tomography on the output states for a small
number of coherent input statea |ψ(u)〉 where

|ψ(u)〉〈ψ(u)| = ρg

(√
2y,
√

2x;
1

2
I2n

)
where x = Re(u), y = Im(u). By (5.1) and (5.2) the output state is

(5.3) ρg

(
y′,x′;

1

2
(ATA+B)

)
where

(5.4)

(
y′

−x′

)
= AT

( √
2y

−
√

2x

)
.

Now we specialize the values of u and select the 2n input states

ρj = |ψ(2−
1
2 ıej)〉〈ψ(2−

1
2 ıej)|, 1 ≤ j ≤ n,(5.5)

ρ′j = |ψ(2−
1
2 ej)〉〈ψ(2−

1
2 ej)|, 1 ≤ j ≤ n.(5.6)

Then the corresponding output states are

(5.7) ρ̃g

(
l̃j, m̃j,

1

2
(ATA+B)

)
with

(5.8)

(
l̃j
−m̃j

)
= AT

(
ej

0

)
, 1 ≤ j ≤ n

and

(5.9) ρ̃g
′
(

l̃j
′
, m̃j

′,
1

2
(ATA+B)

)
with

(5.10)

(
l̃j
′

−m̃j
′

)
= AT

(
0
ej

)
, 1 ≤ j ≤ n.

A full tomography on (5.7) with j = 1 as outlined in Section §4 yields the first row of A and
the matrix ATA+B by using n(2n+3) measurements. A similar but partial tomography of the
remaining (n− 1) states in (5.7) and all the states in (5.9) but only for the mean values yields
the remaining (2n− 1) rows of A. This needs an additional set of (2n− 1)(2n + 1) = 4n2 − 1
measurements. In all, our approach requires 6n2 + 3n− 1 measurements for getting the 6n2 +n
parameters. It will be interesting to know whether one can determine A and B with less
measurements. If this is not possible our problem will carry an intrinsic tomographic complexity.
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6. Conclusions

All the 2n2 + 3n mean and covariance parameters of an n-mode Gaussian state can be recov-
ered from the expectation values of the same number of conjugates of the total number operator
by Gaussian symmetries. Such symmetries can be realised by five one mode and four two mode
gates. The complete tomography of a Gaussian state can be expressed by circuit diagrams and
measurements akin to those in quantum computation theory. An application of this tomogra-
phy to the output of an n-mode Gaussian channel corresponding to appropriate coherent inputs
determines all the 6n2 + n parameters by 6n2 + 3n − 1 measurements. Improvement in this
channel tomography and finding the probability distribution of the number operator from its
explicitly computable probability generating function in a general n-mode Gaussian state seem
to be interesting problems arising from our investigations.
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Mathematics. Birkhäuser Verlag, Basel, 1992.

[Par10] K. R. Parthasarathy. What is a Gaussian state? Commun. Stoch. Anal., 4(2):143–160, 2010.
[Par13] Kalyanapuram R. Parthasarathy. The symmetry group of Gaussian states in L2(Rn). In Albert N.

Shiryaev, S. R. S. Varadhan, and Ernst L. Presman, editors, Prokhorov and contemporary prob-
ability theory. In honor of Yuri V. Prokhorov on the occasion of his 80th birthday, volume 33 of
Springer Proceedings in Mathematics & Statistics, pages 349–369. Berlin: Springer, 2013.

[Par14a] K. R. Parthasarathy. Quantum Stochastic Calculus and Quantum Gaussian Processes. ArXiv e-
prints, Aug 2014, 1408.5686.

[Par14b] K. R. Parthasarathy. Symplectic Dilations, Gaussian States and Gaussian Channels. ArXiv e-
prints, May 2014, 1405.6476.
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