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Abstract

It is well known that existence of equivalent martingale measure

(EMM) is essentially equivalent to absence of arbitrage. In this pa-

per, we give an overview of this connection and also include work that

we had done with Professor Kallianpur, which was not published as

an article, but is included in the book by Kallianpur on Option pric-

ing. This is the concept of No Approximate Arbitrage with Controlled

Risk - NAACR which turns out to be equivalent to the existence of

equivalent martingale measure. This seems to be the only result char-

acterizing EMM in terms of simple strategies. Moreover, the proof

of this assertion is purely functional analytic, without invoking semi-

martingales and stochastic integration.



1 Introduction

An important result in Mathematical finance - often called the fundamen-

tal theorem of asset pricing - states that existence of an equivalent (local)

martingale measure is essentially equivalent to abscence of arbitrage oppor-

tunities. This result is the basis of the theory of pricing by arbitrage. While

it is easy to prove that the existence of an equivalent (local) martingale mea-

sure - written as EMM - rules out existence of arbitrage opportunities in

the class of admissible integrands, it is well known the converse is not true.

One must rule out approximate arbitrage opportunities (suitably defined) to

characterize EMM property.

This question has been discussed in discrete time as well as in continuous

time, over finite as well as infinite horizon and for finitely many stock prices or

commodities as well as infinite collection of commodities. See [9], [5], [3], and

references therein. Various notions of ruling out approximate arbitrage have

been proposed. In most papers, the approach is via a separation theorem

(due to Kreps-Yan).

The Kreps - Yan theorem ([9], [14], [13]) says that existence of EMM is

equivalent to a property called No Free Lunch (NFL) - which defines approx-

imate arbitrage in terms of limits of nets in weak∗ topology. This was not

considered suitable as it does not lend itself to an economic interpretation.

Moreover, it allows the strategy to use positions that are very risky (see [3]).

In [2] Approximate arbitrage was defined as a position that can be ap-

proximated by any investor keeping his/her risks as low as possibe. A charac-

terisation of existence of EMM was given in terms of abscence of arbitrage in

the sense described in previous sentence. This manuscript was unpublished,

but the material was essentially included in the book [7]. We will describe

this work with details. This work relies on Orlicz spaces and we describe the

basic properties of these spaces. Also, an interesting result on weak∗ closure

of a convex set in L∞ is included, which is of independent interest. We have

also included a proof of the Kreps-Yan theorem.

We first describe the class of claims attainable by simple strategies over

finite time horizon. In a sense, this class is the natural starting point as these
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are the strategies that can be implemented in practice. Also, to define this

class, we do not need to assume that the stock price process is a semimartin-

gale. Of course, once we show that there exists EMM, it follows that the

stock price process is a semimartingale.

Throughout the article, we fix a probability space (Ω,F , P ) and we as-

sume that F contains all P - null sets. All random variables considered are

defined on this space and Lp referes to Lp(Ω,F ,P).

2 Trading strategy and arbitrage opportunity

Consider a market consisting of d-stocks with stock prices at time t being

given by S1
t , . . . , S

d
t . We assume that all processes are defined on a probability

space (Ω,F ,P). We assume that there is a riskless asset, bond,whose price

is S0
t . (Typically S0

t = exp(rt) or S0
t = exp(

∫ t
0
rudu)). Let

S̃it = Sit/S
0
t

be the discounted price process.

Let (Ft) be the filtration generated by (S0
s , S

1
s , . . . , S

d
s ) : 0 ≤ s ≤ t,

namely Ft is the smallest σ-field with respect to which the random variables

(S0
s , S

1
s , . . . , S

d
s ) : 0 ≤ s ≤ t are measurable.

We assume that for each i, S̃it is locally bounded, i.e. there exists a

sequence {τk} of (Ft)-stopping times, τk increasing to ∞, such that

|S̃it∧τk | ≤ ck,i t ≥ 0 (2.1)

for some constants ck,i <∞. By replacing τk by τk∧k if necessary, we assume

that τk are bounded stopping times.

We consider invetment stratagies that involve infusion of capital at time

zero but at subsequent times, no fresh investment is made nor is any money

taken out for consumption. Thus, at subsequent times, money is moved from

one asset to another at prevailing market prices.

We are considering a frictionless market- where transaction costs are zero

and short selling is allowed. Short selling means a promise to sell something
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that you do not have. Short selling a bond tantamounts to taking a loan.

Thus, it is implicit that deposits (buying bonds) or loans (short selling bonds)

have the same rate of interest. This is an ideal market and practioners make

adjustments for deviations from the same.

A simple investement strategy is a process πt = (π1
t , π

2
t , . . . π

d
t ) where

πit =
m−1∑
j=0

aijI(σj ,σj+1](t), 1 ≤ i ≤ d (2.2)

where aij are Fσj measurable bounded random variables, σ0 ≤ σ1 ≤ . . . ≤ σm
are (Ft)- stopping times with σm ≤ τk for some k, τk as in (2.1). Thus, for

1 ≤ i ≤ d, πi is constant over each of the intervals (σ0, σ1], (σ1, σ2], . . . ,

(σm−1, σm]. πit is the number of shares of the ith stock the investor will hold

at time t. The adjective simple refers to the restriction that the investor

changes his/her holdings only finitely many times. Since he/she cannot be

allowed to forsee the future, his decision must be based only on information

available to him/her at that instant. Hence {σj : 0 ≤ j ≤ m} above should

be stopping times and aij is required to be Fσj measurable.

Since we are considering discounted prices, buying or selling bonds do

not change value of an investors’ holdings. The change in value is entirely

due to the fluctuations in the price of stocks. Thus it can be seen that the

discounted value process (with zero initial investment) for the simple strategy

(πt) given by (2.2) is

Ṽt(π) =
d∑
i=1

m−1∑
j=0

aij(S̃
i
σj+1∧t − S̃

i
σj∧t). (2.3)

Note that in view of our assumptions, Ṽt(π) is bounded for all simple

investment strategies. Let

Ks = {Ṽt(π) : π is a simple strategy}.

Ks is the class of all (discounted) positions attainable via simple strategies

over finite horizons. The subscript s reflects that we are considering simple

strategies.
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Remark : While here we have assumed that t ∈ [0,∞), we can consider

t ∈ [0, T ] by requiring that Sit = Sit∧T for all t, i = 0, 1, 2, . . . d. Likewise, we

can consider discrete time model with prices changing only at integer times by

requiring that

Sit = Si[t], 0 ≤ t <∞, i = 0, 1, . . . , d.

Similarly, if we are considering a market consisting of infinitely many stocks Sαt ,

α ∈ ∆, where ∆ is an arbitrary index set, we can take Ft to be the filtration

generated by {Sαu , α ∈ ∆, 0 ≤ u ≤ t} and then define simple investment strategy

πα for the αth stock. The class Kα
s of attainable claims via simple investment

strategies over finite horizons on the stock Sα can be defined as above. i.e.

Kα
s = {Ṽt(πα) : πα is a simple strategy}.

The class

Ks = linear span {∪α∈∆Kα
s }

then represents positions attainable via simple strategies over infinitely many

stocks over finite horizon. The discussion that follows depends on Ks alone and

the underlying number of stocks plays no role.

A position Z ∈ Ks is said to be an arbitrage opportunity if P (Z ≥ 0) = 1

and P (Z > 0) > 0. If such a position is attainable via a strategy π, then

all investors would love to follow the strategy π and without any chance of

losing money (risk), aim to make money. Such a behaviour would disturb the

equilibrium, pushing up price of whatever this strategy requires to be bought.

Thus one rules out existence of such positions. Formally, one imposes the

following condition on a market in equilibrium:

Definition 2.1 Ks (or S̃) is said to satisfy the condition of No Arbitrage

(written as NA) if

Ks ∩ L∞+ = {0}. (2.4)

Here, for 1 ≤ p ≤ ∞ Lp+ = {Z ∈ Lp,P(Z ≥ 0) = 1}. It has been found that

it is useful to introduce positions that can be improved upon by a strategy.

With this idea let us introduce

Cs = {W : ∃Z ∈ Ks such that W ≤ Z}.
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It is easy to see that (2.4) implies

Cs ∩ L∞+ = {0}. (2.5)

3 Equivalent Martingale Measures

We will first explore a sufficient condition for NA.

Definition 3.1 A probability measure Q on (Ω,F) is said to be an equivalent

martingale measure (EMM)- (for S̃) if Q ≡ P (i.e. Q << P and P << Q) and

S̃it is a local martingale on (Ω,F ,Q) for 1 ≤ i ≤ d.

Here is a simple observation.

Lemma 3.2 Let Q be given by dQ
dP

= f with P(f > 0) = 1, f ∈ L1(P ). Then

Q is an EMM for S̃ if and only if

EQ[W ] ≤ 0 ∀W ∈ Cs. (3.1)

As a consequence, if an EMM Q exists, then NA holds.

Proof : If Q is an EMM, then for a simple startegy π, Ṽt(π) is a local mar-

tingale on (Ω,F ,Q) and hence a martingale as it is bounded. In particular,

EQ(Ṽt(π)) = EQ(Ṽ0(π)) = 0.

Thus

EQ(Z) = 0 ∀Z ∈ Ks

and as a result, EQ(W ) ≤ 0 ∀W ∈ Cs.
Conversely, suppose (3.1) is satisfied. Since Z ∈ Ks implies Z ∈ Cs and

also −Z ∈ Ks ⊆ Cs, (3.1) implies

EQ[Z] = 0 ∀Z ∈ Ks. (3.2)

Fix 1 ≤ i ≤ d and a stopping time σ1. We will show that

EQ[S̃iσ1∧τk ] = EQ[S̃i0] (3.3)
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where τk are as in (2.1). This will imply that

S̃it∧τk is a martingale for all k

and hence that S̃i is a local martingale. This will complete the proof of the

first part.

It remains to prove (3.3). Fix integers k ≥ 1 and 1 ≤ i ≤ d. Let

σ = σ1 ∧ τk, ai = 1 and aj = 0 for j 6= i, 1 ≤ j ≤ d and define

πl(t) = al1(0,σ](t), 1 ≤ l ≤ d.

Let πt = (π1
t , π

2
t , . . . π

d
t ) be the corresponding investment strategy. Then for

t such that τk ≤ t (such a t exists as τk is bounded),

Ṽt(π) = S̃iσ − S̃i0.

Since Ṽt(π) ∈ Ks, (3.2) implies (3.3).

Now suppose EMM Q exists. Let Z ∈ Ks be such that P (Z ≥ 0) = 1.

Then we have Q(Z ≥ 0) = 1 and then EQ[Z] = 0 implies Q(Z = 0) = 1 and

as a conseqeunce, P (Z = 0) = 1. Thus NA holds.

However, it is well known that the converse to the last part of the above

lemma is not true. i.e. NA does not imply the existence of an EMM. (See

[5], [3] and references therein). Here is one example of the well known phe-

nomenon.

Example 1. Let Ω = {−1, 1}N and let ξi be the coordinate mappings on

Ω. Let P be the probability measure on Ω such that ξi’s are independent

and for n ≥ 1, P (ξn = 1) = 1
2

+ 1
2
√
n+1

, P (ξn = −1) = 1
2
− 1

2
√
n+1

.

For n ≥ 1, let S0
n = (1 + r)n where r is the rate of interest. For t ∈ R let

S0
t = S0

[t]. Let the stock price process S1
t be given by S1

0 = 1 and

S1
t =

[t]∏
i=1

(
1 +

1

2
ξi

)
S0
t

The discounted stock price S̃1
t is then given by

S̃1
t =

[t]∏
i=1

(
1 +

1

2
ξi

)
.
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Let F = σ(ξi : i ≥ 1) and Fn = σ(ξi : 1 ≤ i ≤ n). It is easy to

see that on (Ω,F) there is a unique probability measure Q under which

(S̃1
n,Fn) is a martingale: it is the one under which ξi’s are independent with

Q(ξi = 1) = Q(ξi = −1) = 1
2
.

Let P n, Qn be restrictions of P,Q on Fn. Then P n and Qn are equivalent.

Further, if gn = dPn

dQn
, then

gn =
n∏
i=1

(
1 +

ξi√
i+ 1

)
.

Moreover,∫
√
gndQ

n =
1

2

n∏
i=1

[√(
1 +

1√
i+ 1

)
+

√(
1− 1√

i+ 1

)]

≈1

2

n∏
i=1

(
1 +

c

i+ 1

)
→ 0 as n→∞.

Kakutani’s theorem now implies that Q is orthogonal to P .

It follows that there is no probability measure equivalent to P under which

S̃1
n is a martingale. This also implies that there is no probability measure

equivalent to P under which S̃1
n is a local martingale. For if S̃1

n is a local

martingale, boundedness of S̃1
n will imply that S̃1

n is actually a martingale.

Hence EMM property does not hold for S̃t on (Ω,F , P ).

However, we will see that NA does hold. For this note that every Z ∈ Ks
is Fm measurable for some m. Hence Ks ∩ L∞+ = {0}. Indeed if W ∈ Ks ∩
L∞+ (P ), then W is Fm measurable for some m and hence W ∈ Ks ∩ L∞+ (Q).

But under Q, S̃1
t is a martingale and thus EQ(W ) = 0, so that Q(W = 0) = 1.

Finally this implies that P (W = 0) = 1.

So NA holds but EMM does not hold.

Let g0 = 1. For n ≥ 1 it can be verified that S̃1
n+1− S̃1

n = S̃1
n
ξn+1

2
and that

gn − 1 =
n−1∑
m=0

2gm√
m+ 1S̃1

m

(S̃1
m+1 − S̃1

m).

Hence Zn = gn − 1 ∈ Ks. Since Q ⊥ P, gn →∞ a.s. P , and we get

P (Zn ≥ 1)→ 1.
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Thus though there is no arbitrage opportunity in the class Ks of attainable

claims, there is a sequence {Zn} ⊂ Ks such that P (Zn ≥ 1)→ 1.

The example discussed above suggests that in order to have an equivalent

(local) martingale measure one should rule out existence of sequences {Zn} ⊂
Ks such that P (Zn ≥ Z)→ 1, Z ∈ L∞+ and P (Z = 0) < 1. Let us tentatively

call such sequences {Zn} as approximate arbitrage opportunities. However,

existence of an equivalent martingale measure does not rule out approximate

arbitrage opportunities as the following example shows.

Example 2. In the setup of Example 1, consider the stock prices S̃1
t on the

probability space (Ω,F , Q). Since S̃1
t is a Q martingale, the EMM property

trivially holds. Let f0 = 1 and

fn =
n∏
i=1

(1 + ξi).

Then fm− fm−1 = 2fm−1
(S̃1
m−S̃1

m−1)

S̃1
m−1

and hence Wn = 1− fn can be written as

Wn =−
n∑
i=1

(fi − fi−1)

=−
n∑
i=1

−2fi−1

S̃1
i−1

(S̃1
i − S̃1

i−1)

and hence Wn ∈ Ks. Note that P (fn = 2n) = 2−n and P (fn = 0) = 1− 2−n.

Thus Wn → 1 a.s. [P ]. This implies that {Wn} is an approximate arbitrage

opportunity since P (Wn ≥ 1− ε)→ 1 for every ε > 0.

In the first example, let us note that Zn ≥ −1, i.e. the risk associated

with the approximate arbitrage opportunity {Zn} (namely Z−n ) is bounded by

1. In the second example, Z−n is not bounded. Indeed P (Z−n = 2n−1) = 2−n

for all n.

These comments suggest that to characterize the EMM property, one

should rule out those approximate arbitrage opportunities for which the as-

sociated risks are controlled (in some appropriate sense). The next section

shows us the way.
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4 The Kreps - Yan Separation Theorem

Let E ⊂ L∞ be a linear subspace and let D = {W : W = Z−Y, Z ∈ E, Y ∈
L∞+ }. Alternatively,

D = E − L∞+ .

Let D∗ be the closure of D in the weak∗ topology on L∞ (i.e. σ(L∞,L1)

topology). Note that D∗ is a convex cone closed in the weak∗ topology. The

following result is due to Kreps. This version is more general than the original

version, and is due to Stricker [13] using results of Yan [14].

Theorem 4.1 The following are equivalent

(i) ∃f ∈ L1+, P (f > 0) = 1, such that∫
Zf dP ≤ 0 ∀Z ∈ D. (4.1)

(ii)

D∗ ∩ L∞+ = {0}. (4.2)

Proof : Suppose (i) is true. Then using the fact that f ∈ L1 = (L∞)∗ we

get ∫
Zf dP ≤ 0 ∀Z ∈ D∗. (4.3)

Thus, if W ∈ D∗ ∩ L∞+ then (4.3) implies W = 0.

For the other part, assume (4.2) is true. Then given A ∈ F with P(A) >

0, consider X = 1A. Then the closed convex set D∗ and the compact set

{X} are disjoint and hence by Hahn-Banach Theorem, there exists gA ∈ L1

and α such that∫
ZgAdP ≤ α ∀Z ∈ D∗ and

∫
1Ag

AdP > α. (4.4)

Since 0 ∈ E ⊆ D, we have 0 ≤ α. In view of (4.4), α < ∞. Since D is a

cone α can be chosen to be 0. i.e.∫
WgA dP ≤ 0 ∀W ∈ D∗ (4.5)
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and ∫
1Ag

AdP > 0. (4.6)

Moreover, since −1B ∈ D for all B ∈ F , it follows that∫
1Bg

AdP ≥ 0 (4.7)

and hence that P(gA ≥ 0) = 1 or gA ∈ L1+.

Let U be the class of all f ∈ L1+ such that∫
Wf dP ≤ 0 ∀W ∈ D∗

and let β = sup{P(f > 0) : f ∈ U}. From the discussion above, it follows

that β > 0. We first note that this supremum is attained. Let fn be a

sequence of functions in U ⊆ L1+ such that P (fn > 0)→ β. Then, let

f =
∞∑
n=1

1

2n(1 + an)
fn

where an =
∫
fndP. It follows that f ∈ U and P(f > 0) = β. If β < 1, then

take A = {f > 0}c and then obtain gA ∈ L1+ such that (4.5) and (4.6) are

true. Then f + gA ∈ U and P(f + gA > 0) > P(f > 0) = β. This contradicts

definition of β. Hence β = 1. Thus we have got f ∈ U with P(f > 0) = 1.

The role played by requiring (4.2) as opposed to requiring

E∗ ∩ L∞+ = {0} (4.8)

where E∗ is the closure of E in the weak∗ topology should be noted here. If

we have (4.8), once again, given A ∈ F such that P(A) > 0, we can get gA

such that (4.5) and (4.6) holds but we can no longer assert that(4.7) is true

and as a consequence, gA may not belong to L1+.

As to the reason for taking closure in the weak∗ topology- we could have

taken closure with respect to the norm topology but then the linear functional

that the Hahn Banach theorem would yield may not be in L1- as the dual of

L∞ (with supremum norm) contains all finitely additive measures as well.
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5 No Free Lunch

As a consequence of the separation Theorem, we have

Theorem 5.1 The following are equivalent

(i) There exists an EMM Q for S̃

(ii)

C∗s ∩ L∞+ = {0}. (5.1)

This result follows immediately from Theorem 4.1 and Lemma 3.2.

Kreps called the condition (5.1) as No Free Lunch abbriviated as NFL.

It can also be called NAA- No Approximate Arbitrage. However, here the

approximation being in the weak∗ topology, the approximate arbitrage is in

terms of a net {fα} of positions. If EMM does not exist then the Theorem

5.1 yieds a random variable f0 ∈ L∞+ with P(f0 > 0) > 0 such that there

exist nets {gα ∈ Ks}α∈∆ and {fα ∈ Cs}α∈∆ with fα ≤ gα ∀α ∈ ∆ and∫
fαhdP→

∫
f0hdP ∀h ∈ L1. (5.2)

This f0 is the approximate arbitrage opportunity. This definition of approxi-

mate arbitrage (or free lunch, as defined by Kreps) was considered unsuitable

as convergence via nets is difficult to comprehend and moreover, the posi-

tions fα in (5.2) could be highly risky positions, as no control is imposed on

the same.

Thus efforts continued to get versions of the result which involved only se-

quences and where the definition of approximate arbitrage imposes a control

on the associated risk.

Let 1 ≤ p ≤ ∞. Let us say that f0 is an Lp-approximate arbitrage if

P(f0 > 0) > 0 and there exist sequences {gn ∈ Ks}, {fn ∈ Cs}, fn ≤ gn
and ‖fn − f0‖p → 0. Here ‖ · ‖p is the Lp norm. 1 < p < ∞ and q be such

that 1
p

+ 1
q

= 1 Then it was shown by Ansel and Stricker [1] that S̃ does not

admit an Lp-approximate arbitrage if and only if there exists an EMM Q for

S̃ with dQ
dP
∈ Lq.
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This follows from a Lp version of the Kreps-Yan Theorem in [1]. Kusuoka

[8] also obtained a version of this result in Orlicz space. These versions

do not require consideration of nets because the closure is being considered

in the norm of the function space. Nonetheless these results do not quite

characterise existence of EMM, but only EMM with a suitable density.

One remarkable result in this direction is due to Delbaen and Schacher-

mayer [3]: Let C̄s denote the closure of Cs in L∞ norm. Consider the condition

C̄s ∩ L∞+ = {0}. (5.3)

Another way of stating the condition (5.3) is as follows. If for f0 ∈ L∞+
there exist sequences {gn ∈ Ks}, {fn ∈ Cs}, fn ≤ gn and ‖fn − f0‖∞ → 0,

then f0 = 0. This condition has been called NFLVR (No Free Lunch With

Vanishing Risk) with simple strategies. Yet another (equivalent) formulation

of NFLVR is : If for f0 ∈ L∞+ there exist sequences {gn ∈ Ks}, ‖g−n ‖∞ → 0,

P(gn ≥ f0 − 1
n
) → 0, then f0 = 0. The latter is the rationale for the name

Vanishing Risk.

It was shown by Delbaen and Schachermayer [3] that (5.3) implies that

S̃ is a semimartingale. In that case, one can consider general (predictable)

trading strategies πt = (π1
t , π

2
t , . . . π

d
t ). The discounted value process Ṽt(π)

(with zero initial investment) for the strategy π is then given by

Ṽt(π) =
d∑
i=1

∫ t

0

πiudS̃
i
u. (5.4)

The trading strategy π is called an admisible strategy if for some constant

γ > 0

P(Ṽt(π) ≥ −γ ∀t) = 1.

The constant γ is interpreted as credit limit of the investor. It is well known

that once we go to general strategies, EMM does not rule out arbitrage

opportunity. However, EMM does imply that arbitrage opportunity cannot

exist in the class of admissible strategies. We now define the analogues of

Cs, Ks in terms of admissible strategies as follows:

K = {Ṽt(π) : π is an admissible strategy}
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and

C = {W : ∃Z ∈ K, W ≤ Z}.

Let C̄ denote the closure of C in the L∞ norm.

Definition 5.2 The process S̃ is said to satisfy NFLVR (No Free Lunch With

Vanishing Risk) if

C̄ ∩ L∞+ = {0}. (5.5)

Using deep results in Stochastic Calculus, Delbaen and Schachermayer [3]

showed that if (5.5) holds, then C̄ is closed in the weak∗ topology and hence

one can conclude that EMM exists invoking the Kreps-Yan theorem.

Delbaen and Schachermayer [4] have shown by an example that NFLVR

in the class of simple strategies does not imply existence of EMM even if one

assumes that the underlying process is continuous.

In [2], Bhatt, Kallianpur and Karandikar had given a notion of absence

of arbitrage in terms of sequences such that the associated risks remain

bounded. It was also shown that absence of approximate arbitrage in this

sense is equivalent to existence of EMM. This seems to be the only charac-

terization of EMM in terms of simple strategies. The article was unpublished

but parts were incorporated in [7].

6 Orlicz Spaces

We will need some results on Orlicz spaces which we state below. Φ is said

to be a Young function if Φ is a continuous convex increasing function on

[0,∞) with Φ(0) = 0 and Φ(x)
x
↑ ∞.

For a Young function Φ, the function Ψ defined by

Ψ(y) = sup{xy − Φ(x) : x ∈ [0,∞)} for y ∈ [0,∞) (6.1)

is also a Young function. Ψ is called the conjugate function of Φ. From the

definition of Φ, it follows that

xy ≤ Φ(x) + Ψ(y). (6.2)
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For a Young function Φ, we define three sets of random variables:

JΦ = {W : E[Φ(W )] <∞},
EΦ = {W : E[Φ(W/c)] <∞ ∀c ∈ R},
LΦ = {W : E[Φ(W/c)] <∞ for some c ∈ R}.

Then EΦ and LΦ are linear speaces while JΦ is a convex set but may fail to

be a subspace.

For any random variable Z ∈ LΦ, the Luxembourg norm ‖Z‖Φ is defined

as follows:

‖Z‖Φ = inf{c > 0 : E[Φ(1
c
|Z|)] ≤ 1}.

We list below some standard facts about Orlicz spaces. For proofs, we refer

the reader to [10].

Theorem 6.1 Let Φ be a Young function and Ψ be its conjugate. Then

(i) EΦ and LΦ are Banach spaces under the Luxembourg norm ‖·‖Φ.

(ii) L∞ ⊆ EΦ ⊆ LΦ ⊆ L1.

(iii) For X ∈ JΦ, if ‖X‖Φ ≤ 1 then

E[Φ(|X|)] ≤ ‖X‖Φ. (6.3)

(iv) Zn, Z ∈ LΦ, ‖Zn − Z‖Φ → 0 implies E[|Zn − Z|]→ 0.

(v) For X ∈ LΦ and Y ∈ LΨ ,

E[|XY |] ≤ 2‖X‖Φ‖Y ‖Ψ (6.4)

(vi) E∗Φ = LΨ , where Y ∈ LΨ acts on EΦ via

X → E[XY ].
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Here is a simple observation about convergence in LΦ. If Zn → Z in

L(Φ), then in view of (6.3), EΦ(|Zn − Z|) → 0. By Jensen’s inequality, it

then follows that

Φ(E(|Zn − Z|)) ≤ E[Φ(|Zn − Z|)]→ 0.

Here is a result on characterisation of weak∗ closure of a convex set D in

L∞ in terms of norm closures of D in Orlicz norms. As far as we can make

out, this is a new result. One half of the same is implicitly contained in [2],

[7]

Theorem 6.2 Let D be a convex subset of L∞. Let D∗ denote the closure

of D in the weak∗ topology on L∞. Let D[Φ] denote the closure of D in the

‖·‖Φ norm. Then

D∗ =
⋂
Φ

D[Φ] (6.5)

where the intersection is taken over all Young functions Φ.

Proof : Let Z ∈ D∗ and let {Zα : α ∈ ∆} be a net such that Zα → Z in

σ(L∞,L1) topology. Such a net exists as D∗ is the closure of D in σ(L∞,L1)

topology (which is also called the weak∗ topology). Let Φ be a Young function

and let Ψ be its convex conjugate. Since

L∞ ⊆ EΦ, and LΨ ⊆ L1

it follows that Zα → Z in σ(EΦ,LΨ ) topology. Since D is a convex set, its

closure in the ‖·‖Φ norm is the same as the closure in the σ(EΦ,LΨ ), which

is the weak topology on EΦ. (See Rudin Theorem 3.3.12) Hence Z ∈ D[Φ].

Since this holds for all Φ, it follows that

D∗ ⊆
⋂
Φ

D[Φ]. (6.6)

We will prove the other part by contradiction. So suppose in (6.6) the inclu-

sion is strict, namely there exists Z ∈ ∩ΦD[Φ] but Z 6∈ D∗. Then Applying

the Hahn-Banach Theorem to the closed convex set D∗ (closed in weak∗
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topology by construction) and the compact set {Z}, we get that there exists

a separating linear function in the dual, namely ∃V ∈ L1 such that

sup
X∈D∗

E[XV ] = a < E[ZV ].

In particular

sup
X∈D

E[XV ] ≤ a < E[ZV ]. (6.7)

Now V ∈ L1 implies that there exists a Young function Ψ such that E[Ψ(|V |)] <
∞. Let Φ be the convex conjugate of Ψ . Now X → E[XV ] is a linear func-

tional on EΦ (as V ∈ JΨ ⊆ LΨ ). Hence (6.7) implies

sup
X∈D[Φ]

E[XV ] ≤ a < E[ZV ]. (6.8)

But this is a contradiction since Z ∈ ∩ΦD[Φ]. Thus we must have equality in

(6.6).

7 Approximate Arbitrage and EMM

When one rules out free lunch with vanishing risk, it amounts to ruling out

approximate arbitrage with risk being taken as the absolute lower bound of

the payoff. In the Economics and finance litreture, there are other approaches

to quantifying risk: if the loss for, say a game, is modelled as L (a posiitve

random variable, quantifying loss) then the risk is taken as

E[Φ(L)]

where Φ is an increasing function, often assumed to be convex. Here the

point is that the function Φ could vary from investor to investor, depending

upon her/his preferences. See [6], [12].

With this view, let us define approximate aribtrage as follows. Let R be

the class of increasing convex functions from [0,∞) onto [0,∞) such that

Φ(0) = 0 and Φ(x)
x
↑ ∞. Thus R is the class of Young functions. Φ ∈ R is to

be thought of as a risk function, where risk associated with loss W is EΦ(W )

or risk associated with reward R is E[Φ(R−)].
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We call a position Z ∈ L∞+ , P(Z > 0) > 0 an approximable arbitrage

opportunity if every investor can come as close to the position Z as desired

using simple strategies over finite horizons and keeping the associated risk as

small as desired irrespective of risk preferences. We make this notion more

precise.

Definition 7.1 A position Z is an approximate arbitrage with controlled risk

if Z ∈ L∞+ , P(Z > 0) > 0 and for every Φ ∈ R, there exist {Zn : n ≥ 1} ⊂ Ks
with P(Zn ≥ Z − 1

n
)→ 1 and E[Φ(Z−n )]→ 0.

If no such Z exists, we say that S̃ (or Ks) satisfies no approximate arbitrage

with controlled risk - NAACR property.

Note that NAACR property has been defined only in terms of a sequence of

simple strategies.

With this the main result of this article can be stated as

Theorem 7.2 Suppose S̃ is a locally bounded process. Then the process S̃

admits an equivalent (local) martingale measure if and only if S̃ satisfies

NAACR property.

Proof : Let A denote the class of Z ∈ L∞+ such that for every Φ ∈ R there

exist Zn ∈ Ks, with

P(Zn ≥ Z − 1
n
)→ 1 (7.1)

and

E[Φ(Z−n )]→ 0. (7.2)

Thus NAACR is equivalent to A = {0}. Let C
[Φ]
s denote the closure of Cs in

the ‖·‖Φ norm. As seen in Theorem 6.2, we have

C∗s =
⋂
Φ

C [Φ]
s . (7.3)

Thus, in view of the Theorem 5.1, to complete the proof suffices to show that(⋂
Φ

C [Φ]
s

)⋂
L∞+ = A. (7.4)
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If Z ∈
(
C

[Φ]
s

)⋂
L∞+ , then recalling that C

[Φ]
s is the closure in norm, we

get that there exist Wj ∈ Cs, with ‖Wj − Z‖Φ → 0. Let Xj ∈ Ks be as in

the definition of Cs i.e. we have, Wj ≤ Xj. Using

X−j ≤ W−
j ≤ (Wj − Z)−

it follows that

E[Φ(X−j )] ≤ E[Φ(|(Wj − Z)|)] ≤ ‖Wj − Z‖Φ → 0.

Also, (Xj − Z)− ≤ ‖Wj − Z‖ − Φ and hence it follows that (Xj − Z)−

converges to zero in probability. Thus by taking a suitable subsequence jn,

we can ensure that Zn = Xjn satisfies (7.1). We have already seen that (7.2)

holds for this choice. Hence

Z ∈

(⋂
Φ

C [Φ]
s

)⋂
L∞+ implies that Z ∈ A.

For the reverse inclusion, let Z ∈ A and Φ ∈ R be fixed. For k ≥ 1, let

Φk(x) = Φ(kx). Then Φk ∈ R for all k ≥ 1. Fix k. Let {Xj} ⊆ Ks be such

that (7.1) holds and

lim
n→∞

E[Φk(X
−
j )] = 0. (7.5)

Let Yj = Xj ∧ Z. Then Yj ∈ Cs. Then (7.1) and Yj ≤ Z implies

P(Yj ≥ Z − 1
j
)→ 1.

and hence once again using Yj ≤ Z, we conclude

|Yj − Z| → 0 in probability. (7.6)

It can be seen that if Xj ≥ 0 then |Yj − Z| ≤ Z while if Xj ≤ 0, then

|Yj − Z| ≤ Z +X−j . Hence

|Yj − Z| ≤ Z +X−j

and as a consequence , using convexity of Φk we have

Φk(
1
2
|Yj − Z|) ≤ 1

2
(Φk(Z) + Φk(X

−
j )). (7.7)
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Since Z is bounded and limn→∞E[Φk(X
−
j )] = 0, the expression on RHS of

(7.7) is uniformly integrable (recall k is fixed and Xj, Yj may depend upon

k) and thus

{Φk(12 |Yj − Z|) : j ≥ 1} is uniformly integrable.

Continuity of Φk implies Φk(
1
2
|Yj−Z|)→ 0 in probability as j →∞ for each

k. Thus

E[Φ(k
2
|Yj − Z|)] = E[Φk(

1
2
|Yj − Z|)]→ 0 as j →∞.

For each k, we choose jk such that

E[Φ(k
2
|Yjk − Z|)] ≤ 1.

Then defining Wk = Yjk , it follows that (recall the definition of the norm on

LΦ)

‖Wk − Z‖Φ ≤
2

k
.

Thus Z ∈ C [Φ]
s . Since this holds for all Φ ∈ R, we conclude

Z ∈
⋂
Φ

C [Φ]
s .

This completes the proof as mentioned above.
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