isid/ms/2015/10 September 21, 2015 http://www.isid.ac.in/~statmath/index.php?module=Preprint

On some positive definite functions

RAJENDRA BHATIA AND TANVI JAIN

Indian Statistical Institute, Delhi Centre 7, SJSS Marg, New Delhi–110016, India

ON SOME POSITIVE DEFINITE FUNCTIONS

RAJENDRA BHATIA AND TANVI JAIN

ABSTRACT. We study the function $(1 - ||x||)/(1 - ||x||^r)$, and its reciprocal, on the Euclidean space \mathbb{R}^n , with respect to properties like being positive definite, conditionally positive definite, and infinitely divisible.

1. Introduction

For each $n \geq 1$, consider the space \mathbb{R}^n with the Euclidean norm $\|\cdot\|$. According to a classical theorem going back to Schoenberg [11] and much used in interpolation theory (see, e.g., [8]), the function $\varphi(x) = \|x\|^r$ on \mathbb{R}^n , for any n, is conditionally negative definite if and only if $0 \leq r \leq 2$. It follows that if r_j , $1 \leq j \leq m$, are real numbers with $0 \leq r_j \leq 2$, then the function

$$g(x) = 1 + \|x\|^{r_1} + \dots + \|x\|^{r_m}$$
(1)

is conditionally negative definite, and by another theorem of Schoenberg, (see the statement **S5** in Section 2 below), the function

$$f(x) = \frac{1}{1 + \|x\|^{r_1} + \dots + \|x\|^{r_m}}$$
(2)

is infinitely divisible. (A nonnegative function f is called infinitely divisible if for each $\alpha > 0$ the function $f(x)^{\alpha}$ is positive definite.) We also know that for any r > 2, the function $\varphi(x) = 1/(1 + ||x||^r)$ cannot be positive definite. (See, e.g., Corollary 5.5.6 of [2].)

With this motivation we consider the function

$$f(x) = \frac{1}{1 + \|x\| + \|x\|^2 + \dots + \|x\|^m}, \ m \ge 1,$$
(3)

and its reciprocal, and study their properties related to positivity. More generally, we study the function

²⁰⁰⁰ Mathematics Subject Classification. 42A82, 42B99.

Key words and phrases. Positive definite, conditionally negative definite, infinitely divisible, operator monotone, completely monotone.

$$f(x) = \frac{1 - \|x\|}{1 - \|x\|^r}, \ r > 0,$$
(4)

and its reciprocal. As usual, when ||x|| = 1 the right-hand side of (4) is interpreted as the limiting value 1/r. This convention will be followed throughout the paper. The function (3) is the special case of (4) when r = m + 1.

Our main results are the following.

Theorem 1.1. Let $0 < r \le 1$. Then for each n, the function $f(x) = \frac{1-\|x\|}{1-\|x\|^r}$ on \mathbb{R}^n is conditionally negative definite. As a consequence, the function $g(x) = \frac{1-\|x\|^r}{1-\|x\|}$ is infinitely divisible.

The case $r \ge 1$ turns out to be more intricate.

Theorem 1.2. Let *n* be any natural number. Then the function $g(x) = \frac{1-||x||^r}{1-||x||}$ on \mathbb{R}^n is conditionally negative definite if and only if $1 \leq r \leq 3$. As a consequence the function $f(x) = \frac{1-||x||}{1-||x||^r}$ is infinitely divisible for $1 \leq r \leq 3$.

In the second part of Theorem 1.2 the condition $1 \le r \le 3$ is sufficient but not necessary. We will show that the function f is infinitely divisible for $1 \le r \le 4$. On the other hand we show that when r = 9, f need not even be positive definite for all n.

In the case n = 1 we can prove the following theorem.

Theorem 1.3. For every $1 \le r < \infty$ the function $f(x) = \frac{1-|x|}{1-|x|^r}$ on \mathbb{R} is positive definite.

2. Some classes of matrices and functions

Let $A = [a_{ij}]$ be an $n \times n$ real symmetric matrix. Then A is said to be positive semidefinite (psd) if $\langle x, Ax \rangle \geq 0$ for all $x \in \mathbb{R}^n$, conditionally positive definite (cpd) if $\langle x, Ax \rangle \geq 0$ for all $x \in \mathbb{R}^n$ for which $\sum x_j = 0$, and conditionally negative definite (cnd) if -A is cpd. If $a_{ij} \geq 0$, then for any real number r, we denote by $A^{\circ r}$ the rth Hadamard power of A; i.e., $A^{\circ r} = [a_{ij}^r]$. If $A^{\circ r}$ is psd for all $r \geq 0$, we say that A is infinitely divisible.

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. We say f is *positive definite* if for every n, and for every choice of real numbers x_1, x_2, \ldots, x_n , the $n \times n$ matrix $[f(x_i - x_j)]$ is psd. In the same way, f is called cpd, cnd, or infinitely divisible if the matrices $[f(x_i - x_j)]$ have the corresponding property.

Next, let f be a nonnegative C^{∞} function on the positive half line $(0, \infty)$. Then f is called *completely monotone* if

$$(-1)^n f^{(n)}(x) \ge 0 \quad \text{for all} \quad n \ge 0.$$
 (5)

According to a theorem of Bernstein and Widder, f is completely monotone if and only if it can be represented as

$$f(x) = \int_0^\infty e^{-tx} \, d\mu(t),$$

where μ is a positive measure. f is called a *Bernstein function* if its derivative f' is completely monotone; i.e., if

$$(-1)^{n-1} f^{(n)}(x) \ge 0 \quad \text{for all} \quad n \ge 1.$$
 (6)

Every such function can be expressed as

$$f(x) = a + bx + \int_0^\infty (1 - e^{-tx}) d\mu(t),$$
(7)

where $a, b \geq 0$ and μ is a measure satisfying the condition $\int_0^\infty (1 \wedge t) d\mu(t) < \infty$. If this measure μ is absolutely continuous with respect to the Lebesgue measure, and the associated density m(t) is a completely monotone function, then we say that f is a *complete Bernstein function*.

The class of complete Bernstein functions coincides with the class of *Pick functions* (or *operator monotone functions*). Such a function has an analytic continuation to the upper half-plane \mathbb{H} with the property that Im $f(z) \geq 0$ for all $z \in \mathbb{H}$. See Theorem 6.2 in [10].

For convenience we record here some basic facts used in our proofs. These can be found in the comprehensive monograph [10], or in the survey paper [1].

- **S1.** A function φ on $(0, \infty)$ is completely monotone, if and only if the function $f(x) = \varphi(||x||^2)$ is continuous and positive definite on \mathbb{R}^n for every $n \ge 1$.
- **S2.** A function φ on $(0, \infty)$ is a Bernstein function if and only if the function $f(x) = \varphi(||x||^2)$ is continuous and cnd on \mathbb{R}^n for every $n \ge 1$.
- **S3.** If f is a Bernstein function, then 1/f is completely monotone.

- **S4.** If f is a Bernstein function, then for each $0 < \alpha < 1$, the functions $f(x)^{\alpha}$ and $f(x^{\alpha})$ are also Bernstein. If f is completely monotone, then $f(x^{\alpha})$ has the same property for $0 < \alpha < 1$.
- **S5.** A function f on \mathbb{R} is cnd if and only if e^{-tf} is positive definite for every t > 0. Combining this with the Bernstein-Widder theorem, we see that if f is a nonnegative cnd function and φ is completely monotone, then the composite function $\varphi \circ f$ is positive definite. In particular, if r > 0, and we choose $\varphi(x) = x^{-r}$, we see that the function $f(x)^{-r}$ is positive definite. In other words 1/f is infinitely divisible.

3. Proofs and Remarks

Our proof of Theorems 1.1 and 1.2 relies on the following proposition. This is an extension of results of T. Furuta [5] and F. Hansen [6].

Proposition 3.1. Let p, q be positive numbers with $0 , and <math>p \le q \le p+1$. Then the function $f(x) = (1 - x^q)/(1 - x^p)$ on the positive half-line is operator monotone.

Proof. The case p = q is trivial; so assume p < q. It is convenient to use the formula

$$\frac{1-x^{q}}{1-x^{p}} = \frac{q}{p} \int_{0}^{1} (\lambda \ x^{p} + 1 - \lambda)^{\frac{q-p}{p}} \ d\lambda, \tag{8}$$

which can be easily verified. If z is a complex number with Im z > 0, then for $0 < \lambda < 1$, the number $\lambda z^p + 1 - \lambda$ lies in the sector $\{w: 0 < \operatorname{Arg} w < p\pi\}$. Since $0 < \frac{q-p}{p} \leq \frac{1}{p}$, we see that $(\lambda z^p + 1 - \lambda)^{\frac{q-p}{p}}$ lies in the upper half-plane. This shows that the function represented by (8) is a Pick function.

Now let $0 < r \leq 1$. Choosing p = r/2 and q = 1/2, we see from Proposition 3.1 that the function $\varphi(x) = \frac{1-x^{1/2}}{1-x^{r/2}}$ is operator monotone. Appealing to fact **S2** we obtain Theorem 1.1.

Next let $1 \leq r \leq 3$. Choosing p = 1/2 and q = r/2, we see from Proposition 3.1 that the function $\varphi(x) = \frac{1-x^{r/2}}{1-x^{1/2}}$ is operator monotone. Again appealing to **S2** we see that the function $g(x) = \frac{1-||x||^r}{1-||x||}$ is end on the Euclidean space \mathbb{R}^n for every n.

The necessity of the condition $1 \leq r \leq 3$ is brought out by the Lévy-Khinchine formula. A continuous function $g : \mathbb{R} \to \mathbb{C}$ is end if

and only it can be represented as

$$g(x) = a + ibx + c^2 x^2 + \int_{\mathbb{R} \setminus \{0\}} \left(1 - e^{itx} + \frac{itx}{1 + t^2} \right) d\nu(t).$$

where a, b, c are real numbers, and ν is a positive measure on $\mathbb{R}\setminus\{0\}$ such that $\int (t^2/(1+t^2))d\nu(t) < \infty$. See [10]. It is clear then that $g(x) = O(x^2)$ at ∞ . So, if r > 3, the function g(x) of Theorem 1.2 cannot be end on \mathbb{R} . This proves Theorem 1.2 completely.

Now we show that $f(x) = \frac{1 - \|x\|}{1 - \|x\|^r}$ is infinitely divisible for $1 \le r \le 4$. The special case r = 4 is easy. We have

$$\frac{1 - \|x\|}{1 - \|x\|^4} = \frac{1}{1 + \|x\| + \|x\|^2 + \|x\|^3} = \frac{1}{1 + \|x\|} \frac{1}{1 + \|x\|^2},$$

and we know that both $\frac{1}{1+\|x\|}$ and $\frac{1}{1+\|x\|^2}$ are infinitely divisible, and therefore so is their product. The general case is handled as follows.

By Proposition 3.1, the function $\frac{1-x^r}{1-x}$ is operator monotone for $1 \le r \le 2$. Repeating our arguments above, we see that $\frac{1-||x||^2}{1-||x||^{2r}}$ is an infinitely divisible function for $1 \le r \le 2$. We know that $\frac{1}{1+||x||}$ is infinitely divisible; hence so is the product

$$\frac{1 - \|x\|^2}{1 - \|x\|^{2r}} \frac{1}{1 + \|x\|} = \frac{1 - \|x\|}{1 - \|x\|^{2r}}, \quad 1 \le r \le 2.$$

In other words $\frac{1-\|x\|}{1-\|x\|^r}$ is infinitely divisible for $2 \le r \le 4$.

We now consider what happens for r > 4. In the special case n = 1, Theorem 1.3 says that this function is at least positive definite for all r > 4. By a theorem of Pólya (see [2], p.151) any continuous, nonnegative, even function on \mathbb{R} which is convex and monotonically decreasing on $[0, \infty)$ is positive definite. So Theorem 1.3 follows from the following proposition.

Proposition 3.2. The function

$$f(x) = \frac{1 - x}{1 - x^r}, \quad 1 < r < \infty,$$
(9)

on the positive half-line $(0,\infty)$ is monotonically decreasing and convex.

Proof. A calculation shows that

$$f'(x) = \frac{(1-r)x^r + rx^{r-1} - 1}{(1-x^r)^2},$$
(10)

and

$$f''(x) = \frac{1}{(1-x^r)^3} \left\{ r(1-r)x^{2r-1} + r(1+r)x^{2r-2} - r(1+r)x^{r-1} - r(1-r)x^{r-2} \right\}.$$

= $\frac{1}{(1-x^r)^3} \varphi(x)$, say. (11)

Since f''(x) is well-defined at 1, the function φ must have a zero of order at least three at 1. On the other hand, by the Descartes rule of signs, (see [9],p.46), $\varphi(x)$ can have at most three positive zeros. Thus the only zero of φ in $(0, \infty)$ is at the point x = 1.

Next note that when x is small, the last term of $\varphi(x)$ is dominant, and therefore $\varphi(x) > 0$. On the other hand, when x is large, the first term of $\varphi(x)$ is dominant, and therefore $\varphi(x) < 0$. Thus $\varphi(x)$ is positive if x < 1, and negative if x > 1. This shows that $f''(x) \ge 0$. Hence f is convex. Since f(0) = 1, and $\lim_{x \to \infty} f(x) = 0$, this also shows that f is monotonically decreasing, a fact which can be easily seen otherwise too.

Does the function f in (9) have any stronger convexity properties? We have seen that if $1 \le r \le 2$, then the reciprocal of f is operator monotone. Hence by fact **S3**, f is completely monotone for $1 \le r \le 2$. For r > 2, however f is not even log-convex.

Recall that a nonnegative function f on $(0, \infty)$ is called log-*convex* if log f is convex. If f', f'' exist, this condition is equivalent to

$$(f'(x))^2 \le f(x) f''(x)$$
 for all x . (12)

(See [12], p.485). A completely monotone function is log-convex.

Proposition 3.3. The function $f(x) = \frac{1-x}{1-x^r}$ on $(0,\infty)$ is log-convex if and only if $1 \le r \le 2$.

Proof. From the expressions (9), (10) and (11) we see that

$$f(x)f''(x) - (f'(x))^2 = \frac{\psi(x)}{(1-x^r)^4},$$
(13)

where

$$\psi(x) = (r-1)x^{2r} - 2rx^{2r-1} + rx^{2r-2} + (r^2 - r + 2)x^r -2r(r-1)x^{r-1} - 1 + r(r-1)x^{r-2}.$$
(14)

 $\mathbf{6}$

Using condition (12) we see from (13) that f is log-convex if and only if $\psi(x) \ge 0$ for all x. If r > 2, it is clear from (14) that $\psi(0) = -1$, and ψ is negative in a neighbourhood of 0. So f is not log-convex.

We have already proved that when 1 < r < 2, f is completely monotone, and hence log-convex. It is instructive to see how the latter property can be derived easily using the condition (12). It is clear from (13) that ψ must have a zero of order at least 4 at 1. On the other hand, there are just four sign changes in the coefficients on the right-hand side of (14). So by the Descartes rule of signs ([9],p.46) ψ has at most four positive zeros. Thus ψ has only one zero, it is at 1 and has multiplicity four. The coefficients of both x^{2r} and x^{r-2} in (14) are positive. Hence ψ is always nonnegative.

Because of **S1**, the function $f(x) = \frac{1-\|x\|}{1-\|x\|^r}$ would be positive definite on \mathbb{R}^n for every *n*, if and only if the function

$$h(x) = \frac{1 - x^{1/2}}{1 - x^{r/2}},\tag{15}$$

on $(0, \infty)$ were completely monotone. From **S4** we see that this would be a consequence of the complete monotonicity of the function $f(x) = \frac{1-x}{1-x^r}$; but the latter holds if and only if $1 \le r \le 2$. We now show that when r = 9, the function h in (15) is not even log convex.

For this we use the fact that h is log convex if and only if

$$h\left(\frac{x+y}{2}\right)^2 \le h(x)h(y)$$
 for all x, y . (16)

Choose x = 9/25, y = 16/25. Then $\frac{x+y}{2} = 1/2$. When r = 9, the function h in (15) reduces to

$$h(x) = \left(\sum_{j=0}^{8} x^{j/2}\right)^{-1}$$

So, the inequality (16) would be true for the chosen values of x and y, if we have

$$\sum_{j=0}^{8} \left(\frac{3}{5}\right)^{j} \sum_{j=0}^{8} \left(\frac{4}{5}\right)^{j} \le \left(\sum_{j=0}^{8} \left(\frac{1}{\sqrt{2}}\right)^{j}\right)^{2}.$$

A calculation shows that this is not true as, up to the first decimal place, the left-hand side is 10.7 and the right-hand side is 10.6.

We are left with some natural questions:

- 1. What is the smallest r_0 for which the function f of Theorem 1.2 is not infinitely divisible (or positive definite) for all \mathbb{R}^n ? Our analysis shows that $4 < r_0 < 9$.
- 2. What is the smallest n_0 for which there exists some r > 4, such that this function f is not positive definite on \mathbb{R}^{n_0} ?
- 3. Is the function f in Theorem 1.3 infinitely divisible on \mathbb{R} ? By Theorem 10.4 in [12] a sufficient condition for this to be true is log convexity of the function $\frac{1-x}{1-x^r}$ on $(0, \infty)$. We have seen that this latter condition holds if and only if $1 \le r \le 2$. Note that we have shown by other arguments that f is infinitely divisible for $1 \le r \le 4$.

Several examples of infinitely divisible functions arising in probability theory are listed in [12]. Many more with origins in our study of operator inequalities can be found in [3] and [7]. It was observed already in [4] that the function defined in (2) is infinitely divisible.

The work of the first author is supported by a J. C. Bose National Fellowship, and of the second author by a SERB Women Excellence Award. The first author was a Fellow Professor at Sungkyunkwan University in the summer of 2014.

References

- C. Berg, Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity, in Positive Definite Functions. From Schoenberg to Space-Time Challenges, S. Mateu and E. Porcu, eds., Dept. of Mathematics, University Jaume I, Castellon de la Plana, Spain, 2008.
- [2] R. Bhatia, *Positive Definite Matrices*, Princeton University Press, 2007.
- [3] R. Bhatia and H. Kosaki, Mean matrices and infinite divisibility, Linear Algebra Appl., 424 (2007) 36-54.
- [4] R. Bhatia and T. Sano Loewner matrices and operator convexity, Math. Ann., 344 (2009) 703-716.
- [5] T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Loewner integral representation, Linear Algebra Appl., 429 (2008) 979-980.
- [6] F. Hansen, Some operator monotone functions, Linear Algebra Appl., 430 (2009) 795-799.

- [7] H. Kosaki, On infinite divisibility of positive definite functions arising from operator means, J. Funct. Anal., 254 (2008) 84-108.
- [8] C. A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx., 2 (1986) 11-22.
- [9] G. Pólya and G. Szegö, Problems and Theorems in Analysis, Volume II, 4th ed., Springer, 1971.
- [10] R. Schilling, R. Song and Z Vondraček, Bernstein Functions, De Gruyter, 2010.
- [11] I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc., 44 (1938) 522-536.
- [12] F. W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker, 2004.

INDIAN STATISTICAL INSTITUTE, NEW DELHI-110016, INDIA

SUNGKYUNKWAN UNIVERSITY, SUWON 440-746, KOREA *E-mail address*: rbh@isid.ac.in

INDIAN STATISTICAL INSTITUTE, NEW DELHI-110016, INDIA *E-mail address*: tanvi@isid.ac.in