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ON SOME POSITIVE DEFINITE FUNCTIONS

RAJENDRA BHATIA AND TANVI JAIN

Abstract. We study the function (1− ‖x‖)/(1− ‖x‖r), and its
reciprocal, on the Euclidean space Rn, with respect to properties
like being positive definite, conditionally positive definite, and
infinitely divisible.

1. Introduction

For each n ≥ 1, consider the space Rn with the Euclidean norm
‖ · ‖. According to a classical theorem going back to Schoenberg [11]
and much used in interpolation theory (see, e.g., [8]), the function
ϕ(x) = ‖x‖r on Rn, for any n, is conditionally negative definite if and
only if 0 ≤ r ≤ 2. It follows that if rj, 1 ≤ j ≤ m, are real numbers
with 0 ≤ rj ≤ 2, then the function

g(x) = 1 + ‖x‖r1 + · · ·+ ‖x‖rm (1)

is conditionally negative definite, and by another theorem of Schoen-
berg, (see the statement S5 in Section 2 below), the function

f(x) =
1

1 + ‖x‖r1 + · · ·+ ‖x‖rm
(2)

is infinitely divisible. (A nonnegative function f is called infinitely
divisible if for each α > 0 the function f(x)α is positive definite.) We
also know that for any r > 2, the function ϕ(x) = 1/(1+‖x‖r) cannot
be positive definite. (See, e.g., Corollary 5.5.6 of [2].)

With this motivation we consider the function

f(x) =
1

1 + ‖x‖+ ‖x‖2 + · · ·+ ‖x‖m
, m ≥ 1, (3)

and its reciprocal, and study their properties related to positivity.
More generally, we study the function
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f(x) =
1− ‖x‖
1− ‖x‖r

, r > 0, (4)

and its reciprocal. As usual, when ‖x‖ = 1 the right-hand side of
(4) is interpreted as the limiting value 1/r. This convention will be
followed throughout the paper. The function (3) is the special case of
(4) when r = m+ 1.

Our main results are the following.

Theorem 1.1. Let 0 < r ≤ 1. Then for each n, the function f(x) =
1−‖x‖
1−‖x‖r on Rn is conditionally negative definite. As a consequence, the

function g(x) = 1−‖x‖r
1−‖x‖ is infinitely divisible.

The case r ≥ 1 turns out to be more intricate.

Theorem 1.2. Let n be any natural number. Then the function

g(x) = 1−‖x‖r
1−‖x‖ on Rn is conditionally negative definite if and only if

1 ≤ r ≤ 3. As a consequence the function f(x) = 1−‖x‖
1−‖x‖r is infinitely

divisible for 1 ≤ r ≤ 3.

In the second part of Theorem 1.2 the condition 1 ≤ r ≤ 3 is suffi-
cient but not necessary. We will show that the function f is infinitely
divisible for 1 ≤ r ≤ 4. On the other hand we show that when r = 9,
f need not even be positive definite for all n.

In the case n = 1 we can prove the following theorem.

Theorem 1.3. For every 1 ≤ r <∞ the function f(x) = 1−|x|
1−|x|r on R

is positive definite.

2. Some classes of matrices and functions

Let A = [aij] be an n×n real symmetric matrix. Then A is said to be
positive semidefinite (psd) if 〈x,Ax〉 ≥ 0 for all x ∈ Rn, conditionally
positive definite (cpd) if 〈x,Ax〉 ≥ 0 for all x ∈ Rn for which

∑
xj = 0,

and conditionally negative definite (cnd) if −A is cpd. If aij ≥ 0, then
for any real number r, we denote by A◦r the rth Hadamard power of
A; i.e., A◦r = [arij]. If A◦r is psd for all r ≥ 0, we say that A is infinitely
divisible.

Let f : R→ R be a continuous function. We say f is positive definite
if for every n, and for every choice of real numbers x1, x2, . . . , xn, the
n×n matrix [f(xi−xj)] is psd. In the same way, f is called cpd, cnd,
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or infinitely divisible if the matrices [f(xi−xj)] have the corresponding
property.

Next, let f be a nonnegative C∞ function on the positive half line
(0,∞). Then f is called completely monotone if

(−1)nf (n)(x) ≥ 0 for all n ≥ 0. (5)

According to a theorem of Bernstein and Widder, f is completely
monotone if and only if it can be represented as

f(x) =

∫ ∞
0

e−tx dµ(t),

where µ is a positive measure. f is called a Bernstein function if its
derivative f ′ is completely monotone; i.e., if

(−1)n−1f (n)(x) ≥ 0 for all n ≥ 1. (6)

Every such function can be expressed as

f(x) = a+ bx+

∫ ∞
0

(1− e−tx)dµ(t), (7)

where a, b ≥ 0 and µ is a measure satisfying the condition
∫∞
0

(1 ∧
t) dµ(t) <∞. If this measure µ is absolutely continuous with respect
to the Lebesgue measure, and the associated density m(t) is a com-
pletely monotone function, then we say that f is a complete Bernstein
function.

The class of complete Bernstein functions coincides with the class of
Pick functions (or operator monotone functions). Such a function has
an analytic continuation to the upper half-plane H with the property
that Im f(z) ≥ 0 for all z ∈ H. See Theorem 6.2 in [10].

For convenience we record here some basic facts used in our proofs.These
can be found in the comprehensive monograph [10], or in the survey
paper [1].

S1. A function ϕ on (0,∞) is completely monotone, if and only if
the function f(x) = ϕ(‖x‖2) is continuous and positive definite
on Rn for every n ≥ 1.

S2. A function ϕ on (0,∞) is a Bernstein function if and only if
the function f(x) = ϕ(‖x‖2) is continuous and cnd on Rn for
every n ≥ 1.

S3. If f is a Bernstein function, then 1/f is completely monotone.
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S4. If f is a Bernstein function, then for each 0 < α < 1, the
functions f(x)α and f(xα) are also Bernstein. If f is completely
monotone, then f(xα) has the same property for 0 < α < 1.

S5. A function f on R is cnd if and only if e−tf is positive definite
for every t > 0. Combining this with the Bernstein-Widder
theorem, we see that if f is a nonnegative cnd function and
ϕ is completely monotone, then the composite function ϕ ◦ f
is positive definite. In particular, if r > 0, and we choose
ϕ(x) = x−r, we see that the function f(x)−r is positive definite.
In other words 1/f is infinitely divisible.

3. Proofs and Remarks

Our proof of Theorems 1.1 and 1.2 relies on the following proposi-
tion. This is an extension of results of T. Furuta [5] and F. Hansen
[6].

Proposition 3.1. Let p, q be positive numbers with 0 < p ≤ 1, and
p ≤ q ≤ p + 1. Then the function f(x) = (1 − xq)/(1 − xp) on the
positive half-line is operator monotone.

Proof. The case p = q is trivial; so assume p < q. It is convenient to
use the formula

1− xq

1− xp
=
q

p

∫ 1

0

(λ xp + 1− λ)
q−p
p dλ, (8)

which can be easily verified. If z is a complex number with Im z > 0,
then for 0 < λ < 1, the number λzp + 1 − λ lies in the sector

{w : 0 < Arg w < pπ} . Since 0 < q−p
p
≤ 1

p
, we see that (λzp + 1− λ)

q−p
p

lies in the upper half-plane. This shows that the function represented
by (8) is a Pick function.

Now let 0 < r ≤ 1. Choosing p = r/2 and q = 1/2, we see from

Proposition 3.1 that the function ϕ(x) = 1−x1/2
1−xr/2 is operator monotone.

Appealing to fact S2 we obtain Theorem 1.1.
Next let 1 ≤ r ≤ 3. Choosing p = 1/2 and q = r/2, we see from

Proposition 3.1 that the function ϕ(x) = 1−xr/2
1−x1/2 is operator monotone.

Again appealing to S2 we see that the function g(x) = 1−‖x‖r
1−‖x‖ is cnd

on the Euclidean space Rn for every n.
The necessity of the condition 1 ≤ r ≤ 3 is brought out by the

Lévy-Khinchine formula. A continuous function g : R → C is cnd if
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and only it can be represented as

g(x) = a+ ibx+ c2x2 +

∫
R\{0}

(
1− eitx +

itx

1 + t2

)
dν(t),

where a, b, c are real numbers, and ν is a positive measure on R\{0}
such that

∫
(t2/(1 + t2))dν(t) < ∞. See [10]. It is clear then that

g(x) = O(x2) at ∞. So, if r > 3, the function g(x) of Theorem 1.2
cannot be cnd on R. This proves Theorem 1.2 completely.

Now we show that f(x) = 1−‖x‖
1−‖x‖r is infinitely divisible for 1 ≤ r ≤ 4.

The special case r = 4 is easy. We have

1− ‖x‖
1− ‖x‖4

=
1

1 + ‖x‖+ ‖x‖2 + ‖x‖3
=

1

1 + ‖x‖
1

1 + ‖x‖2
,

and we know that both 1
1+‖x‖ and 1

1+‖x‖2 are infinitely divisible, and

therefore so is their product. The general case is handled as follows.
By Proposition 3.1, the function 1−xr

1−x is operator monotone for 1 ≤
r ≤ 2. Repeating our arguments above, we see that 1−‖x‖2

1−‖x‖2r is an

infinitely divisible function for 1 ≤ r ≤ 2. We know that 1
1+‖x‖ is

infinitely divisible; hence so is the product

1− ‖x‖2

1− ‖x‖2r
1

1 + ‖x‖
=

1− ‖x‖
1− ‖x‖2r

, 1 ≤ r ≤ 2.

In other words 1−‖x‖
1−‖x‖r is infinitely divisible for 2 ≤ r ≤ 4.

We now consider what happens for r > 4. In the special case n = 1,
Theorem 1.3 says that this function is at least positive definite for
all r > 4. By a theorem of Pólya (see [2], p.151) any continuous,
nonnegative, even function on R which is convex and monotonically
decreasing on [0,∞) is positive definite. So Theorem 1.3 follows from
the following proposition.

Proposition 3.2. The function

f(x) =
1− x
1− xr

, 1 < r <∞, (9)

on the positive half-line (0,∞) is monotonically decreasing and convex.

Proof. A calculation shows that

f ′(x) =
(1− r)xr + rxr−1 − 1

(1− xr)2
, (10)
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and

f ′′(x) =
1

(1− xr)3
{
r(1− r)x2r−1 + r(1 + r)x2r−2

−r(1 + r)xr−1 − r(1− r)xr−2
}
.

=
1

(1− xr)3
ϕ(x), say. (11)

Since f ′′(x) is well-defined at 1, the function ϕ must have a zero of
order at least three at 1. On the other hand, by the Descartes rule of
signs, (see [9],p.46), ϕ(x) can have at most three positive zeros. Thus
the only zero of ϕ in (0,∞) is at the point x = 1.

Next note that when x is small, the last term of ϕ(x) is dominant,
and therefore ϕ(x) > 0. On the other hand, when x is large, the
first term of ϕ(x) is dominant, and therefore ϕ(x) < 0. Thus ϕ(x) is
positive if x < 1, and negative if x > 1. This shows that f ′′(x) ≥ 0.
Hence f is convex. Since f(0) = 1, and lim

x→∞
f(x) = 0, this also shows

that f is monotonically decreasing, a fact which can be easily seen
otherwise too.

Does the function f in (9) have any stronger convexity properties?
We have seen that if 1 ≤ r ≤ 2, then the reciprocal of f is operator
monotone. Hence by fact S3, f is completely monotone for 1 ≤ r ≤ 2.
For r > 2, however f is not even log-convex.

Recall that a nonnegative function f on (0,∞) is called log-convex
if log f is convex. If f ′, f ′′ exist, this condition is equivalent to

(f ′(x))2 ≤ f(x) f ′′(x) for all x. (12)

(See [12],p.485). A completely monotone function is log-convex.

Proposition 3.3. The function f(x) = 1−x
1−xr on (0,∞) is log-convex

if and only if 1 ≤ r ≤ 2.

Proof. From the expressions (9), (10) and (11) we see that

f(x)f ′′(x)− (f ′(x))2 =
ψ(x)

(1− xr)4
, (13)

where

ψ(x) = (r − 1)x2r − 2rx2r−1 + rx2r−2 + (r2 − r + 2)xr

−2r(r − 1)xr−1 − 1 + r(r − 1)xr−2. (14)
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Using condition (12) we see from (13) that f is log-convex if and only
if ψ(x) ≥ 0 for all x. If r > 2, it is clear from (14) that ψ(0) = −1,
and ψ is negative in a neighbourhood of 0. So f is not log-convex.

We have already proved that when 1 < r < 2, f is completely
monotone, and hence log-convex. It is instructive to see how the
latter property can be derived easily using the condition (12). It is
clear from (13) that ψ must have a zero of order at least 4 at 1. On
the other hand, there are just four sign changes in the coefficients on
the right-hand side of (14). So by the Descartes rule of signs ([9],p.46)
ψ has at most four positive zeros. Thus ψ has only one zero, it is at
1 and has multiplicity four. The coefficients of both x2r and xr−2 in
(14) are positive. Hence ψ is always nonnegative.

Because of S1, the function f(x) = 1−‖x‖
1−‖x‖r would be positive definite

on Rn for every n, if and only if the function

h(x) =
1− x1/2

1− xr/2
, (15)

on (0,∞) were completely monotone. From S4 we see that this would
be a consequence of the complete monotonicity of the function f(x) =
1−x
1−xr ; but the latter holds if and only if 1 ≤ r ≤ 2. We now show that
when r = 9, the function h in (15) is not even log convex.

For this we use the fact that h is log convex if and only if

h

(
x+ y

2

)2

≤ h(x)h(y) for all x, y. (16)

Choose x = 9/25, y = 16/25. Then x+y
2

= 1/2. When r = 9, the
function h in (15) reduces to

h(x) =

(
8∑
j=0

xj/2

)−1
.

So, the inequality (16) would be true for the chosen values of x and y,
if we have

8∑
j=0

(
3

5

)j 8∑
j=0

(
4

5

)j
≤

(
8∑
j=0

(
1√
2

)j)2

.

A calculation shows that this is not true as, up to the first decimal
place, the left-hand side is 10.7 and the right-hand side is 10.6.

We are left with some natural questions:
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1. What is the smallest r0 for which the function f of Theorem
1.2 is not infinitely divisible (or positive definite) for all Rn?
Our analysis shows that 4 < r0 < 9.

2. What is the smallest n0 for which there exists some r > 4, such
that this function f is not positive definite on Rn0?

3. Is the function f in Theorem 1.3 infinitely divisible on R? By
Theorem 10.4 in [12] a sufficient condition for this to be true is
log convexity of the function 1−x

1−xr on (0,∞). We have seen that
this latter condition holds if and only if 1 ≤ r ≤ 2. Note that
we have shown by other arguments that f is infinitely divisible
for 1 ≤ r ≤ 4.

Several examples of infinitely divisible functions arising in probability
theory are listed in [12]. Many more with origins in our study of
operator inequalities can be found in [3] and [7]. It was observed
already in [4] that the function defined in (2) is infinitely divisible.
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