
isid/ms/2015/11
September 21, 2015

http://www.isid.ac.in/∼statmath/index.php?module=Preprint

Positivity properties of the matrix[
(i + j)i+j

]
Rajendra Bhatia and Tanvi Jain

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi–110 016, India





POSITIVITY PROPERTIES OF THE MATRIX [(i+ j)i+j]

RAJENDRA BHATIA AND TANVI JAIN

Abstract. Let p1 < p2 < · · · < pn be positive real numbers.
It is shown that the matrix whose i, j entry is (pi + pj)

pi+pj is
infinitely divisible, nonsingular and totally positive.

1. Introduction

Matrices whose entries are obtained by assembling natural numbers
in special ways often possess interesting properties. The most famous

example of such a matrix is the Hilbert matrix H =
[

1
i+j−1

]
which

has inspired a lot of work in diverse areas. Some others are the min
matrix M =

[
min(i, j)

]
, and the Pascal matrix P =

[(
i+j
i

)]
. There

is a considerable body of literature around each of these matrices, a
sample of which can be found in [3], [5] and [7].

In this note we initiate the study of one more matrix of this type.
Let A be the n×n matrix with its (i, j) entry equal to (i+ j−1)i+j−1.
Thus

A =


1 22 33 · · · nn

22 33 44 · · · (n+ 1)n+1

33 44 55 · · · · · ·
· · · · · · · · · · · · · · ·
nn · · · · · · · · · (2n− 1)2n−1

 . (1)

More generally, let p1 < p2 < · · · < pn be positive real numbers, and
consider the n× n matrix

B =
[
(pi + pj)

pi+pj
]
. (2)

The special choice pi = i − 1/2 in (2) gives us the matrix (1). We
investigate the behaviour of these matrices with respect to different
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kinds of positivity.

A real symmetric matrix S is said to be positive semidefinite (psd)
if for every vector x, we have 〈x, Sx〉 ≥ 0. Further if 〈x, Sx〉 = 0 only
when x = 0, then we say S is positive definite. This is equivalent to
saying that S is psd and nonsingular. If S is a psd matrix, then for
every positive integer m, the mth Hadamard power (entrywise power)
S◦m =

[
smij
]

is also psd. Now suppose sij ≥ 0. We say that S is in-

finitely divisible if for every real number r > 0, the matrix S◦r =
[
srij
]

is psd. (See [3], Chapter 5 of [4], and Chapter 7 of [9] for expositions
of this topic.) The principal minors of a psd matrix are nonnegative.
This may not be so for other minors. A matrix with nonnegative en-
tries is called totally positive if all its minors are nonnegative. It is
called strictly totally positive if all its minors are positive. We recom-
mend the books [8, 10, 11] and the survey article [1] for an account of
totally positive matrices.
Our main result is the following:

Theorem. Let p1 < p2 < · · · < pn be positive real numbers. Then the
matrix B defined in (2) is infinitely divisible, nonsingular and totally
positive.

There is another way of stating this. Let X be a subset of R. A
continuous function K : X × X → R is said to be a positive definite
kernel if for every n and for every choice x1 < · · · < xn in X, the
matrix

[
K(xi, xj)

]
is positive definite. In the same way we can define

infinitely divisible and totally positive kernels. Our theorem says that
the kernel K(x, y) = (x+ y)x+y on (0,∞)× (0,∞) is infinitely divisi-
ble and totally positive. This is an addition to the examples given in
[3, 8, 10, 11]. The three matrices in the first paragraph also have the
properties mentioned in the theorem.

2. Proof

Let H1 be the space of all vectors x = (x1, ..., xn) with
∑
xi = 0.

A real symmetric matrix S is said to be conditionally positive definite
(cpd) if 〈x, Sx〉 ≥ 0 for all x ∈ H1. If −S is cpd, then S is said to
be conditionally negative definite (cnd). According to a theorem of C.
Loewner, a matrix S = [sij] is infinitely divisible if and only if the
matrix [log sij] is cpd. See Exercise 5.6.15 in [4].



3

By Loewner’s theorem cited above, in order to prove that the matrix
B defined in (2) is infinitely divisible it is enough to show that the
matrix

C = [(pi + pj) log(pi + pj)] (3)

is cpd. It is convenient to use the formula

log x =

∫ ∞
0

(
1

1 + λ
− 1

x+ λ

)
dλ, x > 0,

which can be easily verified. Using this we can write our matrix C as

C =

[∫ ∞
0

(
pi + pj
1 + λ

− pi + pj
pi + pj + λ

)
dλ

]
.

We will show that the matrix [pi+pj] is cpd, and the matrix
[

pi+pj
pi+pj+λ

]
is cnd for each λ > 0. From this it follows that C is a cpd matrix.

Let D be the diagonal matrix D = diag(p1, ..., pn) and E the matrix
with all its entries equal to 1. Then [pi+pj] = DE+ED. Every vector
x in H1 is annihilated by E. Hence 〈x, (DE + ED)x〉 = 〈x,DEx〉 +
〈Ex,Dx〉 = 0. So, the matrix [pi + pj] is cpd. Using the identity

pi + pj
pi + pj + λ

= 1− λ

pi + pj + λ
,

we can write [
pi + pj

pi + pj + λ

]
= E − λCλ,

where Cλ =
[

1
pi+pj+λ

]
. This is a Cauchy matrix (see [4]) and is positive

definite. Hence it is also cpd. The matrix E annihilates H1, and
therefore is cnd. Hence E−λCλ is cnd for every λ > 0. This completes
the proof of the assertion that C is cpd, and B infinitely divisible.

Since Cλ is positive definite, 〈x,Cλx〉 > 0 for every non zero vector
x. If x ∈ H1, then Ex = 0, and 〈x, (DE + ED)x〉 = 0. So, the
arguments given above also show that 〈x,Cx〉 > 0 for every non zero
vector x in H1. By Lemma 4.3.5 in [2], this condition is necessary and
sufficient for C to be nonsingular. Using the next proposition, we can
conclude that B is nonsingular.

Proposition. If C is a nonsingular conditionally positive definite ma-
trix, then the matrix [ecij ] is positive definite.
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Proof. By Proposition 5.6.13 of [4] we can express C as

C = P + Y E + EY ,

where P is a psd matrix and Y is a diagonal matrix. By Problem
7.5.P.25 in [9] the matrix [ecij ] is positive definite unless P has two
equal columns. Suppose the ith column of P is equal to its jth column.
Let x be any vector with coordinates xi = −xj 6= 0, and all other
coordinates zero. Then x ∈ H1 and Px = 0. Hence 〈x,Cx〉 = 0. This
is not possible since C is a nonsingular cpd matrix.

We have proved that the matrix B is infinitely divisible and nonsin-
gular. These properties are inherited by the matrix A defined in (1).
This is, moreover, a Hankel matrix; i.e, each of its antidiagonals has
the same entry. Theorem 4.4 of [11] gives a simple criterion for strict
total positivity of such a matrix. According to this a Hankel matrix
A is strictly totally positive if and only if A is positive definite and so
is the matrix Ã obtained from A by deleting its first column and last
row. For the matrix A in (1), Ã is the (n− 1)× (n− 1) matrix whose
(i, j) entry is (i+ j)i+j. Both A and Ã are positive definite. Hence A
is strictly totally positive. In fact we have shown that for every r > 0,
the matrix A◦r is strictly totally positive.

Now let k1 < k2 < · · · < kn be positive integers. The matrix K
with entries kij = (ki+kj)

ki+kj is principal submatrix of A. Hence it is
infinitely divisible and strictly totally positive. The same holds for K◦r

for every r > 0. Next let 0 < q1 < q2 < · · · < qn be rational numbers.
Let qj = lj/mj, where lj and mj are positive integers. Let m be the
LCM of m1, . . . ,mn and kj = mqj. Then k1 < k2 < · · · < kn, and as
seen above, the matrix K =

[
(ki + kj)

ki+kj
]

is infinitely divisible and

strictly totally positive. Now consider the matrix Q =
[
(qi + qj)

qi+qj
]
.

Then for each r > 0

Q◦r =
[
(qi + qj)

(qi+qj)r
]

=
[
(ki+kj)

(ki+kj)r/m

mqirmqjr

]
= XK◦r/mX∗,

where X is the positive diagonal matrix with entries 1
mq1r

, . . . , 1
mqnr on

its diagonal. We have seen that the matrix K◦r/m is positive definite
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and strictly totally positive. Hence, so is the matrix Q◦r. A continuity
argument completes the proof of the theorem.

We believe that the matrix B in (2) is strictly totally positive. How-
ever the continuity argument that we have invoked at the last step only
shows that it is a limit of such matrices.

Like for the other matrices mentioned in the opening paragraph, it
would be interesting to have formulas for the determinant of A.

In a recent work [6] of ours, we have studied spectral properties of
the matrices [(pi + pj)

r], where r is any positive real number.

We thank R. B. Bapat for illuminating discussions, and in partic-
ular for the argument in the last paragraph of our proof. The first
author is supported by a J. C. Bose National Fellowship and was a
Fellow Professor of Sungkyunkwan University in the summer of 2014.
The second author is supported by a SERB Women Excellence Award.
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