isid/ms/2015/11
September 21, 2015
http://www.isid.ac.in/~statmath/index.php?module=Preprint

Positivity properties of the matrix
(i +5)"]

RAJENDRA BHATIA AND TANVI JAIN

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi-110 016, India






POSITIVITY PROPERTIES OF THE MATRIX [(i + j)™*]
RAJENDRA BHATIA AND TANVI JAIN

ABSTRACT. Let p; < py < --- < p, be positive real numbers.
It is shown that the matrix whose 7,j entry is (p; + p;)Pi ™% is
infinitely divisible, nonsingular and totally positive.

1. Introduction

Matrices whose entries are obtained by assembling natural numbers
in special ways often possess interesting properties. The most famous

example of such a matrix is the Hilbert matrix H = [l +;_1} which

has inspired a lot of work in diverse areas. Some others are the min
matrix M = [min(é,5)] , and the Pascal matrix P = [("1/)]. There
is a considerable body of literature around each of these matrices, a
sample of which can be found in [3], [5] and [7].

In this note we initiate the study of one more matrix of this type.
Let A be the n x n matrix with its (7, j) entry equal to (i+j— 1)1,
Thus

22 3 ... n"
22 33 44 . (n + 1)n+1
A= 33 44 55 ... (1)

nn PN PN (2/]7/_1)2”_1

More generally, let p; < ps < --- < p, be positive real numbers, and
consider the n X n matrix

B = [(pi +p;)F""]. (2)

The special choice p; = i — 1/2 in (2) gives us the matrix (1). We
investigate the behaviour of these matrices with respect to different
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kinds of positivity.

A real symmetric matrix S is said to be positive semidefinite (psd)
if for every vector z, we have (x, Sx) > 0. Further if (x, Sx) = 0 only
when x = 0, then we say S is positive definite. This is equivalent to
saying that S is psd and nonsingular. If S is a psd matrix, then for
every positive integer m, the mth Hadamard power (entrywise power)
Sem = [sm is also psd. Now suppose s;; > 0. We say that S is in-
finitely divisible if for every real number r > 0, the matrix S = [sfj}
is psd. (See [3], Chapter 5 of [4], and Chapter 7 of [9] for expositions
of this topic.) The principal minors of a psd matrix are nonnegative.
This may not be so for other minors. A matrix with nonnegative en-
tries is called totally positive if all its minors are nonnegative. It is
called strictly totally positive if all its minors are positive. We recom-
mend the books [8, 10, 11] and the survey article [1] for an account of
totally positive matrices.

Our main result is the following:

Theorem. Let py < py < --- < p, be positive real numbers. Then the
matriz B defined in (2) is infinitely divisible, nonsingular and totally
positive.

There is another way of stating this. Let X be a subset of R. A
continuous function K : X x X — R is said to be a positive definite
kernel if for every n and for every choice x; < --- < x, in X, the
matrix [K(z;, ;)] is positive definite. In the same way we can define
infinitely divisible and totally positive kernels. Our theorem says that
the kernel K (x,y) = (z 4 y)*¥ on (0,00) x (0, 00) is infinitely divisi-
ble and totally positive. This is an addition to the examples given in
3, 8, 10, 11]. The three matrices in the first paragraph also have the
properties mentioned in the theorem.

2. Proof

Let H; be the space of all vectors © = (x1,...,x,) with > z; = 0.
A real symmetric matrix S is said to be conditionally positive definite
(cpd) if (x,Sx) > 0 for all x € Hy. If —S is cpd, then S is said to
be conditionally negative definite (cnd). According to a theorem of C.
Loewner, a matrix S = [s;;] is infinitely divisible if and only if the
matrix [log s;;] is cpd. See Exercise 5.6.15 in [4].
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By Loewner’s theorem cited above, in order to prove that the matrix
B defined in (2) is infinitely divisible it is enough to show that the
matrix

C = [(pi + p;) log(pi + p;)] (3)
is cpd. It is convenient to use the formula

o 1
log 7 = - dA 0
g /0 (1+)\ x+)\) » £25

which can be easily verified. Using this we can write our matrix C' as

* (pi+p; Di +Dpj ) }
C = — dM| .
[/o (1‘1‘)\ pi +pj+ A

We will show that the matrix [p; +p;| is cpd, and the matrix [

Pitpj
Pi+Pj+>\]
is ecnd for each A > 0. From this it follows that C'is a cpd matrix.

Let D be the diagonal matrix D = diag(py, ..., p,) and E the matrix
with all its entries equal to 1. Then [p; +p,;] = DE+ED. Every vector
x in H, is annihilated by E. Hence (x,(DE + ED)z) = (x, DEx) +
(Ex,Dx) = 0. So, the matrix [p; + p;] is cpd. Using the identity

Pitpi A
pit+pj+ A pitpj+ A
we can write
[M] = E—\C),
pit+pi+ A
where C) = [m} . This is a Cauchy matrix (see [4]) and is positive

definite. Hence it is also cpd. The matrix E annihilates H;, and
therefore is cnd. Hence F—\C), is end for every A > 0. This completes
the proof of the assertion that C'is cpd, and B infinitely divisible.

Since C is positive definite, (x, Cyz) > 0 for every non zero vector
x. If x € Hy, then Ex = 0, and (x,(DE + ED)x) = 0. So, the
arguments given above also show that (x,Cz) > 0 for every non zero
vector x in Hy. By Lemma 4.3.5 in [2], this condition is necessary and
sufficient for C' to be nonsingular. Using the next proposition, we can
conclude that B is nonsingular.

Proposition. If C' is a nonsingular conditionally positive definite ma-
triz, then the matriz [e“7] is positive definite.
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Proof. By Proposition 5.6.13 of [4] we can express C as
C=P+YE+EY,

where P is a psd matrix and Y is a diagonal matrix. By Problem
7.5.P.25 in [9] the matrix [e“/] is positive definite unless P has two
equal columns. Suppose the ith column of P is equal to its jth column.

Let x be any vector with coordinates z; = —x; # 0, and all other
coordinates zero. Then z € H; and Pz = 0. Hence (z, Cz) = 0. This
is not possible since C' is a nonsingular ¢cpd matrix. ]

We have proved that the matrix B is infinitely divisible and nonsin-
gular. These properties are inherited by the matrix A defined in (1).
This is, moreover, a Hankel matriz; i.e, each of its antidiagonals has
the same entry. Theorem 4.4 of [11] gives a simple criterion for strict
total positivity of such a matrix. According to this a Hankel matrix
A is strictly totally positive if and only if A is positive definite and so
is the matrix A obtained from A by deleting its first column and last
row. For the matrix A in (1), A is the (n — 1) x (n — 1) matrix whose
(i,4) entry is (i + j)"t7. Both A and A are positive definite. Hence A
is strictly totally positive. In fact we have shown that for every r > 0,
the matrix A°" is strictly totally positive.

Now let k1 < ky < -+ < k, be positive integers. The matrix K
with entries k;; = (k;+k;)" ™% is principal submatrix of A. Hence it is
infinitely divisible and strictly totally positive. The same holds for K°"
for every r > 0. Next let 0 < ¢; < g2 < --- < @, be rational numbers.
Let ¢; = l;/m;, where l; and m; are positive integers. Let m be the
LCM of my,...,m, and k; = mgq;. Then k; < ky < --- < k,, and as
seen above, the matrix K = [(k; + k;)¥™] is infinitely divisible and
strictly totally positive. Now consider the matrix ) = [(qz - Qj)qi+qj:| )
Then for each r > 0

Q" = [(qi_f_qj)(qﬂrq]')r}
- [(mkj)““*’“ﬂ”m]

mai™ms"
or/m *
= XK°/mX*
where X is the positive diagonal matrix with entries —4—, ..., —= on
m9l mdan

its diagonal. We have seen that the matrix K°/™ is positive definite
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and strictly totally positive. Hence, so is the matrix Q°". A continuity
argument completes the proof of the theorem. [ ]

We believe that the matrix B in (2) is strictly totally positive. How-
ever the continuity argument that we have invoked at the last step only
shows that it is a limit of such matrices.

Like for the other matrices mentioned in the opening paragraph, it
would be interesting to have formulas for the determinant of A.

In a recent work [6] of ours, we have studied spectral properties of
the matrices [(p; + p;)"], where r is any positive real number.

We thank R. B. Bapat for illuminating discussions, and in partic-
ular for the argument in the last paragraph of our proof. The first
author is supported by a J. C. Bose National Fellowship and was a
Fellow Professor of Sungkyunkwan University in the summer of 2014.
The second author is supported by a SERB Women Excellence Award.
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